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Abstract. Genetic algorithms are a group of powerful tools for solving
ill-posed global optimization problems in continuous domains. In case
in which the insensitivity of the fitness function is the main obstacle,
the most desired feature of a genetic algorithm is its ability to explore
plateaus of the fitness function, surrounding its minimizers. In this paper
we suggest a way of maintaining diversity of the population in the plateau
regions, based on a new approach for the selection based on the theory of
multiwinner elections among autonomous agents. The paper delivers a
detailed description of the new selection algorithm, computational exper-
iments that guide the choice of the proper multiwinner rule to use, and
a preliminary experiment showing the proposed algorithm’s effectiveness
in exploring a fitness function’s plateau.

Keywords: Ill-posed global optimization problems · New tournament-
like selection · Fitness insensitivity

1 Introduction

Genetic algorithms (GAs) are a group of powerful tools for solving ill-posed
global optimization problems (GOPs) in continuous domains

arg minx∈D{f(x)}, D ⊂ R
�, f : D → R, (1)

where D is a closed, bounded domain with a nonempty interior and sufficiently
regular boundary (e.g., Lipschitz boundary [1]). The ill-conditioning of (1) is
frequently due to the existence of many solutions (i.e., due to the multimodality
of the objective function f over its domain D) or/and its weak sensitivity in
areas surrounding the global or local minimizers (for example, the chart of f
may have an almost flat plateau at the level of local minimum f(x̂), surrounding
the minimizer x̂). If the insensitivity is the main obstacle, the genetic algorithm
should exhaustively explore plateaus of the fitness function.
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The taxonomy of managing diversity classifies more than twenty groups of
methods (see, e.g., the surveys of Črepinšek [2] and Gupta and Ghafir [3]). The
most commonly used are, perhaps, niching and sharing (see, e.g., Schaefer’s
book [4] and the work of Goldberg and Richardson [5]). These methods gener-
ally lead to populations with sufficient differences in both location and fitness
values among the individuals. On the other hand, methods used to increase the
efficiency of Multi-Objective Evolutionary Optimization (MOEA) focus on loca-
tion diversity [6]. There are only a few selection operators designed especially
for diversity boosting (see, e.g., the works of Hutter [7] and Matsui [8]).

In this paper we suggest another approach to maintaining diversity of the
population in the plateau regions only, based on a new approach for the selection
operation. More specifically, we design the selection process for evolutionary
algorithms based on the theory of multiwinner elections among autonomous
agents. We refer to our approach as the Multiwinner Selection, or MWS for
short.

2 Multiwinner Elections

An election is a pair E = (C, V ), where C = {c1, . . . , cm} is a set of candidates
and V = (v1, . . . , vn) is a collection of voters. Each voter vi has an associated
preference order �i that ranks the candidates from the most desirable one to
the least desirable one (from the point of view of this voter). For example, if
C = {a, b, c}, then voter v who likes a best, then b, and then c, would have
preference order a � b � c.

Given an election E = (C, V ), we write posv(c) to denote the position of
candidate c ∈ C in the preference order of voter v ∈ V (the candidate ranked
first has position 1, the next one has position 2, and so on). The exact election
that we mean will always be clear from the context.

A multiwinner voting rule is a function R that given an election E = (C, V )
and a positive integer k, k ≤ ‖C‖, outputs a size-k subset of C, the elected com-
mittee (ties among winning committees may occur, but we disregard them). So
far, multiwinner rules received much less attention from the research community
than the single-winner ones. Based on the discussion given by Elkind et al. [9],
we consider seven rules inspired by scoring rules. A scoring rule is a function
that given a position of a candidate on a voter’s preference order returns this
candidate’s score. For example, k-Approval scoring rule, αk, is defined so that
αk(i) = 1 for i ∈ {1, . . . , k}, and αk(i) = 0 for i > k (α1 is known as the
plurality rule, i.e. the voter approves of a single candidate only). Borda scoring
rule—in elections with m candidates—is defined as β(i) = m − i. Given an elec-
tion E = (C, V ) and scoring function γ, the γ-score of candidate c ∈ C is defined
as

∑
v∈V γ(posv(c)).

Perhaps the easiest way to generalize a scoring rule to the multiwinner case
is as follows: Given an election E = (C, V ), a scoring protocol α, and the desired
number of winners k, simply pick k candidates with the highest scores. This way
we define the three following rules:
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Single Non-Transferrable Vote (SNTV). Under SNTV we pick the k can-
didates with the highest plurality scores (i.e., k candidates ranked first most
frequently).

k-Borda. Under k-Borda we pick k candidates with the highest Borda scores.
Bloc. Under Bloc we pick the k candidates with the highest k-Approval scores.

The next four rules are based on a somewhat different idea. We first intro-
duce some additional notation and then define the rules of Chamberlin and
Courant [10], of Monroe [11], and their approximate versions due to Lu and
Boutilier [12] and Skowron et al. [13].

Let E = (C, V ) be an election. We say that Φ, Φ : V → C is a k-CC-
assignment function if for each voter v ∈ V , Φ(v) returns one of at most k
candidates (in other words, we require that ‖Φ(V )‖ ≤ k). Intuitively, a k-CC-
assignment function matches up to k winners of the election to the voters. Given
a k-CC-assignment function Φ and a scoring function α, both for the same elec-
tion E = (C, V ), we say that the score of Φ is:

scoreα(Φ) =
∑

v∈V

α(posv(Φ(v))).

In other words, each voter v gives score only to the candidate c assigned to him
or her.

We now define the Chamberlin–Courant rule (the CC rule). Given an election
E = (C, V ) and a positive integer k, it picks a k-CC-assignment function Φ with
the highest score with respect to the Borda scoring protocol, and returns the
committee Φ(V ). Intuitively speaking, the rule picks some k candidates and
then assigns each voter to this one of them that this voter ranks highest. The
rule picks these k winners in such a way that the sum of the Borda scores that
voters give to “their” candidates is highest. In some sense, both the CC-rule
and the k-Borda rule are generalizations of the single-winner Borda rule to the
multiwinner case. The former, however, divides the electorate into k “districts”
of likely-minded voters, and the latter picks k winners that form some sort of a
global consensus. Interestingly, the “districts” created by the CC rule can be of
very different sizes. In some applications this is undesirable and, thus, Monroe
proposed a different variant of this rule.

We say that Φ is a k-Monroe-assignment function if it is a k-CC-assignment
function that additionally satisfies the following condition: Let n be the num-
ber of voters in the election. For each candidate c ∈ C, it holds that either
‖Φ−1(c)‖ = 0 or �n

k 	 ≤ ‖Φ−1(c)‖ ≤ 
n
k � (in other words, the Monroe condi-

tion requires that either a given candidate is not a winner or is a winner and is
matched to roughly the same number of voters as the other winners). Monroe rule
is the same as the CC rule except that it chooses among k-Monroe-assignments.

While the CC rule and the Monroe rule are quite appealing, it is NP-hard
to compute their winners [12,14]. (The situation becomes a bit better if one
assumes one of the standard restrictions on the votes such as single-peakedness
or single-crossingness; then the CC-rule becomes polynomial-time computable
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but the Monroe rule seems to remain intractable [15–17]). Fortunately, there are
approximation algorithms for both rules.

Lu and Boutilier [12] introduced a simple greedy algorithm for the CC rule,
based on the classic approximation result for submodular functions [18]. This
algorithm proceeds as follows. We are given an election E = (C, V ) and a positive
integer k, the number of winners that we are interested in. We construct the set
of winners W . Initially W is empty and we add candidates to it one by one, by
executing the following steps k times:

1. For each candidate c ∈ C \ W , we compute a k-CC-assignment function Φc

that assigns each voter v to the candidate in W ∪ {c} that v ranks highest.
2. We compute for which candidate c ∈ C\W the score of Φc is highest (breaking

ties in an arbitrary way).
3. We add this candidate c into W .

We refer to this algorithm as Greedy-CC. Lu and Boutilier have shown that
Greedy-CC always picks a committee that under the CC rule would obtain at
least fraction 1 − 1

e of the score of the optimal solution.
For the case of the Monroe rule, there is an approximation algorithm due

to Skowron et al. [13]. This algorithm also proceeds greedily, but it makes sure
to satisfy the Monroe condition. As for the case of Greedy-CC, this algorithm
builds the set of winners by adding candidates to it one by one, but it also
maintains the set of available voters. Formally, we have the following algorithm.

Let E = (C, V ) be an election and let k be the number of winners that
we seek. For the ease of exposition, we assume that k divides ‖V ‖ exactly. The
algorithm first sets the set of current winners to be W = ∅ and the set of available
voters to be A = V . Then it executes the following steps k times to find the set
of k winners and to build a k-Monroe-assignment function Φ:

1. For each candidate c ∈ C \ W , compute set

Ac = argmax
A′⊆A,‖A′‖= ‖V ‖

k

∑

v∈A′
β(posv(c))

(break ties arbitrarily, if needed; intuitively, Ac is a set of ‖V ‖
k voters from A

that jointly rank c highest). For each c let score(c) be
∑

v∈Ac
β(posv(c)).

2. Pick candidate c ∈ C \ W with the highest score (breaking ties arbitrarily,
if needed). Add c to the set W , remove the voters from Ac from A, and for
each voter v in Ac set Φ(v) = c.

Finally, the algorithm returns the set W . We refer to the algorithm as Greedy-
Monroe and treat it as a voting rule in its own right. Skowron et al. have
shown that the score of the k-Monroe-assignment function Φ returned by Greedy-
Monroe is at least n(m − 1)

(
1 − k−1

2(m−1) − Hk

k

)
, where n is the number of vot-

ers, m is the number of candidates, and Hk is the k’th harmonic number (i.e.,
Hk =

∑k
i=1

1
i ). For the case where k is relatively large and k

m is relatively small,
this value is very close to the highest possible score under the Monroe rule,
n(m− 1), achieved by an assignment function that matches every voter with his
or her most preferred candidate.
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3 Selection Based on Multiwinner Voting

The input for the selection procedure consists of election group C, which is a
subset of population Xt = 〈x(1), . . . , x(μ)〉, the multiset of candidate solutions
at the particular t-th epoch of evolutionary optimization process (each x(i) is a
point in an Euclidean space). As long as it does not lead to ambiguity, we do not
specify the dependency of each individual in Xt on the epoch number. For every
point x(i) ∈ C, we have its fitness value f(x(i)), the smaller the fitness value the
better (since in the multiwinner voting we maximize rather than minimize, we
will have to apply appropriate transformations of these values). We are to pick k
points from C that will be the parents in the following mixing phase. (Typically,
a selection procedure is applied multiple times, each invocation producing a
single individual. In our case we will still invoke the selection procedure several
times, but each invocation will output a collection of individuals; we formalize
this in Sect. 3.4).

Our idea is to consider C as a group of individuals who need to decide which
k of them would survive to the next epoch. These individuals are driven by two,
perhaps conflicting, desires.

1. Foremost, each individual would like to survive itself. If, however, the individ-
ual were not to survive, it would like some as similar as possible individual to
survive. Intuitively, a similar individual would have similar genes that would
be passed to the next generation.

2. The second desire is that the selected subpopulation is as fit as possible.

To model these desires, we introduce for each individual x(i) its utility func-
tion ui : C → R (we will provide some examples of utility functions very shortly).
For each two individuals x(i) and x(j), the value ui(x(j)) expresses how much
value x(i) attaches to x(j) being selected (the higher the value, the more x(i)

would like x(j) to be chosen). Naturally, given the principles outlined above, for
each two individuals x(i), x(j), we have that

ui(x(i)) ≥ ui(x(j)).

That is, foremost each individual is selfish and its desire to survive is stronger
than anything else.

Given the set of individuals and their utility functions, we define an election
E = (C, V ) as follows:

1. The set of voters V is the same as the set of candidates (the individuals),
that is, V = C.

2. For each individual x(l), we set its preference order so that if ul(xi) > ul(x(j))
then x(l) prefers x(l) to x(j). (We break the ties arbitrarily, should they occur.)

Now, given election E, we simply apply a multiwinner voting rule of choice to
pick k winners.
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3.1 Utility Functions

There are two crucial choices in the design of MWS. The choice of the multi-
winner voting rule and the choice of the utility function. Here we outline several
possibilities for the latter.

Perhaps the most natural idea is to use the following approach. For each
two individuals x(i) and x(j), let d(x(i), x(j)) be a distance between them (one
could use any metric, but for simplicity we use the Euclidean distance). We also
assume to have “reversal” function h such that for each two individuals x(i) and
x(j) it holds that f(x(i)) ≤ f(x(j)) if and only if h(f(x(i))) ≥ h(f(x(j))). Then
we define the utility of individual x(j) from the point of view of individual x(i)

to be:

up
i (x

(j)) =
h(f(x(j)))
d(x(i), x(j))

.

We refer to these functions as proportional utilities because they are directly
proportional to the “reversed” fitness values and inversely proportional to the
distances between the individuals (hence the symbol p in up

i ).
It is easy to see that proportional utilities satisfy the basic desiderata out-

lined in the above section. Since they are inversely proportional to the distance
between the individuals, each individual assigns the highest utility (+∞) to itself
and decreases its utility with increasing the distance (with increasing the dis-
similarity) to the other individuals. Since the utilities are proportional to the
reversed fitness values, the individuals assign value selecting individuals as fit as
possible.

Naturally, it might be the case that the proportional utilities either put too
much stress on the fitness values or too much stress on the distances between
the agents. Thus, to temper this behavior, we might need to use the following
variant of proportional utilities. Let γ and δ be two functions (γ, δ : R → R),
where γ is increasing and δ is decreasing. We define (γ, δ)-proportional utility
function to be:

uγ,δ
i (x(j)) = γ(h(f(x(j)))) · δ(d(x(i), x(j)))

For example, by taking γ(x) = x and δ(x) = 1
x we obtain the proportional utility

functions.
The choice of functions γ and δ is likely to have very strong impact on the

quality of our selection procedure. Indeed, we believe that exploring various
functions may be an interesting research project in its own right. In this work
we will focus on one particularly appealing type of (γ, δ)-proportional utilities,
where γ and δ are of the following form: For two positive numbers r and s,
we take γr(x) = xr and δs(x) = x−s. Naturally, even in this case, choosing
appropriate values of r and s is not obvious.

3.2 The Selection Procedure and the Choice of the Multiwinner
Rule

The pseudocode of our selection procedure is given as Algorithm 1. This code
is quite general and can use any (γ, δ)-utilities. It would also be straightforward
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Algorithm 1. The Multiwinner Selection (MWS) procedure. The goal is
to pick k individuals from the election group C, based on their locations
and fitness values, using multiwinner voting rule R.

Notation:
C = 〈x(1), . . . , x(n)〉 ⊆ Xt ← the election group
f ← the fitness function
h ← the “reversal” function
d ← the metric over R

�

γ, δ ← the functions defining (γ, δ)-proportional utilities
k ← the number of individuals to pick
R ← the multiwinner voting rule

// prepare the election among the individuals
1 V ← (v1, . . . , vn)
2 for l ← 1 to n do
3 foreach i, j ∈ {1, . . . , n}, i < j do

4 ul(x
(i)) ← γ(h(f(x(i))) · δ(d(x(l), x(i)))

5 ul(x
(j)) ← γ(h(f(x(j))) · δ(d(x(l), x(j)))

6 if ul(x
(i)) > ul(x

(j)) then

7 set vl’s preference order so that x(i) �l x(j)

8 else

9 set vl’s preference order so that x(j) �l x(i)

10 form election E = (C, V )

11 W = R(E, k) ; // hold the virtual election among the individuals
12 output W

to adapt it to any other natural form of utilities. The code can also use any
arbitrary multiwinner voting rule R. However, it should be quite clear that the
quality of the procedure will deeply depend on the choice of the rule. Indeed, if
we used SNTV which simply counts how many times each candidate is ranked
first, our procedure would—in essence—reduce to randomly selecting a group
of k individuals. This is so because each individual ranks itself first and, thus,
every individual would simply have one point.

Similarly, we believe that k-Borda and Bloc would not perform very well.
The single-winner variant of k-Borda is designed to find a “consensus” winner,
that is, a candidate that is in some sense acceptable to as many voters as pos-
sible. In effect, k-Borda finds a collection of such “consensus” candidates and
they are likely to be very similar. Bloc rule might be a bit better because it is
based on the k-Approval scoring protocol and, effectively, under Bloc the score
of each candidate depends on local information only. This might, however, lead
to picking individuals from large clusters only.

On the other hand, we believe that the CC rule and the Monroe rule would
not suffer from the above-described problems. The reason is that under these
rules, when a candidate is assigned to some voter, this voter cannot contribute
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to the score of any other candidate. As a result, members of a big cluster would
only be able to promote some of their number into the winning set, preventing
overwhelming of smaller clusters.

For the same reason, it seems that Greedy-CC and Greedy-Monroe should
perform well, and should be faster than CC and Monroe (since computing CC
and Monroe requires solving NP-hard problems). Indeed, using Monroe and CC
for any non-trivial setting seems impossible. On the other hand, Greedy-CC
and Greedy-Monroe are computed through simple, polynomial-time algorithms
and, in effect, the computational cost of using multiwinner selection based on
them is negligible (as compared to the cost of fitness evaluations for engineering
applications for which our techniques are intended). We also note that using
multiwinner selection requires the same number of fitness evaluations as, say,
tournament selection.

3.3 A Simple Experiment

The main reason for developing our Multiwinner Selection procedure is to
enhance the plateau exploration capabilities of genetic algorithms. In the pre-
ceding section we have argued theoretically that to achieve this effect we should,
likely, use Greedy-CC or Greedy-Monroe rules. However, instead of relying on
theoretical analysis only, we believe that it would be informative to perform a
simple computational experiment that would give us some further insight into
the behavior of MWS depending on the applied voting rule.

To this end, we have performed the following experiment. We have generated
500 points distributed uniformly on the two-dimensional square [−3, 3] × [−3, 3]
and have applied our selection procedure to pick 50 points. We have assumed
that each point has the same fitness value (thus the choice of function h is
irrelevant) and we have used the unmodified 2-dimensional Euclidean distance
(that is, we have used δ(x) = 1

x ). This setting models the situation in which the
genetic algorithm has hit the plateau and now the goal is to explore it. We would
like to obtain as much diversity among the selected individuals as possible.1

The results of the experiment, presented in Fig. 1, are quite striking and fully
support the theoretical discussion from the preceding section: k-Borda picks a
centrally located cluster of individuals, Bloc picks candidates from areas where
they are concentrated (due to the random choice of their positions), whereas
Greedy-CC and Greedy-Monroe pick candidates that are, approximately, uni-
formly distributed among the individuals. In effect, we believe that k-Borda and
Bloc would be poor choices for our application. Greedy-CC and Greedy-Monroe
would, likely, perform comparatively well. However, Greedy-CC is faster to com-
pute and since it does not have to respect the Monroe criterion, it is less likely to
1 From the point of view of the elections theory, our setting is an example of two-

dimensional Euclidean single-peaked preferences. Under two-dimensional Euclid-
ean preferences, every voter and every candidate is a point in a two-dimensional
Euclidean space and every voter (in our case, every individual) derives his or her
preference orders by sorting the candidates (in our case, the individuals) with respect
to their Euclidean distance from him or herself.
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Fig. 1. The result of using Multiwinner Selection to pick 50 out of 500 individuals,
distributed uniformly on a [−3, 3] × [−3, 3] square, using k-Borda, Bloc, Greedy-CC,
and Greedy-Monroe. All the individuals have the same fitness value, simulating the
plateau scenario (in effect, the utilities, and the preference orders, are derived based
on the distance between points only). For the case of each rule we use the same 500
points.

pick two very similar points (this would happen for the case of Greedy-Monroe
if these two points were surrounded by a denser-than-usual cluster of points).
Thus, from now on in MWS we will use Greedy-CC only.

We have shown a result of a single invocation of our experiment, but we have
run it repeatedly and each time we obtained similar results. Since for now we
are interested in qualitative results rather than quantitative ones, we believe the
obtained evidence is sufficient to focus on Greedy-CC only.
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Algorithm 2. Outline of a genetic algorithm using MWS.

Notation:
Xt = 〈x(1)

t , . . . , x
(μ)
t 〉 ∈ D� ← the population in the t-th epoch

C ⊆ Xt ← the election group
n ← the size of the election group (n ≤ μ)
k = 2p ← the number of individuals to pick
MWS ← Multiwinner Selection procedure

1 Sample the initial population X0

2 Evaluate X0

3 t ← 0
// the main loop over the epochs

4 while Stopping Condition(Xt) do
5 Offspring ← ∅
6 for i ← 1 to μ/p do
7 Choose the election group C of size n from Xt

// Select k individuals from the election group
8 {c1, . . . , ck} ← MWS(C, k)
9 for j ← 1 to p do

10 r ← 2j − 1
11 a ← cross(cr, cr+1)
12 a ← mutate(a)
13 Offspring ← Offspring ∪ {a}
14 t ← t + 1
15 Xt ← Offspring
16 Evaluate Xt

17 output Xt

3.4 Genetic Algorithm Using Multiwinner Selection

Let μ be the number of individuals in the population in a single epoch. Further,
we choose two numbers, n and p, where n is the size of the election group (i.e.,
the number of individuals over which we will carry a multiwinner election), and
p, p < μ, is a number that divides μ and such that we pick k = 2p individuals
from the election group.

A single iteration of our algorithm proceeds as follows. We pick the election
group, that is, a set C ⊆ Xt of individuals of size n, where Xt is the current pop-
ulation. (There are at least several ways of choosing Xt and we will discuss two
possibilities shortly; for now let us simply think of it as some stochastic process
that picks n individuals). Then we apply Multiwinner Selection procedure to
pick k individuals out of these n. Finally, we iterate over these k individuals,
pick consecutive pairs, apply the crossing operation to the individuals from the
pair, obtaining a single individual, and finally we apply the mutation operator to
this individual (we assume that the crossing operator and the mutation operator
encapsulate the stochastic choices as to whether they should, all in all, be applied
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or not). In effect, we obtain a group of p individuals that we insert into the next
epoch’s population. We repeat this process μ/p times, to form a population of
size μ.

Let us now move back to the issue of picking the election group. We suggest
two ways in which this can be done:

1. We obtain the election group C by sampling without replacement n times from
the current population Xt (using the uniform distribution). This approach is
inherited from the standard tournament selection procedure.

2. The second way is composed of four steps. In the first step we select a
single individual xseed from Xt using some conventional selection proce-
dure (e.g., the proportional one or the tournament one). In the second
step we chose the normal, �-dimensional distribution with a density func-
tion ρ, whose expectation is xseed. The standard deviation σ of this dis-
tribution is a parameter of the procedure. Next, we create the probabil-
ity distribution χ on the multiset Xt \ {xseed} by normalizing the vector
{ρ(x(i))}, x(i) ∈ Xt, i = 1, . . . μ, x(i) �= xseed. Finally, we obtain the election
group C by (n − 1)-times sampling without replacement from Xt \ {xseed},
according to the probability distribution χ. Finally, we add xseed to the elec-
tion group.

From now on, we will focus only on the first, far simpler, way of picking the
election group. However, naturally, it has drawbacks. For example, the election
group picked in this way might be too diverse in case of a relatively large search
domain. We believe that the second procedure for picking the election group
would resolve this problem. Measuring the extent to which this problem indeed
occurs in practice is beyond the scope of this paper.

4 Experimental Evaluation

In this section we provide evidence that our Multiwinner Selection method
indeed achieves its goal, i.e., it leads to the exploration of plateau areas (without
necessary focusing on a single local or global optimum). To this end we consider
the following experiment. Let f(x, y) be a function, f : R × R → R, defined as:

f(x, y) = max
(

1
2

− e−2(x2+y2), 0
)

+
20 + x2 − 10 cos(2πx) + y2 − 10 cos(2πy)

2000

While f(x, y) might look somewhat complicated at first, its definition is in fact
very simple. The first term of f(x, y), max(12 −e−2(x2+y2), 0) is a simple Gaussian
function reversed, translated up to 1

2 , and cut off at 0. In effect, this part of the
function creates a well, with a plateau in the shape of a circle with the center at

point (0, 0) and radius r =
√

− ln 1
2

2 ≈ 0.58. The second summand is the Rastrigin
function (downscaled by a factor of 2000) to introduce small perturbations. We
plot the function in Fig. 2.
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Fig. 2. The plot of the function f(x, y). It is, in essence, a well with the center (0, 0);
the small perturbations due to the Rastrigin function are barely visible.

The idea of our experiment is to run a genetic algorithm whose goal is to
find minimizers of function f(x, y) (on the domain [−2, 2]× [−2, 2]). Naturally, a
standard algorithm would very quickly find the global minimum at point (0, 0).
However, what we are interested in is not finding the global minimum, but
exploring the plateau area in the circle of radius r ≈ 0.58, centered at (0, 0).
Arguably, all the points in this area are of very similar quality, and from our
point of view it is important to cover as much of this area as possible.

To this end, we compare two algorithms. Our algorithm from the previ-
ous section, using the Multiwinner Selection procedure, and a simple standard
genetic algorithm using a form of the tournament selection procedure. Both
algorithms use the following basic parameters:

1. The population in each epoch contains μ = 100 individuals.
2. The initial population is picked by drawing μ points from [−2, 2] × [2, 2]

uniformly at random.
3. The probability of performing the crossover operation is 1%, whereas the

probability of mutation is 100%. Mutation is executed by adding to the indi-
vidual a value drawn randomly using the normal distribution with standard
deviation 0.1.

Arguably, this setting of the parameters (especially the mutation rate and
the standard deviation of the normal distribution used for mutation) is quite
extreme. However, what we are modeling here is a situation where the algorithm
already, roughly, identified the part of the domain with a plateau (thus we look
at the domain [−2, 2]× [−2, 2]) and now the goal is to fill in this plateau. For this
task we want the population to be exploration-oriented and, thus, we want the
mutation operator to have strong effect, and we want the crossover operation to
have very small impact. Thus, We use the following parameters:



Multiwinner Voting in Genetic Algorithms 421

Fig. 3. Sample run of our algorithms with tournament and Multiwinner selection pro-
cedures (populations X1, X3, and X10). The blue circle depicts the plateau region.
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1. For the Multiwinner Selection, we use (γ, δ)-proportional utilities, with
γ(x) = x6 and δ(x) = 1

x . We use the “reversal” function h(x) = 1
1+x . Fur-

ther, we set n = 30 and μ = 5 (that is, every selection process consists of
holding 100

5 = 20 elections among randomly chosen 30 individuals, of whom,
eventually, 5 are selected as the parental individuals).

2. For the tournament selection, we have used the following process: To pick
each parental individual we pick 5 randomly selected individuals and then
draw one of them with probability proportional to their fitness value (the
better the fitness value, the better the chance of being selected).

We should mention that the above parameter setting is largely ad-hoc. We
did not try to optimize the values and we have performed only a handful of
preliminary experiments to asses the behavior of the system. This is in sync
with the fact that what we present here is nothing more than a proof of concept
that Multiwinner Selection is a tool worth developing in the context of extending
the capabilities of plateau exploration for genetic algorithms.

We have run our algorithms on function f(x, y) for 20 times each, in each
case executing 10 epochs (i.e., starting with population X0, and computing pop-
ulations X1, . . . , X10). In Fig. 3 we present populations X1, X3 and X10 for both
algorithms, from representative runs. This figure shows that our intuition that
Multiwinner Selection should lead to better exploration of the plateau region is
correct. However, we also assessed the extent of this advantage quantitatively.

To this end, we have computed how much of the plateau region is covered by
the individuals from each of the populations. The plateau region is a circle with
the radius r ≈ 0.58. Since mutation in our algorithm modifies the position of

Table 1. Comparison of the average fraction of the plateau covered by the algorithm
using tournament selection and Multiwinner selection. For each algorithm we report
the average fraction of the plateau covered by populations X1, . . . , X10 and its standard
deviation. (The average and the standard deviation is computed over the 20 test runs
that we have executed.)

covered fraction
of the plateau

population average st. dev.

X1 0.1124 0.0431
X2 0.2165 0.0712
X3 0.3521 0.0696
X4 0.3846 0.0400
X5 0.3586 0.0554
X6 0.3118 0.0545
X7 0.2765 0.0455
X8 0.2588 0.0305
X9 0.2474 0.0152
X10 0.2428 0.0120

(a) Tournament Selection

covered fraction
of the plateau

population average st. dev.

X1 0.1152 0.0385
X2 0.2511 0.0634
X3 0.3613 0.0454
X4 0.4011 0.0278
X5 0.4202 0.0255
X6 0.4139 0.0261
X7 0.4251 0.0195
X8 0.4276 0.0262
X9 0.4207 0.0175
X10 0.4234 0.0161

(b) Multiwinner Selection
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each individual according to a two-dimensional normal distribution with stan-
dard deviation 0.1, we have assumed that each individual covers an area of the
plateau equal to the circle of radius 0.05, centered at the individual. Then, we
have computed the fraction of the area of the plateau covered by at least one
individual. We have done so for both algorithms, for every run of our algorithm,
and for every epoch within the run. We present the results in Table 1.

The results confirm our intuition. The algorithm using Multiwinner selec-
tion achieves a better coverage (nearly twice as large as that using tournament
selection) and does not converge to the local optimum. Instead, it maintains the
diversity among the individuals. Since the standard deviation for the covered
fraction of plateau in the tenth epoch is very small (for both algorithms), this is
good indication that our results are meaningful.

We should mention that the results from Table 1 are very sensitive to our def-
inition of what it means for an individual to “cover a given area of the plateau.”
For example, it depends on the radius “covered” by a single individual. However
the main message, that Multiwinner Selection ensures noticeably better diversity
of the individuals than tournament selection remains true.

5 Conclusions

We have put forward a new idea for a selection procedure for genetic algorithms.
This selection procedure is based on the theory of multiwinner voting, and its
goal is to maintain diversity of the population within plateau regions. We have
considered several voting rules that can form the basis of the selection procedure
and we have concluded that a greedy approximation algorithm for Chamberlin–
Courant’s rule is promising (however, the approximation algorithm for Monroe’s
rule is promising as well). Then we have tested our selection procedure within a
very simple genetic algorithm. We have applied the algorithm to a toy example of
a function with a plateau. We have shown that compared to the same algorithm
with tournament selection, our algorithm achieves noticeably better diversity of
its populations. This is seen both by a quantitative assessment and by inspecting
the populations visually.

The research presented in this paper is very preliminary. It is very likely that
there are better ways of employing our ideas, there are better parameter settings,
etc. Nonetheless, we believe that our results are sufficient to support our main
message: Selection based on the theory of multiwinner voting is an interesting
idea that can lead to diversity among the individuals in genetic algorithms.
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2013. LNCS, vol. 8146, pp. 1–12. Springer, Heidelberg (2013)

17. Elkind, E., Faliszewski, P., Skowron, P.: A characterization of the single-peaked
single-crossing domain. In: Proceedings of the 28th AAAI Conference on Artificial
Intelligence, pp. 654–660 (2014)

18. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maxi-
mizing submodular set functions. Math. Program. 14(1), 265–294 (1978)


	Multiwinner Voting in Genetic Algorithms for Solving Ill-Posed Global Optimization Problems
	1 Introduction
	2 Multiwinner Elections
	3 Selection Based on Multiwinner Voting
	3.1 Utility Functions
	3.2 The Selection Procedure and the Choice of the Multiwinner Rule
	3.3 A Simple Experiment
	3.4 Genetic Algorithm Using Multiwinner Selection

	4 Experimental Evaluation
	5 Conclusions
	References


