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Abstract. In the paper we consider the ranking given by the Pareto
dominance relation as a basis to create a selection operator for the Evo-
lutionary Multiobjective Optimization Algorithm (EMOA). Assuming
that sampling to the next epoch is performed according to the general-
ized Bernoulli schema with regard to a selected type of the rank selection,
a heuristic operator for EMOA is introduced. Having defined the heuris-
tic operator, the transition probability matrix of the uniform Markov
chain modeling EMOA can be explicitly obtained as in the Vose’s the-
ory of the Simple Genetic Algorithm (SGA). This chain is ergodic if the
mixing operator following the EMOA selection operator in each epoch
is strictly positive. Moreover, we show that the measure on the space of
populations imposed by the EMOA infinite population concentrates on
the set of fixed points of the heuristic operator after infinite number of
epochs, assuming that the heuristic operator is focusing.

Keywords: evolutionary algorithm, multi-objective optimization,
Markov system.

1 Introduction

Evolutionary Multiobjective Optimization Algorithms (EMOAs) have been stud-
ied by several groups of researchers. Different types of selection were introduced
i.a. by Goldberg in [5], Fonseca and Fleming in [4] and Zitzler and Thiele in [16].
Nondominated sorting was also used by Srinivas and Deb (see. e.g. [12]). The-
oretical properties of EMOAs applied to discrete problems were studied i.a. by
Rudolph in [9], [10], Hanne in [6] and Laumanns in [7]. Authors of these papers
base on the Markov description of populations processing and use an archive in
which an approximation of the Pareto front is stored. Convergence with regard
to ε-Pareto dominance relation was analyzed by Laumanns in [7].

We build a Markov model of EMOA basing on the introduced heuristic op-
erator, similar to the Vose’s genetic operator for the Simple Genetic Algorithm
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(SGA) (see e.g. [13]). We assume the set of genes to be finite but general (in-
dividuals are not necessarily strings over any alphabet). The proposed heuristic
is created with regard to some special types of rank selection. We will analyze
asymptotic features of the evolved population according to such EMOA selec-
tion rules and mixing operations (crossover, mutation, etc.) that return a strictly
positive sampling probability.

Because the asymptotic results obtained for EMOA Markov model are similar
as those obtained for SGA by Vose, they can be used for verifying two-phase
strategies in the same manner as for the single criteria ones (see e.g. [11]). Such
strategies consist of finding the approximation of the connected components of
the Pareto set (using EMOA combined with the proper population clustering)
in the first phase, and the parallel, detailed search in each of them.

2 Evolutionary Approach to the Multiobjective
Optimization

2.1 Pareto Dominance

In the multiobjective optimization, we are given k ≥ 2 objective functions

fi : U → [0, M ] ⊂ R, M < +∞, i ∈ {1, . . . , k} (1)

defined over some search space U , which might be implicitly defined by con-
straints. We assume the search space U to be finite #U = r < +∞ and that all
objectives shall be maximized. Therefore we are interested in solving

max
{
f(p) = (f1(p), . . . , fk(p))T | p ∈ U

}
. (2)

Definition 1. (Pareto dominance) For any pair (p, q) ∈ U × U , p is said to
dominate q, denoted as p � q, if and only if

f(p) ≥ f(q) and ∃i=1,...,k fi(p) 	= fi(q). (3)

Remark 1. The definition can be easily adapted to the minimization problem,
when in formula (3) inequality changes form ≥ to ≤. It can be also adapted
to mixed min-max problems by changing inequalities for certain coordinates
representing different objective functions.

2.2 Evolutionary Multiobjective Optimization (EMOA)

One of the possible ways of solving (2) is finding the Pareto set P being the
set of non-dominated elements from U and its image f(P) ⊂ [0, M ]k called the
Pareto front.

A popular class of stochastic algorithms designed for finding Pareto set is
called Evolutionary Multiobjective Optimization (EMOA) (see e.g. [14]). Their
simplest instances operate on the single population being the multiset P = (U, η)
of the search space members called individuals, while U is called now genetic
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universum. The occurrence function η : U → Z+ ∪ {0} returns η(i) being the
number individuals with the genotype i ∈ U and μ =

∑
i∈U η(i) < +∞ stands

for the population cardinality.
As other genetic algorithms, EMOA consists in producing the sequence of

populations {P t} in the consecutive genetic epochs t = 1, 2, . . . starting from the
population P 0 uniformly sampled from U .

Later, we will consider only the scheme (μ, λ) where λ = μ, such that the
transformation between P t and its successor P t+1 is obtained by the composi-
tion of two groups of random operations: selection and mixing. Hereafter (μ, λ)
stands for the Schwefel’s symbol, where λ is the offspring cardinality and μ is
the population cardinality.

While the mixing operations utilized in EMOA do not differ significantly from
those applied in other groups of evolutionary algorithms, the EMOA selection is
performed with regard to the Pareto dominance (see e.g. [2]). The algorithm ter-
minates after a predefined number of epochs or when another stopping criterion
is satisfied (see e.g. [14]).

2.3 Selection Schemes

Several important EMOAs with different selection schemes will be briefly de-
scribed in the following section. A comparison of these methods can be found
e.g. in [14].

The idea of calculating an individual’s fitness according to Pareto-dominance
was first suggested by Goldberg in [5]. The procedure of NSGA (Nondominated
Sorting Genetic Algorithm) is based on ranking individuals in an iterative way:
firstly nondominated solutions are assigned rank one and temporarily removed
from the population. After that, next nondominated solutions are given rank two
and so forth. The rank of an individual determines its fitness value. Goldberg’s
concept was implemented e.g. by Srinivas and Deb [12].

Fonseca and Fleming in [4] proposed a Pareto-based ranking procedure
(FFGA), where an individual’s rank equals the number of solutions by which it
is dominated. After sorting population according to the rank, new fitness values
are assigned to individuals by interpolating from the best (with the lowest rank)
to the worst (with the highest rank) according to some function. Fitness of
individuals with the same rank should be equal, so that all of them will be
sampled at the same rate. We used this type of selection as a basis for creating
the selection operator.

Later on we will refer mainly to NSGA and FFGA selection schemes in prepar-
ing the EMOA Markov model. In the following paragraphs we will mention two
important strategies which seem to be difficult or impossible to model in the
way presented in next sections.

One of these methods is aimed to construct an algorithm in which the hy-
pervolume measure (see e.g. [3]) governs the selection operator of an EMOA in
order to find a set of solutions well distributed on the Pareto front. Hypervolume
measure or S-metric corresponds to the size of dominated space [16]. Individuals
are rated according to their contribution to the dominated hypervolume of the



620 E. Gajda, R. Schaefer, and M. Smo�lka

current population, therefore ranks are not based on relations between pairs of
individuals but on relation between an individual and the whole population.

Strength Pareto Evolutionary Algorithm (SPEA, see [16]) uses a regular pop-
ulation and an external set (archive) into which all nondominated solutions are
copied in each iteration. If the size of the archive exceeds a predefined limit, fur-
ther archive members are deleted by a clustering strategy which preserves the
characteristics of the nondominated front. Ranks of solutions are calculated bas-
ing on strength values of individuals stored externally. SPEA was later improved
and introduced as SPEA2 in [15]. The selection in SPEA cannot be described by
our selection operator because of the existence of the archive. In order to model
this selection scheme one should consider a different space of states.

3 EMOA Markov Model

3.1 Evolutionary Algorithms with Heuristic

Each finite population represented as the multiset P = (U, η) may be identified
with its frequency vector x = { 1

μ η(p)}, p ∈ U and all such vectors belong to the
finite subset Xμ of the well-known Vose simplex

Λr =

⎧
⎨

⎩
x = {xp}; 0 ≤ xp ≤ 1, p ∈ U,

∑

p∈U

xp = 1

⎫
⎬

⎭
. (4)

Such construction has several advantages:

1. Although the frequency vector represents unambiguously only the finite pop-
ulations (μ < +∞), it is possible to represent also the infinite size popula-
tions. We will identify the population with its frequency vector if it does not
lead to the ambiguity.

2. Each x ∈ Λr being the population frequency vector (possibly infinite one)
belongs to M(U) being the set of probabilistic measures on the set U .

3. The set containing representations of all populations is compact in R
r.

The above settings allow to define the class of evolutionary algorithms which
are characterized by the same genetic universum U and fitness as well as the
same set of genetic operations that do not depend on the genetic epoch number.
They can differ only by the population size μ. This class of EA’s may be also
characterized as ”stationary” because the evolutionary rule does not change
during computations.

Definition 2. The mapping H ∈ C(Λr → Λr) will be called the heuristic of the
particular class of genetic algorithms if:

1. Each coordinate (H(x))p is equal to the sampling probability of the individual
with the genotype p ∈ U in the epoch that immediately follows the epoch in
which the population x ∈ Λr appears.
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2. The value H(x) is the expected population in the epoch that immediately
follows the epoch in which the population x ∈ Λr appeared, for all algorithms
from the considered class.

3. It stands for the law of evolution of the abstract, deterministic, infinite pop-
ulation algorithm (we assume that it exists in the considered class). In other
words, the infinite population algorithm is the dynamic system that starts
from a particular initial population x0 ∈ Λr and then passes consecutively by
H(x0),H2(x0),H3(x0), . . . .

If a particular class of genetic algorithms admits a heuristic operator, we will call
those algorithms the genetic algorithms with heuristic. The heuristic operator
was introduced by Vose and his collaborators for the class of Simple Genetic
Algorithms (SGA) (see e.g. [13]). This operator was equivalently called genetic
operator in this case. Some further comments are contained in [11].

Furthermore, we restrict ourselves to the evolutionary algorithms in which
the next epoch population xt+1 ∈ Λr is obtained by the μ-times sampling with
return according to the polynomial scheme (generalized Bernoulli scheme, see
e.g. Billingsley [1]), assuming the probability distribution on the set of genotypes.
Of course, in case of the GA class with heuristic, the value of H(xt) stands for
such probability distribution.

Observation 1. If the next population xt+1 is obtained using generalized Ber-
noulli scheme, then the condition 1 of the Definition 2 implies the condition 2.

The Observation 1 can be motivated as follows. Let us denote by P t+1 =
(U, ηt+1) the random variable being the population in the t + 1 epoch. Because
P t+1 is obtained using the generalized Bernoulli scheme associated with the
probability distribution H(xt) ∈ M(U), we have that EP t+1 = (U, η̄t+1) with
η̄t+1(p) = μ H(xt)p, where E is the proper expected value operator. There-
fore the expected coordinate of the frequency vector xt+1 satisfies (Ext+1)p =
1
μ η̄t+1(p) = H(xt)p for all p ∈ U .

Observation 2. If the next population xt+1 is obtained using generalized
Bernoulli scheme, then the condition 1 of the Definition 2 implies also the
condition 3.

The motivation of the Observation 2 in not so trivial as the previous one. It may
be drawn from the following theorem.

Theorem 1. ∀ k > 0, ε > 0, ν < 1 ∃ N independent upon x0 ∈ Λr such that

μ > N ⇒ Pr{∥∥xt −Ht(x0)
∥
∥ < ε} > ν ∀ t ∈ [0, k] ∩ N.

This theorem is a generalization of the well known Nix and Vose result (see
Theorem 2 in [8]) proved originally for the SGA heuristic only. This theorem
states that the finite population algorithm spends arbitrarily large number of
epochs arbitrarily close to the heuristic trajectory with the probability arbitrarily
close to 1 if the population size is large enough, so the heuristic trajectory might
be understood as the trajectory of infinite population algorithm in this sense.
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Observation 3. If the particular EA has the heuristic H and the next epoch
population P t+1 is obtained using generalized Bernoulli scheme associated with
the probability distribution H(xt) ∈ M(U), then it can be modeled as the sta-
tionary Markov chain with the finite space of states Xμ and with the transition
probability matrix Q given by the formula similar to the formula introduced by
Vose for SGA Markov model (see Theorem 1 in [8])

(Q)x,y = μ!
∏

p∈U

(H(x)p)μyp

(μyp)!
∀x, y ∈ Xμ. (5)

The above observation is a simple issue of the polynomial sampling distribution.

3.2 The EMOA Selection Operator

Let us start with the definition of the binary Pareto dominance matrix

Ξ ∈ {0, 1}r × {0, 1}r; Ξp,q =

{
1 if q � p

0 otherwise.
, ∀ p, q ∈ U. (6)

which completely characterizes the Pareto dominance relation among the geno-
types from U for the particular multiobjective optimization (2). The above defi-
nition is appropriate also for different cases of problems, not only maximization
(see Remark 1). NSGA selection scheme can be represented in a similar way but
with a different Ξ matrix.

It is easy to observe that the p-th entry of the vector (Ξ η) represents the num-
ber of individuals which dominate the individual with the genotype p belonging
to the population P = (U, η) (i.e. η(p) > 0).

Next, we introduce function ξ : Λr → [0, 1]r of the form

ξ(x) = Ξ x , (7)

so that ξ(x)p defines the rank of all individuals with the genotype p ∈ U con-
tained in the population P represented by its frequency vector x.

This function is well defined for both finite and infinite populations. In case of
finite population of the cardinality μ < +∞ the entry ξ(x)p may be interpreted
as the relative number of individuals that dominate the individual with the
genotype p because ξ(x) = 1

μ (μ Ξ x) = 1
μ (Ξ μ x) = 1

μ (Ξ η).

Observation 4. It may be easily checked that

∀x ∈ Λr ∃p ∈ U : ξ(x)p = 0, xp > 0.

It follows from the fact that there is at least one non-dominated individual in
each population.

As usual, it is necessary to introduce the validating function in order to obtain
the probability distribution of the rank selection

g ∈ C([0, 1] → [0, 1]); ∀ζ, γ ∈ [0, 1], ζ > γ ⇒ g(ζ) < g(γ). (8)
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As a simple example of a function correlated with the rank-based fitness assign-
ment method [4] we can take

g(ζ) = 1 − ζ. (9)

To obtain more control on the selection pressure the function

g(ζ) = e−αζ , α ∈ R+ (10)

may be chosen.
For technical purposes we introduce a next function G : [0, 1]r → [0, 1]r such

that G(x)p = g(xp), p ∈ U .
The probability of selecting the individual p ∈ U from the current EMOA

population P represented by the vector x ∈ Λr equals to

Pr(p) =
1

xT G(ξ(x))
g((ξ(x))p) xp. (11)

We are now ready to define the selection operator F : Λr → Λr for the EMOA
rank selection

F (x) =
1

xT G(Ξ x)
diag(x) G(Ξ x) , (12)

where diag(x) denotes the r × r diagonal matrix with the diagonal x.

Observation 5. Taking into account the features of the function ξ (see Obser-
vation 4) and the features of the function g (see formula (8)) the EMOA rank
selection operator (12) as well as the formula (11) are well defined, because the
denominator xT G(Ξ x) is strictly positive for all x ∈ Λr.

Observation 6. Because g is continuous in its domain the EMOA rank selec-
tion operator (12) is continuous on the whole Λr. If we additionally assume, that
g is continuously differentiable, as in case of both examples (9), (10), then the
EMOA rank selection operator is also continuously differentiable on the whole Λr.

Observation 7. If the validating function g is strictly positive, then the EMOA
rank selection is always ”soft”, which means that each individual from the current
population can be selected (with the positive probability) as a parental one. If we
relax conditions of g contained in (8), assuming only that g is weakly decreasing
(g(x) ≤ g(y) for x > y) and exists γ ∈ (0, 1) so that g(x) > 0 only for x ∈ [0, γ],
then the EMOA rank selection may become partially hard, elitist one. Such a
relaxation does not contradict the well-posedness of the formula (12) because the
denominator xT G(Ξ x) remains strictly positive for all x ∈ Λr.

3.3 The EMOA Heuristic

The selection is followed by the genetic operations (e.g. mutation, crossover)
in each EMOA epochs. They can be represented by the mixing operator M ∈
C1(Λr → Λr). Currently, we do not impose any specific restrictions for this
mapping.
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The well known example of mixing operator was introduced by Vose and col-
laborators [13]. It expresses the binary mutation and positional crossover utilized
in SGA.

M(x)p = (σp x)TMσp x, ∀ x ∈ Λr, p ∈ U (13)

where σi stands for the r × r dimension permutation matrix with the entries
(σp)q,k = [q⊕k = p], p, q, k ∈ U . The entries Mp,q of the symmetric r×r matrix
M express the probability of obtaining the genotype 0 ∈ U (the genotype being
the string of zeros) from the parents p, q ∈ U by the crossover and mutation.

Similarly, like in case of SGA, the composition

H = M ◦ F (14)

may be considered as the candidate for the heuristic of the particular class of
EMOA considered in this paper.

Observation 8. As an immediate consequence of its construction, H is well
defined and continuous on the whole Λr. Assuming additionally that the function
g (see formula (8)) is continuously differentiable on [0, 1] we have also that H is
continuously differentiable on the whole Λr.

Observation 9. Again, as the result of the construction, H described by (14)
satisfies the condition 1 of the Definition 2, because each coordinate of its value
(H(x))p stands for the probability of sampling the genotype p ∈ U to the pop-
ulation following the population associated with the frequency vector x. If we
moreover assume, that the sampling to the next epoch population is performed
according to the generalized Bernoulli model (according to the polynomial prob-
ability distribution) then also the conditions 2 and 3 of the Definition 2 are
satisfied (see Observations 1 and 2).

Observation 10. Immediately from the Observations 9 and 3 it follows that the
considered class of EMOA transforming the finite populations of the cardinality
μ < +∞ can be modeled as the stationary Markov chain with the finite space of
states Xμ and with the transition probability matrix Q given by the formula (5).

3.4 Asymptotic Features

Observation 11. If the mixing operator (13) is strictly positive, e.g. M(x)p >
0, ∀x ∈ Λr, ∀p ∈ U , then the Markov chain describing EMOA is ergodic.
The algorithm possesses the asymptotic guarantee of success, e.g. it will reach
the population (state) which contain all points lying in the Pareto set after an
infinite number of epochs.

Let us denote by πt
μ ∈ M(Xμ) the probability distribution of the random vari-

able representing EMOA population of the size μ after t epochs. Assuming that
EMOA is modeled by the ergodic Markov chain, each sequence π0

μ, π1
μ, . . . has

a strictly positive limit πμ that does not depend on the initial distribution π0
μ,

which is the simple issue of the ergodic theorem (see e.g. [1]). Measures πμ orig-
inally defined over Xμ can be easily extended to Λr.
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Next, according to the Prokhorov theorem (see Theorem 29.3 in [1]), the
sequence {πμ} has a weak limit π∗ in Λr, because Λr is compact.

Let us assume now, that the EMOA heuristic is focusing i.e. if for all x ∈ Λr

the sequence {Ht(x)} converges in Λr for t → +∞. Let w ∈ Λr be the limit of
such sequence for some starting point x ∈ Λr. The continuity of H guarantees,
that H(w) = H (limt→+∞ Ht(x)) = limt→+∞ Ht+1(x) = w, so w is the fixed
point of H. Let us denote the set of fixed points of H by K ⊂ Λr. If H is
focusing, then obviously K 	= ∅.

Theorem 2. Assuming that the EMOA heuristic is focusing and the Markov
chains associated with family of EMOA with various population sizes are ergodic,
we obtain π∗(K) = 1.

The above theorem is a formal extension of the well known Vose and Nix result
(see Theorem 3 in [8]) and it can be proved in an analogous way.

4 Conclusions and Further Research

– EMOA can be modeled as the ergodic Markov chain given some reasonable
assumptions upon the type of selection and the presence of mutation in the
mixing step of each epoch.

– Alternative selection types might be considered and formalized. The main
step to adapt the current model to other EMOA selection schemes will consist
of redefining the Pareto dominance matrix (6).

– In the proposed model a particular form of genotypes has not been assumed:
the most common form of strings over an alphabet is appropriate but geno-
types may be graphs as well.

– It was also proved that EMOA has the heuristic which fixed points are the
only ones visited by the infinite population algorithm (see Theorem 2). It
is possible to prove the theorem of a fixed point approximation and the
theorem of the convergence of sampling measures, similar to those proved
for SGA (see Theorems 4.54 and 4.66 in [11]).

– Furthermore, these results might be used for verifying two-phase strategies in
the same manner as for the single criteria ones (see e.g. [11]). Such strategies
consist in finding the approximation of the connected components of the
Pareto set (using EMOA combined with the proper population clustering)
in the first phase and the parallel, detailed search in each of them. It seems
that the obtained results might also be useful in the analysis of the ε-Pareto
dominance problem (see [7]).
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