
A Framework for Observing Dynamics of
Agent-Based Computations

JarosÃlaw Kawecki and Maciej SmoÃlka

Institute of Computer Science, Jagiellonian University, Kraków, Poland
smolka@ii.uj.edu.pl

http://www.ii.uj.edu.pl/~smolka/

Abstract. The paper contains a description of a framework designed for
observing dynamics of mobile-agent computational applications. Such
observations are thought to provide a basis for the experimental ver-
ification of an existing stochastic model of agent-oriented distributed
computations. Some test results are also provided, which show that the
proposed observational environment does not disturb an observed sys-
tem’s dynamics.

1 Introduction

Multi-agent systems (MAS) are considered one of significant paradigms for dis-
tributed system design in the industry (cf. [1]). In the science they are used to
solve some complex problems such as evolutionary global optimization (cf. [2],
[3]). However it is still not very common to apply multi-agent paradigm in the
implementation of large-scale distributed computational systems, even if the idea
of self-organizing computational application being a collection of mobile tasks
which migrate over a network according to a diffusion-based policy in order to
find the best environment for computations is known for several years ([4]). Thus
it was quite straightforward to merge the two ideas, i.e. to enclose a computa-
tional task together with its data in a mobile agent box, giving the agent the
abilities to migrate, to communicate with other agents, to split itself and to sense
its environment properties, and finally providing the agent with some logic to
decide which abilities to use in order to perform its task. Such a computational
multi-agent system has been constructed ([5], [6]) on the basis of Java/CORBA
platform. Sec. 2 describes its main features.

During the development of the system many theoretical questions has been
raised. As an answer a formal model of multi-agent computations has been pro-
posed ([7], [8]). It describes a multi-agent computational application as a con-
trolled Markov chain. The model provides us with the definition of optimal
scheduling and some results on the existence and characterization of optimal
scheduling strategies. The model is briefly described in Sec. 3.

However the model itself needs experimental validation. The first step to-
wards this goal is the construction of a framework for monitoring the dynamics
of quantities appearing in the model. The present paper describes such a frame-
work. It is designed as an extensible additional module for the above-mentioned

computational MAS platform. Design and implementation issues are covered in
Sec. 4, some test results showing good features of the monitor are contained in
Sec. 5.

2 Computational MAS

As the above-mentioned computational MAS is the basis for our new-projected
framework let us first briefly describe its main architectural principles. For a
more complete description and some implementation details we refer the reader
to [5] and [6].

The architecture of the system is composed of a computational environment
(MAS platform) and a computing application being a collection of mobile agents
called Smart Solid Agents (SSA). The computational environment is the triple
(N, BH , perf), where:

N = {P1, . . . , PN} , where Pi is a MAS server called a Virtual Computational
Node (VCN). Each VCN can maintain a number of agents.

BH is the connection topology BH = {N1, . . . ,NN},Ni ⊂ N is a direct neigh-
bourhood of Pi (including Pi as well).

perf = {perf1, . . . , perfN}, perfi : R+ → R+ is a family of functions where perfi

describes the relative performance of VCN Pi with respect to the total mem-
ory request M i

total of all agents allocated at the node.

The MAS platform is responsible for maintaining the basic functionalities
of the computing agents. Namely it delivers the information about the local
load concentration, performs agent destruction, hibernation, partitioning and
migration between neighbouring VCN’s and finally supports the transparent
communication among agents.

We shall denote an SSA by Ai where index i stands for an unambiguous agent
identifier. Each Ai contains its computational task and all data necessary for its
computations. Every agent is also equipped with a shell which contains the agent
logic. At any time Ai is able to denominate the pair (Ei,Mi) where Ei is the
estimated remaining computation time measured in units common for all agents
of an application and Mi is the agent’s RAM requirement in bytes. An agent
may undertake autonomously one of the following actions: continue executing
its internal task, migrate to a neighbouring VCN or decide to be partitioned,
which results in creating two child agents.

3 Formal Model Overview

In this section we introduce some key concepts appearing in our formal model
of computing multi-agent systems. The detailed description of the model can be
found in [7] and [8].

The main idea behind the model is the following. Instead of considering a
single agent’s behaviour we observe the time evolution of some global quanti-
ties characterizing the state of the whole computational application. The set

of state variables may typically include: the total number of allocated agents
with respect to a VCN, the total remaining time of computations with respect
to a VCN, the total memory requirement of agents with respect to a VCN. In
addition some control variables have been introduced in the model. Namely we
control the number of agents migrating between nodes, the number of agents
splitting themselves and optionally the number of agents being hibernated or
dehibernated. Finally equations of system evolution have been formulated de-
scribing a computational multi-agent system as a controlled Markov chain. It
allows us to answer many fundamental questions (such as the question about
the existence of optimal control strategies) by means of the stochastic control
theory machinery.

Such a model needs an experimental verification. We are going to observe
the dynamics of existing and new computational applications in order to check
if the model describes them properly. But to this end we need a monitoring
infrastructure which would register the time evolution of interesting applica-
tion parameters and which, on the other hand, would not disturb the system
behaviour significantly.

4 Monitoring Subsystem Architecture

4.1 Overview

The subsystem monitoring the agent dynamics is designed as a wrapper for a
single MAS server and it focuses only on tracing the state of its host. Different
wrappers do not communicate with each other hence they do not generate any
network traffic. However such an approach needs an external synchronization
mechanism to gather data with global time stamps for further processing and
analyzing.

The monitor uses the SNTP protocol to set global time among servers. Each
of monitors carries its own time service. Measurements taken during a monitor’s
work are stamped with time provided by this service. To stay accurate the time
service periodically sends synchronization requests to the NTP server. The result
is stored as a time offset and it is used to calculate the global time.

Calculations on the MAS platform are performed by agents. Significant as-
pects of the agent life-cycle activities (such as agent creation, migration or de-
struction) are traced using an event-driven approach. Namely every time an
agent is born, leaves a server, enters another server or dies a trigger can be fired.
It is marked with the current time stamp and with the agent identifier, so the
whole agent traffic can be reconstructed after the experiment. The event-driven
approach is reliable because it takes into account every event that occurs at the
monitored server. However it is not possible to implement triggers totally outside
the platform environment. The event infrastructure needs code integration with
the platform server and the agent.

Some quantities should not be traced using the event-driven approach due
to performance issues. Triggers are not efficient when a quantity value changes

really often. On the other hand some quantities can change in an unpredictable
way, so there is no place where the trigger could be hooked. A snapshot mech-
anism is meant to support triggers in such situations. It is a kind of task that
periodically takes a snapshot of a server’s parameters. Such an approach avoids
drawbacks of the event-driven approach and allows to gather more data for
further analysis. Without it the server memory consumption or the processor
utilization could not be traced.

4.2 Implementation issues

OctopusExperiment
Experiment

+ start() : void

GlobalTimeService

− timeOffset : long

synchronize() : void

+ getGlobalDate() : Date

+ start() : void

create

start

<<thread>>

OctopusLauncher

+ start() : void

+ run() : void

run

OctopusServer

Fig. 1. Main components of a server monitor (UML class diagram)

A single monitor server consists of three main parts that are sequentially
initialized (see Fig. 1). The first to launch is the monitor’s observation subject,
i.e. a MAS server (cf. [5]). The server is running on a dedicated thread. The
time service is started next. It is used for periodical sending of SNTP requests
to the time server in order to keep the most up-to-date offset to the global
time. Third essential component called the Experiment is started as the last. It
initializes triggers, snapshots and file output where measurement data are stored.
The global time provided by the time service is used to stamp measurements.
Experiment class is closely coupled to the MAS server and this dependency is
bidirectional. Using snapshots the Experiment observes the state of the server,
while the server fires triggers which are stored in the Experiment.

The time service uses the SNTP client to get the offset value from the time
server. This is performed periodically. To this end the service spawns its own
thread which sleeps during the most of its lifetime. It is only awaken once for a
defined period and then it tells the service to update the time offset. Each time

the update is done the service invokes the synchronization trigger. It allows us
to store the retrieved time offset in an output file.

ExperimentLogger
Experiment

+ start() : void

SnapshotTask

+ run() : void

TriggerTemplate

+ register() : void

*

1

11

1

*

Fig. 2. Experiment (UML class diagram)

The main responsibility of the Experiment is to create all configured snap-
shots, triggers and instantiate the experiment logger (see Fig. 2). When all these
items are created the experiment may be started. Then the experiment logger is
initialized, all snapshots are scheduled and finally all triggers are registered. It
means that since then triggers are able to receive calls from the MAS code. It is
worth noticing that scheduling snapshots does not mean an immediate execution.
The idea of the snapshot is to catch the consistent state of the whole platform.
To this end two conditions must be met: all snapshots start at the same time
and they are repeated with the same frequency. Both of these parameters are
passed by the configuration file. The start time is defined as the globally defined
moment common for all monitors. Before that moment no snapshots are taken,
therefore no experiment activity should be performed. Only after the start time
the platform is capable to work and all parameters are properly monitored.

A snapshot itself (see Fig. 3) does not observe a server state directly. It
only provides environment for execution of measurements such as memory or
processor utilization. The static part of the snapshot allows to assign some
measurements. Then the dynamic part runs the snapshot. As s consequence
all the assigned measurements are taken and sent to the experiment logger. As
mentioned before the snapshot runs periodically. The facility that provides this
behavior belongs to the Java standard library. The Timer object can schedule
running objects whose classes extend the TimerTask abstract class. There is a
major advantage of using the Java Timer, namely it is able to correct delays in
the task execution. As a result the snapshots do not accumulate time shift.

A measurement (Fig. 4) is a piece of code which is responsible for measuring
one parameter of the server. It takes the measure, stores the result and makes
the value of the measure available for the experiment logger. The measurement
is always considered in the context of a snapshot. Currently two kinds of mea-

java.util

MeasurementTemplate

+ takeMeasure() : void

+ getValue() : Object

Snapshot

+ addMeasurement(name : String) : void

+ fire() : void

+ getID() : Guid

SnapshotTask

+ run() : void

TimerTask Timer

1

1

1

1

*

*

Fig. 3. Snapshots (UML class diagram)

MeasurementTemplate

+ takeMeasure() : void

+ getValue() : Object

JavaMemoryMeasure LocalAgentsMeasure

Fig. 4. Measurements (UML class diagram)

surements are implemented. The memory measurement monitors free memory.
The agents measurement checks how many agents are currently located on a
MAS server.

A trigger (Fig. 5) from a point of view is similar to a measurement described
before. It is also connected with a single parameter of the MAS server. Despite
the similarity the trigger can work without any snapshot. Not being a part of a
snapshot has a downside effect. The code of trigger needs to be executed directly
from the MAS platform code. Two MAS platform classes had to be modified in
order to launch triggers related to agents: SerializedObjectStreamService and
TaskBase (cf. [5]). Code changes were kept as small as possible. Currently five
types of triggers are implemented. Serialization and deserialization triggers are
responsible for tracing migration and hibernation of agents. Next two trigger
types are designed for monitoring agent creation and destruction, hence in par-
ticular they can be used to observe partitioning. The last trigger type is fired
when a synchronization with the time server occurs.

MeasurementTemplate

+ takeMeasure() : void

+ getValue() : Object

TriggerTemplate

+ register() : void

AgentSerializationTrigger AgentFinishTrigger

AgentDeserializationTrigger

AgentCreationTriggerSNTPSynchronizationTrigger

Fig. 5. Triggers (UML class diagram)

5 Monitor performance tests

The MAS platform monitor was designed to impose the lowest overhead possi-
ble. Of course since the monitor integrates with the platform code, it impacts
utilization of such resources as processor, memory and network. Hence in order
to determine the scale of the actual overhead some tests have been performed.
They compared the total execution time for the Subdomain-by-Subdomain (SBS)
distributed linear solver (cf. [5]).

The platform consisted of 12 PCs organized in a star topology and equipped
with the Fedora operating system. There was also one PC outside the platform
dedicated for the administration purposes such as: launching MAS servers in a
specified order, initializing and deploying SBS computational agents and obtain-
ing the test results. The monitor configuration consisted of:

– SNTP synchronization run every 10 seconds using vega.cbk.poznan.pl
NTP stratum 1 server;

– all 5 triggers enabled (i.e. synchronization, agent serialization, deserializa-
tion, creation and destruction);

– first snapshot run every second tracing current number of agents located on
a server;

– second snapshot run every 2 seconds logging free server memory.

All agents were deployed on the central server (s213-03) and then they were
allowed to migrate according to a diffusion-based policy (cf. [6]).

The tests were organized into 16 groups. They varied by the number of agents
involved in the computations and the size of the matrix computed by one agent.
The tests took into account the total computation time. Each of the test groups
was run 8 times for the unobserved MAS platform and other 8 times for the
platform observed by the monitor.

32 64 128 256

72 54875 ms 106125 ms 194500 ms 362250 ms

144 66250 ms 105375 ms 206250 ms 391750 ms

288 67875 ms 118125 ms 232625 ms 448500 ms

576 108375 ms 191500 ms 348750 ms 677857 ms

Number of Agents

S
iz

e
 o

f
M

a
tr

ix

32 64 128 256

72 54375 ms 103375 ms 196875 ms 353125 ms

144 62125 ms 105125 ms 203125 ms 395375 ms

288 66375 ms 117375 ms 231625 ms 429625 ms

576 106500 ms 187500 ms 348500 ms 678000 ms

Number of Agents

S
iz

e
 o

f
M

a
tr

ix

Fig. 6. Average execution time without (on the left) and with (on the right) the monitor

Figs. 6 and 7 show that computations on the platform with the monitor are
not significantly slower (at least in average) than those on the platform without
the monitor. Thus the test results allow us to treat observations performed by
the monitor as quite reliable, which means that the monitor does not disturb
the agent dynamics.

32 64 128 256

72 3257 ms 8462 ms 11576 ms 18012 ms

144 27954 ms 7761 ms 9189 ms 20553 ms

288 6030 ms 5372 ms 4998 ms 29270 ms

576 3672 ms 9539 ms 7462 ms 21557 ms

Number of Agents

S
iz

e
 o

f
M

a
tr

ix

32 64 128 256

72 2288 ms 7936 ms 12752 ms 2368 ms

144 10959 ms 9545 ms 10105 ms 28026 ms

288 2118 ms 4973 ms 10086 ms 15588 ms

576 2449 ms 4243 ms 7665 ms 15344 ms

Number of Agents
S

iz
e
 o

f
M

a
tr

ix

Fig. 7. Execution time standard deviation without and with the monitor

6 Sample observation of formal model quantities

Next let us present some capabilities of the monitor in the area of observing quan-
tities appearing in the previously-described formal model. The data presented
in this section were obtained using the same topology as for the verification
purposes. 256 agents were created at the external server and deployed onto the
platform. Each of them resolved a linear equation system with the matrix of size
72. The data is presented with the precision of 500 milliseconds.

Fig. 8 shows the number of agents allocated on platform servers. The data
were gathered using snapshots. Another view of the same quantity is given by
Fig. 9 which shows serialization and deserialization activity on the servers regis-
tered by triggers. It turned out that SBS was quite predictable when it comes to
the migration of agents. The first phase lasted about 90 seconds. Agents were de-
ployed to the s213-03 server which was the centre of the star connection topology.
There was noticeable increase of agent number at this server till 50th second.
Then the immigration to the s213-03 stopped and agents were only migrating
to leaves of the topology. After allocation agents to servers the migration pro-
cess ended and all agents were busy with computations. The computation phase

Fig. 8. Number of agents on platform servers

Fig. 9. Serialization and deserialization events

lasted approximately the same amount of time for all agents. At the end every
agent returned the computation results to its parent and left the platform.

7 Conclusions and further research

An important goal for the designed monitoring subsystem was to avoid any
disturbance in observed system dynamics. As test results suggest, the goal has
been achieved. Moreover the constructed framework introduced only very small
changes in the MAS platform code. The resulting framework is already quite use-
ful because it can measure all basic formal model quantities, yet it is extensible
enough to forecast some future needs such as new kinds of triggers or snapshot
measurements possibly introduced in more sophisticated versions of the model.
A natural consequence of the monitor construction shall be gathering observa-
tion data from computational applications other than SBS and validating the
model through the analysis of the data.

References

1. Wooldridge, M.: An Introduction to Multi-agent Systems. Wiley (2002)
2. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolution

process in multi-agent world (MAW) to the prediction system. In Tokoro, M., ed.:
Proceedings of 2nd International Conference on Multi-Agent Systems (ICMAS’96),
Osaka, Japan, AAAI Press (1996)

3. Byrski, A., Kisiel-Dorohinicki, M.: Agent-based evolutionary and immunological
optimization. Lecture Notes in Computer Science 4488 (2007) 928–935

4. Luque, E., Ripoll, A., Cortés, A., Margalef, T.: A distributed diffusion method for
dynamic load balancing on parallel computers. In: Proceedings of EUROMICRO
Workshop on Parallel and Distributed Processing, San Remo, Italy, IEEE Computer
Society Press (1995) 43–50

5. Uhruski, P., Grochowski, M., Schaefer, R.: Multi-agent computing system in a
heterogeneous network. In: Proceedings of the International Conference on Parallel
Computing in Electrical Engineering (PARELEC 2002), Warsaw, Poland, IEEE
Computer Society Press (2002) 233–238

6. Grochowski, M., Schaefer, R., Uhruski, P.: Diffusion based scheduling in the agent-
oriented computing systems. Lecture Notes in Computer Science 3019 (2004) 97–
104

7. SmoÃlka, M.: A formal model of multi-agent computations. Lecture Notes in Com-
puter Science 4967 (2008) 351–360

8. SmoÃlka, M.: Task hibernation in a formal model of agent-oriented computing sys-
tems. Lecture Notes in Computer Science 5103 (2008) 535–544

