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Abstract. The paper analyzes the performance improvement imposed
by the application of α-stable probability distributions to the muta-
tion operator of the Hierarchic Genetic Strategy (HGS), in solving ill-
conditioned, multimodal global optimization problems in continuous
domains. The performed experiments range from standard benchmarks
(Rastrigin and multi-peak Gaussian) to an advanced inverse parametric
problem of the logging measurement inversion, associated with the oil
and gas resource investigation. The obtained results show that the appli-
cation of α-stable mutation can first of all decrease the total compu-
tational cost. The second advantage over the HGS with the standard,
normal mutation consists in finding much more well-fitted individuals at
the highest-accuracy HGS level located in attraction basins of local and
global fitness minimizers. It might allow us to find more minimizers by
performing local convex searches started from that points. It also delivers
more information about the attraction basins of the minimizers, which
can be helpful in their stability analysis.

Keywords: Multi-deme genetic search · α-stable mutation · Hierarchic
genetic strategy · Inverse problems

1 Motivation

A simplified and general definition of a class of parametric inverse problems for
Partial Differential Equations (PDEs) can be formulated as follows.

Find parameter vector ω̂ ∈ D ⊂ R
n, n ≥ 1, being a solution to a global

optimization problem

arg minω∈D {f(uo, u(ω)) : A(u(ω)) = 0} , (1)

where A is a forward problem operator, u(ω) ∈ U is the forward solution corre-
sponding to ω, uo ∈ O is an observation (typically a measured quantity related
somehow to the forward solution) and f(O, U) −→ R+ is a misfit functional.
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Typically, U is a Sobolev space and A : U −→ U ′ is a differential operator
between U and its conjugate space (see for details e.g. [1] and references therein).

Solving inverse parametric problems plays a crucial role in many branches of
science and technology, such as the Structural Health Monitoring [2,3], the oil
and gas resource investigation [4], the tumor diagnosis [5], etc.

Problems (1) are usually ill-conditioned: unstable (small changes in para-
meters or observations result in huge misfit variations) or otherwise almost
insensitive in some parameters, multimodal with a misfit valleys or plateaus
or/and non-smooth in some subdomains. One of possible ways to overcome this
obstacles is the misfit regularization (see e.g. [6]) typically making the problem
smooth, unimodal and globally convex. This approach is often very effective, but
its usefulness decreases when the misfit is inherently multimodal (see e.g. [7]) and
has vast, almost flat regions (plateaus). In such cases the careless regularization
may result in locating artifacts instead of true solutions.

Another, more advanced way is to find all “essential” minimizers to (1) and to
evaluate roughly their stability. Such results give more information to the experts
in the area allowing them to make right further decisions. Among methods of this
type you can find stochastic [8] or multi-start [9] ones. Unfortunately, standard
approaches of this kind exhibit unacceptable computational cost, mainly because
of the high complexity of the forward problem numerical solution necessary for
each misfit evaluation. All the above argument is a motivation to look for new,
exceptionally economical strategies, skilfully joining the exhaustive exploration
of large domains with the detailed investigation of the central parts of local
minimizer attraction basins.

Such a combination is a fundamental idea of the Hierarchic Genetic Strategy
(HGS). The strategy develops dynamically a tree of demes (sub-populations),
among which the root deme performs the most broad, superficial search, while
the demes located deeper in the tree search more locally and more accurately
(see [10,11] for details). The strategy is further extended in hp-HGS and hp-HMS
(see [4,7,12–15] and references therein) which combine hierarchic evolutionary
search with the hp-adaptive Finite Element Method (hp-FEM) [16] for the misfit
evaluation. They offer the advantageous, additional computational cost reduc-
tion, by the common scaling of hp-FEM error according to the accuracy of the
inverse search at various branches of the deme tree.

A crucial role in each genetic strategy is played by the mutation operator,
that influences greatly the structure of offspring populations. The heart of the
operator is a selected probability distribution used to sample new individuals.
A common choice for real number encoded individuals is the normal (Gaussian)
distribution. However, it has recently been criticized because of its strong non-
isotropy (dependence on the coordinate system setting), a pathological behavior
near the parental individual (the “wall effect”) as well as the lack of flexibil-
ity in density configuration in large domains (see e.g. [17]). An advantageous
alternative for the normal mutation is the stable mutation, which uses various
types of stable probability distributions [18] for an offspring sampling. The first
study of applying stable distributions in genetic computations was performed
by Rudolph [19]. An extended concept of applying α-stable distributions, their
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isotropic and non-isotropic instances and the flexible adaptation to the necessary
exploration/exploitation ratio was studied by A. Obuchowicz (see e.g. [17,20]).

The authors apply the α-stable distributions in the HGS strategy as the
mutation and sprouting operators. We show the additional speedup obtained
by the improved mutation at the various levels of the deme tree. Benchmark
tests were used to study the influence of α-stable distribution configuration on
the HGS performance. A computational example of DC logging measurement
inversion by hp-HGS shows the impact of the α-stable mutation in solving a
real-life engineering inverse problem.

2 Hierarchic Genetic Strategy with Adaptive
Misfit Evaluation

The Hierarchic Genetic Strategy (HGS) was introduced by Ko�lodziej and Schae-
fer in [10]. It produces a tree-structured set of concurrently evolving demes
(see Fig. 1). The structure of the tree may be dynamically changed, while its
depth is bounded by m < +∞. First, the root deme is created which performs
a chaotic search with low accuracy. Demes at consecutive levels search with
higher and higher accuracy. The maximum, target accuracy is used by leaves.
After K genetic epochs (a metaepoch), each non-leaf deme selects its best fitted
individual and sprouts a child-deme in the neighboring region of this individual
in the admissible domain D. Sprouting new demes is repeated concurrently after
each metaepoch. Two important mechanisms are applied in order to avoid the
search redundancy: conditional sprouting and branch reduction. Roughly saying,
they both prevent multiple demes from exploring the same region (see [14] for
details).

We use the real-number encoding version of HGS [11], in which a genotype is
a vector of floating point numbers. In order to introduce a sequence of increas-
ing genetic spaces for subsequent orders of branches, we use scaling coefficients
+∞ > η1 ≥ η2 ≥ . . . ≥ ηm = 1, so that the genetic space at i-th level is defined
as

∏N
i=1[0, bi−ai

ηi
] ⊂ R

N , where ai, bi; ai < bi are the lower and upper bounds
for i-th decision variable. The genetic space for leaves is of the same size as the
admissible domain D =

∏N
i=1[ai, bi] ⊂ R

N allowing for most accurate search.

Fig. 1. HGS evolutionary population tree
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If a search accuracy in leaves equals δm, then the accuracy in higher order demes
will be reduced to δj = ηj δm, for j = 1, . . . , m − 1.

The evolution in demes (except for the root) is stopped when the search
progress in unsatisfactory (mean misfit does not decrease). The whole strategy
is stopped when the satisfactory number of well fitted individuals has already
been found by HGS leaves.

Asymptotic analysis of HGS was studied in [10]. In particular, the asymptotic
guarantee of success was proved as well as the cost decrement ratio with respect
to the single population algorithm with the finest encoding, represented in HGS
leaves. Analogous features of hp-HGS were studied in [21].

3 Stable Phenotypic Mutation

A random variable X has stable distribution [22], if it satisfies the following
condition:

∀a, b > 0 ∃c > 0 ∃d ∈ R aX1 + bX2
d= cX + d, (2)

where X1 and X2 are independent copies of X and d= means that the random
variables on both sides are identically distributed. We will use later a more
convenient observation on characteristic functions of stable random variables
(see e.g. [22]).

ϕ(k) =

{
exp

(−σα|k|α {
1 − iβsign(k) tan

(−πα
2

)}
+ iμk

)
, α 	= 1,

exp
(−σ|k|{1 + i 2π βsign(k) ln |k|} + iμk

)
, α = 1.

(3)

Parameter α ∈ (0, 2], called the stability index, defines the distribution concen-
tration and influences the existence of moments in the following way [22]:

E(X) < +∞ for α > 1 and V ar(X) = +∞ for 0 < α < 2. (4)

μ ∈ R is the shift parameter, whereas β, called the skewness parameter, is a mea-
sure of the distribution’s asymmetry. We will denote by Sα(σ, β, μ) the probabil-
ity distribution with the characteristic function (3). Unfortunately, the density
function of Sα(σ, β, μ) is not explicitly given except for three cases: Gaussian
(α = 2, β = 0), Cauchy (α = 1, β = 0), and Lévy (α = 1

2 , β = 1) distribu-
tions. Nevertheless, there is a possibility to simulate α-stable distribution using
algorithms described in e.g. [20].

The mutation operation in floating-point phenotypic Evolutionary Algorithms
(EAs) is performed by the addition of a random vector to current attributes of
an individual. In order to define the mutation with a stable distribution we may
replace the multivariate normally-distributed random vector N (0, σ2In) with the
following random vector:

X = [Xi ∼ Sα(σ, 0, 0)|i = 1, 2, . . . , n]T . (5)
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A big disadvantage of the obtained multivariate distribution is the lack of the
spherical symmetry in case α < 2 [22]. New individuals prefer directions along
axes of Cartesian coordinate system, which is highly undesired. To avoid it, we
may use sub-Gaussian stable random vector defined in [22]. In that paper it was
also proved that this vector has multivariate isotropic stable distribution

X = A1/2G (6)

where A ∼ Sα/2((cos(πα
4 ))2/α, 1, 0) and G ∼ N (0, σ2In) are independent.

The lack of moments’ existence is of great significance in evolutionary process.
If we take into consideration a numerical representation of real numbers, the
normal mutation (α = 2) has strict boundaries, where the mutated successor may
be generated. Obviously this fact imposes a restriction on the explored area. For
α ≤ 1 distribution Sα(σ, 0, 0) does not have the expected value. As a consequence
one can observe a significant rise in the probability of macro-mutations, i.e. the
creation of children far away from parents. This can be a desirable feature,
because the exploratory abilities of the strategy become enormous. On the other
hand, there is a danger that the algorithm gets too chaotic. In the sequel we shall
always take μ = β = 0, hence using symmetric stable distribution Sα(σ, 0, 0) in
the mutation operator.

Let us consider λ realizations of the random variable X with probability
distribution Sα(σ, 0, 0) ordered in the sequence X1:λ < X2:λ < . . . < Xλ:λ. The
following condition is satisfied (see Theorem 2 in [23]):

Xi:λ has kth moment ⇔ k − α(λ − i + 1) < 0. (7)

Condition (7) implies that the random variable X1:λ has the expected value if
λ > 1

α . It means that the local convergence of an evolutionary algorithm endowed
with α-stable mutation can be quite effective provided the number of the best
parent’s descendants is large enough (i.e. greater than 1

α ).
Another problem is that the most probable distance from the mutated point

to the its offspring grows with the number of dimensions. This effect known as
“dead surrounding” is limited for the isotropic stable mutation with lower α [24].

4 Benchmark Tests

First, we have compared the behavior of HGS with the stable mutation for
different values of α and σ. That includes normal mutation cases for α = 2.
Both performed tests represent typical difficulties (multimodality, large plateaus)
appearing in solving inverse parametric problems. In each test the computation
was stopped when a given budget was reached. As far, as each fitness call has
the same computational cost, we can accept the simplest budget definition as a
number of benchmark function evaluations.

We have set the depth of the HGS tree to two levels. Leaves always use normal
distribution with σ = 0.1 to perform mutation. The root applies different stable
mutations with all combinations of α ∈ {0.5, 1, 1.5, 2.0} (α = 2 means normal
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Table 1. Parameters of HGS for all benchmark tests

3 dimensions 10 dimensions

Root population 30 100

Leaf population 6 20

Budget (fitness evaluations no.) 3000 10000

Metaepoch length 2 2

Mutation rate 0.5 0.5

mutation), and σ ∈ {0.4, 0.7, 1.4}. The HGS parameters collected in Table 1 were
set according to our best experience (see e.g. [7,10–12,25]). In order to highlight
the mutation impact we did not use the crossover.

We have compared the best fitness values obtained in tests for the three-
dimensional Rastrigin function translated upwards by 1 in domain [−5, 5]3, with
the global minimum value 1.0. Each test was performed 80 times, and the aver-
ages of best fitness found are presented in Table 2. The distributions of best
fitness found for σ = 0.4 are presented in Fig. 2. The distributions for other
values of σ are similar.

Table 2. Average best fitness result in tests on Rastrigin function.

σ = 0.4 σ = 0.7 σ = 1.4

α = 2.0 (normal mutation) 1.179 1.225 1.254

α = 1.5 1.178 1.204 1.236

α = 1.0 1.197 1.220 1.250

α = 0.5 1.213 1.191 1.214

Another desired property of a global optimization search is the exploration
ability, which can be measured as a number of global and local minimizers found
by the strategy. A series of tests was performed for the following benchmark
functions:

1. three-dimensional sum of three Gaussian functions,
2. three-dimensional sum of three Gaussian functions and the Rastrigin function,
3. as above, 10-dimensional case with ten Gaussian functions.

The search domain was set to [−5, 5]N . In the second and third benchmark of
this group, each Gaussian function has minima much smaller than the Rastrigin
component. The tests were executed 80 times for 3-dimensional cases and 40
times for 10-dimensional case. In every run we counted the number of Gaussians’
extrema reached by HGS. The average results are presented in Table 3.

Results of both series of tests (see Tables 2 and 3) show that the stable
mutation with α = 1.5 or 1.0 applied to the HGS root delivers a good compromise
between exploration and exploitation performance, and it is slightly better than
the normal mutation (α = 2.0). Applying stable mutation in HGS leaves does not
improve its performance (results of such tests are not presented in this paper).
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Fig. 2. Violin plot of best fitness obtained in Rastrigin test for σ = 0.4.

5 Applying hp-HGS with Stable Mutation for DC
Logging Measurement Inversion

The hydrocarbon (oil and gas) exploration might be performed by the estimation
of subsurface electrical properties. Logging instruments equipped with several
transmitter electrodes move along a borehole axis emitting and receiving signals.
We consider two types of problems: forward and inverse. The former consists of
finding the voltage for a certain position of transmitter and receiver electrodes
knowing resistivities of formation layers. A series of forward problems for consec-
utive positions of electrodes provides a vector of solutions called logging curve.
The inverse problem consists in searching resistivities of formation layers for a

Table 3. Average number of extremes found in benchmark tests: A - sum of
three Gaussian functions; B - as A with addition of Rastrigin function; C - as B,
10-dimensional case
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Fig. 3. Finding resistivities of formation layers from a given logging curve.T, R1 and R2
are the position of transmitter and two receivers respectively, z - depth of a consecutive
layers and r - the radial coordinate.

given reference logging curve. It was formulated as a global optimization prob-
lem with the misfit computed as the square of the Euclidean distance between
the computed logging curve and the reference one, usually obtained from the
measurements. In our case, logging devices operate at very low frequencies (close
to zero), which can be modeled as zero-frequency, direct current (DC).

We refer to [14] for details of direct and inverse DC problems, goal oriented
hp-FEM application and proof of the dependency between the inverse error and
the relative hp-FEM error, necessary for their economic scaling in the hp-HGS
strategy.

We have searched for the values of three ground layer resistivities ω0, ω1, ω2

belonging to the cube [0.1, 103]3 in our case study (see Fig. 3). The reference
values are ω0 = 1 Ω · m, ω1 = 5 Ω · m and ω2 = 20 Ω · m. As in [14], to provide a
more thorough search for the parameter values around 1 we transformed the orig-
inal domain with the following mapping R

3  x �−→ [log10(xi) + 1]i=1,2,3 ∈ R
3,

which resulted in the cube [0, 6]3.
The parameters of HGS with the normal as well as with the α-stable mutation

are summarized in Table 4. These are the same values as in [14], except for α and
σ parameters for stable distribution. For the root population, the mutation with
α = 0.5 was used, because its heavy tail was supposed to enhance the exploration
ability. For the intermediate level α = 1.5 was chosen, which provided the best
results in the benchmark tests. The leaves are focused on the exploitation, so
the normal mutation with a small σ was applied.

The HGS with the normal mutation found 5 well-fitted points with the misfit
value below 0.1 (see Table 5), while the HGS with α-stable mutation performed
in the root deme found 16 points of the same quality (see Table 6).
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Table 4. Parameters of HGS with the normal and stable mutation.

Root Intermediate level Leaves

Population size 12 6 4

Mutation probability 0.1 0.01 0.001

Mutation σ Normal: 1.0, stable: 0.7 0.2 0.01

Mutation α Normal: 2.0, stable: 0.5 Normal: 2.0, stable: 1.5 2.0

Crossover probability 0.5 0.5 0.5

Crossover mean 0.5 0.5 0.5

Crossover std. dev. 0.01 0.01 0.01

Sprout std. dev. 0.1 0.01

Sprout min. distance 0.5 0.2

Sprout max. value 2 0.5

Encoding scale (η) 16384 128 1

Ratio 265 13557 694136

Table 5. Results of the HGS with the normal mutation.

ω0 ω1 ω2 misfit

Point 1 1.436 5.081 64.404 0.0123941038654

Point 2 0.955 7.895 33995.309 0.0155211450748

Point 3 1.003 2.287 491.275 0.0309955725861

Point 4 0.410 9.422 409.705 0.0788856673271

Point 5 0.429 1.441 13317.938 0.0998952955352

The logging curves corresponding to the seven best found points with misfits
below 0.03 are presented in Fig. 4. The curves have been also compared to the
exact logging curve, drawn with the shade line.

By analyzing the log files we have estimated computational budget Tb of
hp-HGS with the normal and the stable mutation. Now fitness evaluation has a
different computational cost at each hp-HGS level because the variable accuracy,
so it is most convenient to define budget as the total serial execution time. For
the normal mutation the budget is equal to 6206 min, while for stable mutation it
is equal to 4597 min. It is the amount of time spent on solving the DC problem on
a single workstation with quad cores, where all the calls of hp-FEM were serial,
but the hp-FEM code itself utilized four cores for each computation. It can be
estimated by means of the following formula: Tb = t0∗N0+t1∗N1+t2∗N2, where
t0 = 2.2, t1 = 2.7, t2 = 10.0 min are the average times of calling hp-FEM with
the accuracy of the root, branch and leaf levels respectively, whereas N0, N1, N2

are the numbers of such calls.
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Table 6. Results of the HGS with the stable mutation.

ω0 ω1 ω2 misfit

Point 1 0.762 3.045 23.769 0.013620991

Point 2 0.714 6.552 34.347 0.013657428

Point 3 1.118 8.149 37.615 0.016489642

Point 4 0.912 4.092 215.083 0.025547867

Point 5 0.748 4.181 715.807 0.029160002

Point 6 0.624 2.360 21.728 0.032128412

Point 7 0.654 4.141 6374.512 0.033704187

Point 8 0.584 4.796 1454.993 0.037422516

Point 9 1.199 5.640 14847.693 0.04148432

Point 10 0.757 1.643 15.940 0.046510098

Point 11 0.535 2.953 3348.759 0.0506232

Point 12 1.734 6.780 68.596 0.057612481

Point 13 1.144 2.998 3.476 0.085280937

Point 14 0.788 15.403 306.036 0.09455748

Point 15 0.417 1.625 2219.693 0.097377075

Point 16 0.508 12.401 18735.271 0.09922374

Fig. 4. The logging curves corresponding to the best solutions found. The labels of
charts correspond to Tables 5 and 6. The bold green curve corresponds to the exact
logging curve.
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6 Conclusions

The selection of a global optimization strategy for solving parametric inverse
problems should be performed very carefully, satisfying several contradictory
criteria, such as good exploratory skills together with a relatively high accuracy,
because of the usual ill conditioning, and the extremely tough economics, because
of the huge computational cost of the forward problem computation.

The HGS with the stable mutation with α < 2 applied in higher order demes
(root demes and branches) significantly improves the exploratory skills of the
composite strategy. In particular, the number of well-fitted individuals is more
than three times greater in the case of DC logging measurements inversion.
Moreover, this result was obtained within a smaller computational budget, about
2/3 of the budget spent in the normal mutation case.

The obtained computational experience makes an advantageous perspective
of including the stable mutation in more advanced hierarchic stochastic searches
combined with a convex, gradient-based optimization methods, such as the
Hierarchic Memetic Search [25,26].
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