
Task Hibernation in a Formal Model of
Agent-Oriented Computing Systems

Maciej SmoÃlka

Institute of Computer Science, Jagiellonian University, Kraków, Poland
smolka@ii.uj.edu.pl

Abstract. The paper contains recent enhancements of a formal model of
agent-based computing systems. In such systems a computational task
together with its data is enveloped in a shell to form a mobile agent.
The shell carries the agent’s logic, ie. abilities to make decisions about
whether to migrate to a less loaded machine, split oneself or continue
the task. The model describes an agent-based computational application
as a controlled Markov chain. In this paper the operation of the agent
hibernation, which is the last resort in the case of a server overload, is
included in the model. This modification has an influence on the form of
the state equations as well as the form of admissible control strategies.

1 Introduction

The multi-agent paradigm is already a classical design approach in a wide variety
of domains (cf. [1], [2]), which can take advantage of the idea of mobile intel-
ligent autonomous application unit. Computing systems are seldom considered
as one of these domains. However, the concept of self-organising computational
application composed of mobile tasks, which can move between interconnected
computers according to a scheduling policy in order to find a better environ-
ment for executing themselves is well-known for several years. The article [3]
describes such a system with a scheduling policy based on the heat conduction
phenomenon.

A step forwards has been to put a task together with its data into an agent
box, give the agent the ability to migrate, to communicate with other agents
and to split itself (first of all its task) into two child agents (typically equal).
In such a case a scheduling strategy may be incorporated in all agents’ (distrib-
uted) intelligence. The strategy tells an agent in what order it should perform
its activities (computations, migration, partitioning) to achieve its goals, which
include typically the finishing of computations in the shortest possible time.

A multi-agent computational system of this type has been developed for the
last several years (cf. [4]). It exploits a scheduling policy based on the phenom-
enon of the molecular diffusion in crystals (cf. [5], [6]). In this policy an agent
makes decisions about actions to perform resting on its knowledge of the load of
its computational node as well as the load of the node’s direct neighbours. When
an agent wants and is able to migrate, it chooses the least loaded neighbour as



the target. The application of the multi-agent paradigm together with local,
diffusion-based agent scheduling strategies provide us with a relatively simple
decentralised management of large-scale distributed computations.

Many theoretical questions has been raised during the development of the
above mentioned multi-agent system (MAS). The fundamental one is whether
the used heuristic scheduling strategy is in any sense optimal or quasi-optimal.
This in turn requires a precise definition of the optimality of a strategy. If the
answer to the first question is negative, another problem is whether there exists
an optimal policy at all and, if so, what are its characteristics.

To address these (and other) questions a formal model of computing multi-
agent systems has been proposed (cf. [6–8]). The model is based on the stochastic
optimal control theory. The model is still under development and its last version
is described in [9]. It already provides us with a precise definition of the optimal
task scheduling in our context as well as results on the existence of optimal
scheduling strategies and optimality conditions. The above mentioned MAS has
served as an example for the development of the model, but the latter has proven
more general (and complicated).

In this paper the model is extended by considering the operation of the agent
hibernation. Agents are hibernated eg. in an early stage of migration (cf. [4]),
but migrations has been already considered in our model (cf. [9]). The interesting
case of the hibernation occurs when a computational node is overloaded and an
agent cannot find any neighbouring node to emigrate. The local MAS server will
then serialize the agent to the disk and deserialize it when the load is sufficiently
low. We modify our state equations to allow such hibernations.

Finally we present results on the existence and the characterisation of optimal
scheduling strategies, which are adapted to the modified model.

2 System Architecture

First let us introduce to the reader the architectural principles of our exemplary
computing MAS. They constitute the foundations and the starting point for the
development of the mathematical model. Here we recall only the features most
important for the model, for a more complete description and some implemen-
tation details we refer the reader to [4] and [5].

The suggested architecture of the system is composed of a computational
environment (MAS platform) and a computing application being a collection of
mobile agents called Smart Solid Agents (SSA). The computational environment
is the triple (N, BH , perf), where:

N = {P1, . . . , PN} , where Pi is a MAS server called a Virtual Computational
Node (VCN). Each VCN can maintain a number of agents.

BH is the connection topology BH = {N1, . . . ,NN},Ni ⊂ N is a direct neigh-
bourhood of Pi (including Pi as well).

perf = {perf1, . . . , perfN}, perfi : R+ → R+ is a family of functions where perfi

describes the relative performance of VCN Pi with respect to the total mem-
ory request M i

total of all agents allocated at the node.



The MAS platform is responsible for maintaining the basic functionalities of
the computing agents. Namely it delivers the information about the local load
concentration Lj and Qj (see (2) and (3) below), it performs agent destruction,
hibernation, partitioning and migration between neighbouring VCN’s and finally
it supports the transparent communication among agents.

We shall denote an SSA by Ai where index i stands for an unambiguous
agent identifier (possibly a UUID). Each Ai contains its computational task and
all data necessary for its computations. Every agent is also equipped with a shell
which is responsible for the agent logic. At any time Ai is able to denominate the
pair (Ei,Mi) where Ei is the estimated remaining computation time measured
in units common for all agents of an application and Mi is the agent’s RAM
requirement in bytes. An agent may undertake autonomously one of the following
actions:

– continue executing its internal task,
– migrate to a neighbouring VCN or
– decide to be partitioned, which results in creating two child agents {Aij

=
(Tij , Sij )}, j = 1, 2.

We assume that in the case of the agent partitioning the following conditions
hold:

Ei > Eij , Mi > Mij , j = 1, 2.

The parent SSA disappears after the partition.
A computing application may be characterised by the triple (At, Gt, Scht),

t ∈ [0, +∞) where At is the set of application agents active at the time t, Gt is
the tree representing the history of agents’ partitioning until t. All agents active
till t constitute the set of its nodes

⋃t
s=0 At, while the edges link parent agents to

their children. All information on how to rebuild Gt is spread among all agents
such that each of them knows only its neighbours in the tree. {Scht}t∈[0,+∞)

is the family of functions such that Scht : At → N is the current schedule of
application agents among the MAS platform servers. The function is defined by
the sets ωj containing indices of agents allocated on each Pj ∈ N. Every ωj is
locally stored and managed by Pj .

Each server Pj ∈ N asks periodically all local agents (allocated on Pj) for
their requirements and computes the local load concentration

Lj =
Ej

total

perfj(M
j
total)

where Ej
total =

∑

i∈ωj

Ei and M j
total =

∑

i∈ωj

Mi. (1)

Then Pj communicates with neighbouring servers and establishes

Lj =
{
(Lk, Ek

total,M
k
total, perfk) : Pk ∈ Nj

}
(2)

as well as the set of node indices

Qj = {k 6= j : Pk ∈ Nj , Lj − Lk > 0} . (3)



3 Global State of a Computing Application

In this section we introduce some key concepts appearing in our formal model
of computing multi-agent systems. The detailed description of the model may
be found in [9].

The key idea behind the model is to abandon the considering of single agents’
behaviour in favour of observing a global quantity characterising the state of a
computational application in an appropriate way. To this end we have introduced
the notion of the vector weight of an agent, which is the mapping

w : N×A −→ RM
+

with M ≥ 1. The weight has at least one positive component as long as the
agent is active (ie. its task is being executed) or hibernated. In other words the
equality

wt(Ai) = 0 (4)

means that the agent Ai does not exist yet or already. Note that we observe the
application state in discrete time moments, so the set of times is N. We assume
that the dependency of the total weight of child agents after partition upon their
parent’s weight before partition is well-known and linear, i.e. there is a matrix
P ∈ RM×M

+ such that in the case of partition A → {A1, A2} we have

wt+1(A1) + wt+1(A2) = Pwt(A). (5)

The single agent weight is only an auxiliary notion needed to define what
shall be one of the main observed global quantities, ie. the total weight of all
agents allocated on a virtual node P at any time t, which is

Wt(P ) =
∑

Scht(A)=P

wt(A).

In previous papers Wt was the system state, but as we want to differentiate
between active and hibernated agents, we shall split the total weight into two
terms

Wt(P ) = W a
t (P ) + Wh

t (P ),

where W a
t (P ) is the total weight of active agents and Wh

t (P ) is the total weight
of hibernated agents. We shall observe the evolution of both quantities separately.

If the components of w include Ei and Mi defined in Sec. 2 (as in [7], [8]),
then:

– Mi > 0 for active agents and Mi = 0 for hibernated ones,
– Ei is positive till the agent destruction and does not change as long as the

agent is hibernated.

In this case obviously Ei
total and M i

total will be among the components of W .
But in general it may be convenient to find other state variables (see [9] for



considerations on that topic). In any case both Ei
total and M i

total should remain
observables of our system.

In the sequel we shall assume that the number of virtual nodes

]N = N

is fixed. We could also assume that it is bounded, but this is not a big generali-
sation. For the sake of conciseness we introduce the notation

W a,j
t = W a

t (Pj), Wh,j
t = Wh

t (Pj)

for j = 1, . . . , N . Then W a
t and Wh

t may be interpreted as vectors from RMN
+

or, if it is more convenient, as nonnegative M ×N matrices.
According to the interpretation of (4) the equality Wt = 0, which is equiv-

alent to W a
t = Wh

t = 0, means that at the time t there are neither active nor
hibernated agents, ie. the computations are finished. In other words 0 is the final
state of the application’s evolution.

4 Global State Evolution

In this section we shall formulate the equations of the evolution of our state
variables, ie. W a

t and Wh
t . They are expected to be a generalisation of the state

equations presented in [9], so they should reduce to those equations in the absence
of hibernations. Consequently they shall be stochastic difference equations, which
means that the pair (W a

t ,Wh
t ) shall form a discrete stochastic process.

First of all let us recall what has been called the ’established’ evolution
equation. It has been the equation showing the evolution of an application in
the absence of agent migrations and partitions and it has the following form.

Wt+1 = F (Wt, ξt) (6)

where F is a given mapping and (ξt)t=0,1,... is a given sequence of random vari-
ables representing the background load influence. We assume that ξt are mutually
independent, identically distributed and have a common finite set of values Ξ,
which is justified in many natural situations (cf. [8], this paper also considers
more general assumptions on the background load).

In our case, we extend the meaning of the ’established’ evolution by excluding
hibernations as well. This results in the following conditions

Wh
t = 0, W a

t = Wt.

Thus we can rewrite (6) to obtain
{

W a
t+1 = F (W a

t , ξt)
Wh

t+1 = 0.
(7)



Since 0 has to be an absorbing state of W t = (W a
t ,Wh

t ), we need to assume
that for every t

F (0, ξt) = 0 (8)

with probability 1. To guarantee reaching the final state we need also another
assumption stating that there exists t > 0 such that for every initial condition
Ŵ and Wt evolving according to (6) we have

Pr
(
Wt = 0 | W0 = Ŵ

)
> 0. (9)

It is easy to see that a similar condition holds for W t and the natural initial
state (Ŵ , 0). A desired consequence of (9) (cf. [10]) is that with any initial
condition our application will eventually finish the computations, which makes
the assumption quite useful.

The equations of migration and partition are almost the same as in [9], the
only difference is that they describe the behaviour of W a

t (Wh
t does not change

during a migration or a partition).
In the case of sole hibernations and dehibernations at node Pj (and no mi-

grations, partitions or ’established’ evolution) the system shall behave according
to the following equation.





W a,j
t+1 =

(
I − diag(uh,j

t (W a
t ))

)
W a,j

t + diag(ua,j
t (W t)W

h,j
t

Wh,j
t+1 =

(
I − diag(ua,j

t (W t))
)

Wh,j
t + diag(uh,j

t (W a
t ))W a,j

t

W a,i
t+1 = W a,i

t

Wh,i
t+1 = Wh,i

t for i 6= j.

(10)

uh,j
t : RMN

+ → [0, 1]M and ua,j
t : RMN

+ × RMN
+ → [0, 1]M are the proportions of

components of the total weights of agents, respectively, hibernated and activated
(dehibernated) to the corresponding proportions of the total weights of all agents
allocated at node Pj at the moment t. We assume that the decision of hibernating
some agents is the result of a resource shortage. As hibernated agents do not
make use of any resources interesting from our point of view (we assume that
server disks are large enough) this decision is based on the weight of active
agents only. In other words uh

t does not depend on Wh
t . In contrast the decision

of reactivating some hibernated agents may depend on some of their features
(eg. even if some RAM is free, every single hibernated agent may be too big to
be activated), so ua

t depends on both weight components.
Now we are in position to present the complete state equations. They are an

extension of the state equations presented in [9] and they are constructed in a
similar way, ie. as a combination of the above mentioned simplified equations
reducing to these equations in their described particular context. We propose



the following combination.




W a,i
t+1 = gi

(
F i(W̃ a

t , ξt), P diag(uii
t (W a

t )) W a,i
t ,

∑
j 6=i diag(uji

t (W a
t )) W a,j

t ,

diag(ua,i
t (W t)) Wh,i

t

)

Wh,i
t+1 = (I − diag(ua,i

t (W t))) Wh,i
t + diag(uh,i

t (W a
t )) W a,i

t

W a,i
0 = Ŵ i

Wh,i
0 = 0

(11)
for i = 1, . . . , N , where

W̃ a,i
t =

(
I −∑N

k=1 diag(uik
t (W a

t ))− diag(uh,i
t (W a

t ))
)

W a,i
t

and Ŵ is a given initial state. For (11) to reduce to simplified equations we
need an assumption on g, which may be eg. g(s, 0, 0, 0) = s, g(0, p, 0, 0) = p,
g(0, 0, m, 0) = m, g(0, 0, 0, h) = h. Note that in [8] and earlier papers we used a
stronger condition, ie. g(s, p, m, h) = s + p + m + h.

It follows that Wt is a controlled stochastic process with a control strategy

π = (ut)t∈N, ut = (ut, u
a
t , uh

t ) : RMN
+ −→ U. (12)

The control set U contains such elements a = (α, αa, αh) from [0, 1]M(N×N) ×
[0, 1]MN×[0, 1]MN that satisfy at least the following conditions for m = 1, . . . , M .

αij
m · αji

m = 0 for i 6= j, αi1
m + · · ·+ αiN

m + αh,i
m ≤ 1 for i = 1, . . . , N. (13)

The first equation in (13) can be interpreted in the following way: at a given
time migrations between two nodes may happen in only one direction. The sec-
ond equality means that the number of agents leaving a node, partitioned or
hibernated at the node must not exceed the number of agents active at the node.

Remark 1. It is easy to see that the control set U defined by the conditions (13)
is compact (and so are of course its closed subsets).

As in [9] we do not take the whole RMN
+ × RMN

+ as the state space. Instead
we choose finite subsets Sa, Sh of NMN both containing 0 and S = Sa × Sh =
{s0 = (0, 0), s1, . . . , sK} shall be the state space. Consequently we assume that
F and g have values in Sa. Additionally, we need also to assume that for every
t ∈ N and W = (W a,Wh) ∈ S

ut(W ) ∈ UW =
{
a ∈ U : Ga(W,a, ξ) ∈ Sa, Gh(W,a) ∈ Sh for ξ ∈ Ξ

}

where Ga and Gh denote the right hand sides of, respectively, the first and
the second equation in (11). The above equality implies that Ga(W, 0, ξ) =
F (W a, ξ) ∈ Sa and Gh(W, 0) = Wh ∈ Sh for any W and ξ, which means that
(0, 0) ∈ UW , therefore UW is nonempty for every W ∈ S. On the other hand we
have Ga(0,a, ξ) = F (0, ξ) = 0 and Gh(0,a) = 0, i.e. 0 is an absorbing state of
W t independently of a chosen control strategy.



Remark 2. Similarly to [9] it remains true that W t is a controlled Markov chain
with transition probabilities pij(a) = Pr(G(si,a, ξ0) = sj) for i, j = 0, . . . , K,
a ∈ Usi

, G = (Ga, Gh). The transition matrix for the control u is P (u) =
[pij(u(si))]i,j=0,...,K .

5 Optimal Scheduling Problem

Let us now recall (after [7]) the definition of the optimal scheduling for a com-
puting MAS in terms of the stochastic optimal control theory. We have already
the state equations (11), so we need also a cost functional and a set of admissible
controls.

The general form of considered cost functionals is

V (π; s) = E[
∑∞

t=0 k(W t,ut(W t))] (14)

where π is a control strategy (12) and s = (sa, 0) is the initial state of W t, i.e.
W 0 = s. Since 0 is an absorbing state we shall always assume that remaining
at 0 has no cost, i.e. k(0, ·) = 0. This condition guarantees that the overall cost
can be finite.

The form of the set of admissible strategies is a modification of the one used
in [9], namely

U =
{
π : ut(W ) ∈ UW , t ∈ N}

.

Now we can formulate the optimal scheduling problem. Namely given an initial
configuration (Ŵ , 0) we look for a control strategy π∗ ∈ U such that

V (π∗; (Ŵ , 0)) = min
{
V (π; (Ŵ , 0)) : π ∈ U, W t is a solution of (11)

}
. (15)

In other words an optimal scheduling for Wt is a control strategy π∗ realising
the minimum in (15).

Our main general tool for proving the existence of optimal scheduling strate-
gies is [9, Prop. 4]. Its key assumptions are (R1) and (R2). They are expressed
in terms of special properties of the transition matrix P (u), but they mean that
K-step (for (R2) n-step for some n) probability of reaching 0 from every initial
state is positive provided we use:

– for (R1) any stationary strategy π = (u,u, . . . );
– for (R2) one particular stationary strategy.

In (R2) we have to impose a stronger assumption on the one-step cost k, nev-
ertheless it is much easier to check than (R1). In our case thanks to (9) the
assumption (R2) is satisfied eg. for the zero control strategy π = (0, 0, . . . ).

For this reason in the sequel we shall consider only costs which satisfy the
second part of (R2), ie.

k(s,a) ≥ ε > 0, for s 6= 0, a ∈ Us. (16)



Among cost functionals presented in [9] only the expected total time of com-
putations VT satisfies automatically (16). Let us recall that it has the following
form.

VT (π; s) = E
[
inf{t ≥ 0 : Wt = 0} − 1

]
. (17)

Remaining two functionals (VL and VM ) do not satisfy the assumption (16),
but we can reduce the problem by adding a term cVT with (maybe small) c > 0
to both of them.

First of the two (the one promoting good load balancing) after such a modi-
fication has the following form.

VLT (π; s) = E
[∑∞

t=0

∑N
i=1(L

i
t − Lt)2

]
+ cVT (π; s), Lt = 1

N

∑N
i=1 Li

t (18)

where Li
t is the load concentration (1) at Pi at the moment t. These quantities

are well defined because we have assumed that Ei
total and M i

total are observables
of our system.

The last cost functional from [9] (penalising migrations) after the modifica-
tion has the following form.

VMT (π; s) = E
[∑∞

t=0

∑M
m=1

∑
i 6=j µij

m(uij
m,t(W a

t ))
]

+ cVT (π; s). (19)

µij
m : [0, 1] → R+ allows us to take into account the distance between Pi and Pj .

Considerations accompanying (15) along with [9, Prop. 4] result in the fol-
lowing corollary.

Corollary 3. Problem (15) for VT , VLT or VMT has the unique solution.

Finally, let us recall the optimality conditions presented in [9, Prop. 6] and
rewrite it in our context in the following corollary.

Corollary 4. Let V denote any of the functionals VT , VLT , VMT . The optimal
solution of (15) is a stationary strategy π∗ = u∞ = (u,u, . . . ) and it is the
unique solution of the equation

V (π∗; s) = mina∈Us

[∑K
j=1 pij(a)V (π∗; sj) + k(s,a)

]
. (20)

The solution of (20) exists and it is the optimal solution of (15).

(20) can be solved by means of an iterative procedure such as Gauss-Seidel.
The complexity of the computational problem depends first of all on the size of
the state space S, which in general is expected to be quite big. To make things
better in a typical situation many states are inaccessible from one another so
the matrix pij is sparse. The complexity is increased on the other hand by the
minimisation and depends on the size (and the structure) of control sets Us.



6 Conclusions

The presented MAS architecture along with diffusion-based agent scheduling
strategies form a relatively easy to manage and quite efficient framework for
large-scale distributed computations. The presented mathematical model pro-
vides us with a precise definition of optimal task scheduling in such an environ-
ment. It also gives us some useful results concerning the existence of optimal
scheduling strategies (Cor. 3) as well as the optimality conditions (Cor. 4). The
latter show that the choice of scheduling strategies utilised during tests (cf. [5])
was proper, because it is a stationary strategy and according to Cor. 4 the op-
timal strategy belongs to that class. In this paper the formal model has been
extended to consider agent hibernations neglected so far. Also the existence re-
sults and the optimality conditions has been adapted appropriately. It appears
that it is an important extension and omitting hibernations in some cases might
result in a wrong observation of the state of a computing application. Further
plans concerning the model include detailed studies on the form of the optimal
strategies and, on the other hand, finishing some experiments (and starting some
new ones) expected to extend the model’s empirical basis.

References

1. Bradshaw, J.M., ed.: Software Agents. AAAI Press (1997)
2. Wooldridge, M.: An Introduction to Multi-agent Systems. Wiley (2002)
3. Luque, E., Ripoll, A., Cortés, A., Margalef, T.: A distributed diffusion method

for dynamic load balancing on parallel computers. In: Proceedings of EUROMI-
CRO Workshop on Parallel and Distributed Processing, San Remo, Italy, IEEE
Computer Society Press (1995) 43–50

4. Uhruski, P., Grochowski, M., Schaefer, R.: Multi-agent computing system in a
heterogeneous network. In: Proceedings of the International Conference on Parallel
Computing in Electrical Engineering (PARELEC 2002), Warsaw, Poland, IEEE
Computer Society Press (2002) 233–238

5. Grochowski, M., Schaefer, R., Uhruski, P.: Diffusion based scheduling in the agent-
oriented computing systems. Lecture Notes in Computer Science 3019 (2004)
97–104

6. Grochowski, M., SmoÃlka, M., Schaefer, R.: Architectural principles and scheduling
strategies for computing agent systems. Fundamenta Informaticae 71(1) (2006)
15–26

7. SmoÃlka, M., Grochowski, M., Uhruski, P., Schaefer, R.: The dynamics of computing
agent systems. Lecture Notes in Computer Science 3516 (2005) 727–734

8. SmoÃlka, M., Schaefer, R.: Computing MAS dynamics considering the background
load. Lecture Notes in Computer Science 3993 (2006) 799–806

9. SmoÃlka, M.: A formal model of multi-agent computations. Lecture Notes in Com-
puter Science (2008) to appear.

10. Kushner, H.: Introduction to Stochastic Control. Holt, Rinehart and Winston
(1971)


