
A Formal Model of Multi-Agent Computations

Maciej Smo lka1

Institute of Computer Science, Jagiellonian University, Kraków, Poland
smolka@ii.uj.edu.pl

Abstract. The paper contains an extension of a formal model of multi-
agent computing system developed in previous publications towards con-
sidering a more general system state. We provide also some deeper details
of the model in the case of a homogeneous hardware environment. The
model provides us with a precise definition of the optimal task schedul-
ing together with results on the existence and characterization of optimal
scheduling strategies.

1 Introduction

The application of the multi-agent paradigm together with local, diffusion-based
agent scheduling strategies provide us with a relatively simple decentralized man-
agement of large-scale distributed computations. Multi-agent systems based on
the idea of task diffusion (cf. [1]) dedicated to large-scale computations have
been developed for the last several years [2]. A formal model for such systems
was introduced in [3] and has been further developed in [4–6]. It provides us with
a precise definition of the optimal task scheduling as well as results on the ex-
istence of optimal scheduling strategies and optimality conditions. In this paper
the model is extended to consider a more general system state. We provide also
more detailed modelling of a simple but realistic case of a homogeneous network
of identical machines. Finally results on the existence and characterization of
optimal scheduling strategies are presented.

2 Architecture of a computing MAS

The principles of the MAS architecture which form the basis for our mathemat-
ical model were defined in [2, 7] and has been further developed in [8, 9]. The
full description as well as the details of realization and test results can be found
therein. Here let us recall only some crucial points.
The suggested architecture of the system is composed of a computational en-
vironment (MAS platform) and a computing application being a collection of
mobile agents called Smart Solid Agents (SSA). The computational environment
is a triple (N, BH , perf), where:

N = {P1, . . . , PN} , where Pi is a Virtual Computational Node (VCN). Each
VCN can maintain a number of agents.



BH is the connection topology BH = {N1, . . . ,NN},Ni ⊂ N is an immediate
neighborhood of Pi (including Pi as well).

perf = {perf1, . . . , perfN}, perfi : R+ → R+ is a family of functions where perfi

describes relative performance of VCN Pi with respect to the total memory
request M i

total of all agents allocated at the node.

The MAS platform is responsible for maintaining the basic functionalities of
the computing agents. Namely it delivers the information about the local load
concentration Lj and Qj (see (2) and (3) below), it performs agent destruction,
partitioning and migration between neighboring VCN’s and finally it supports
the transparent communication among agents.

We shall denote an SSA by Ai where index i stands for an unambiguous agent
identifier. Each Ai contains its computational task and all data necessary for its
computations. Every agent is also equipped with a shell which is responsible for
the agent logic. At any time Ai is able to denominate the pair (Ei, Mi) where
Ei is the estimated remaining computation time measured in units common for
all agents of an application and Mi is the agent’s RAM requirement in bytes.
An agent may undertake autonomously one of the following actions: continue
executing its internal task, migrate to a neighboring VCN or decide to be par-
titioned, which results in creating two child agents {Aij

= (Tij
, Sij

)}, j = 1, 2.
We assume that in the case of the agent partitioning the following conditions
hold: Ei > Eij

, Mi > Mij
, j = 1, 2. The parent SSA disappears after such a

partition.

A computing application may be characterized by the triple (At, Gt, Scht), t ∈
[0, +∞) where At is the set of application agents active at the time t, Gt is the
tree representing the history of agents’ partitioning until t. All agents active till
t constitute the set of its nodes

⋃t

s=0 At, while the edges link parent agents to
their children. All information on how to rebuild Gt is spread among all agents
such that each of them knows only its neighbors in the tree. {Scht}t∈[0,+∞) is
the family of functions such that Scht : At → N is the current schedule of
application agents among the MAS platform servers. The function is defined by
the sets ωj containing indices of agents allocated on each Pj ∈ N. Every ωj

is locally stored and managed by Pj . Each server Pj ∈ N asks periodically all
local agents (allocated on Pj) for their requirements and computes the local load
concentration

Lj =
E

j
total

perfj(M j
total)

where E
j
total =

∑

i∈ωj

Ei and M
j
total =

∑

i∈ωj

Mi (1)

Then Pj communicates with neighboring servers and establishes

Lj =
{

(Lk, Ek
total, M

k
total, perfk) : Pk ∈ Nj

}
(2)

as well as the set of node indices

Qj = {k 6= j : Pk ∈ Nj , Lj − Lk > 0} . (3)



The mentioned papers as well as [4] describe migration and partitioning strate-
gies which make use of the above-defined quantities. These strategies are related
to the physical phenomenon of the molecular diffusion in crystals.

3 System state revisited

Next let us recall the features of a mathematical model of multi-agent compu-
tations, which is based on the presented architectural principles. It has already
been presented in [3–6]. Here we shall propose a generalization of the model,
namely we shall consider a more general form of the system state.

Let us recall that we have considered the set of all possible application’s agents
A. Because of problems with the determination of such a set the crucial idea is
to avoid considering the evolution of a single agent and to study the dynamics of
a whole computing application instead. We observe the system state in discrete
time moments. Let us recall the notion of the vector weight of an agent, which
is the mapping w : N × A −→ R

M
+ . Note that otherwise than in our previous

papers we allow M to be greater than 2. We assume that the dependency of
the total weight of child agents after partition upon their parent’s weight before
partition is well-known and linear, i.e. there is a matrix P ∈ R

M×M
+ such that

in the case of partition A → {A1, A2} we have

wt+1(A1) + wt+1(A2) = Pwt(A). (4)

This time we relax the assumption of componentwise dependency. If this is the
case P is diagonal.
Next let us recall the notion of the total weight of all agents allocated on a virtual
node P at any time t, i.e.

Wt(P ) =
∑

Scht(A)=P wt(A)

This notion is crucial in our search for a global description of the system dy-
namics since it is a global quantity describing the state of the system in such a
way that is appropriate for our purposes.
As for the components of w it is straightforward to choose Ei and Mi defined
in Sec. 2 as we did in previous papers. Then obviously Ei

total and M i
total are the

components of W . In general it may be convenient to find other state variables
(see Sec. 5). In any case both Ei

total and M i
total should remain observables of our

system.
In the sequel we shall assume that the number of virtual nodes ]N = N is fixed.
Let us introduce the notation

W
j
t = Wt(Pj)

for j = 1, . . . , N . Then Wt may be interpreted as a vector from R
MN
+ or, if it is

more convenient, as a nonnegative M × N matrix.
The equality Wt = 0 means that at the time t there is no computational activity.
Thus 0 is the target of the application’s evolution: once our computing MAS
reaches this state we want it to stay there forever.



4 Equations of evolution

As said before we shall consider Wt as a state of the computing application.
Now we shall formulate the equations of evolution of Wt. Since they contain a
stochastic term (see below), Wt turns out to be a discrete stochastic process.
The following state equations are an adaptation of the equations presented in [3]
or [5] to the generalized state.
First consider three simple cases.
’Established’ evolution (when there are neither partitions nor migrations). Then
we assume that the state equation has the form

Wt+1 = F (Wt, ξt) (5)

where F is a given mapping and (ξt)t=0,1,... is a given sequence of random vari-
ables representing the background load influence. We assume that ξt are mutually
independent, identically distributed and have a common finite set of values Ξ,
which is justified in many natural situations [6]. Since we want Wt to stay at
0 (i.e. we want 0 to be an absorbing state of Wt), we need to assume that for
every t

F (0, ξt) = 0 (6)

with probability 1.
Partition at node j. Then we have

{
W

j
t+1 =

(
I − diag(ujj

t (Wt))
)

W
j
t + P diag(ujj

t (Wt)) W
j
t

W i
t+1 = W i

t for i 6= j
(7)

where components of u
jj
t : R

MN
+ → [0, 1]M are the proportions of the weight

components of splitting agents to the corresponding components of the total
weight of all agents at node j at time t. By diag(v) we denote the square matrix
obtained by putting the elements of the vector v on the diagonal and 0’s outside
the diagonal.
Migration from j to k. In this case the state equations have the form





W
j
t+1 =

(
I − diag(ujk

t (Wt))
)

W
j
t

W k
t+1 = W k

t + diag(ujk
t (Wt))W

j
t

W i
t+1 = W i

t for i 6∈ {j, k}

(8)

with u
jk
t analogous to u

jj
t .

In reality all three cases usually appear simultaneously. Therefore the final state
equations shall be a combination of them which will reduce to a particular ’sim-
ple’ case when there are no activities in the system related to the other cases.
Here we present such a combination, namely we propose the following form of
the state equations
{

W i
t+1 = gi

(
F i(W̃t, ξt), P diag(uii

t (Wt)) W i
t ,

∑
j 6=i diag(uji

t (Wt)) W
j
t

)

W i
0 = Ŵ i

(9)



for i = 1, . . . , N , where W̃ i
t =

(
I −

∑N

k=1 diag(uik
t (Wt))

)
W i

t and Ŵ is a given

initial state.

Remark 1. In our previous papers we considered only g(s, p, m) = s + p + m. A
more general assumption on g could be g(s, 0, 0) = s, g(0, p, 0) = p, g(0, 0, m) =
m.

It follows that Wt is a controlled stochastic process with a control strategy

π = (ut)t∈N, ut : R
MN
+ −→ U. (10)

The control set U contains such elements α from [0, 1]M(N×N) that satisfy at
least the following conditions for m = 1, . . . , M .

αij
m · αji

m = 0 for i 6= j, αi1
m + · · · + αiN

m ≤ 1 for i = 1, . . . , N. (11)

In fact quite often the conditions imposed on U shall be more restrictive (see
next section).
The first equation in (11) can be interpreted in the following way: at a given
time migrations between two nodes may happen in only one direction. The sec-
ond equality says that the number of agents leaving a node must not exceed the
number of agents present at the node just before the migration.

Remark 2. It is easy to see that the control set U defined by the conditions (11)
is compact (and so are of course its closed subsets).

In the most general case one might want to take the whole R
MN
+ for the state

space of the stochastic process Wt. But, on the other hand, in the most common
situation its components represent some resources which are naturally bounded
and quantized (see [5, Sec. 2]) for an analysis of a special case). Therefore we
shall assume that the state space is a finite subset of N

MN containing 0. Let us
call the elements of this finite set si, i.e. S = {s0 = 0, s1, . . . , sK}. This analysis
of the state space has some consequences. First of all we have to assume that
F and g have values in S. Likewise, the condition (11) is not sufficient for the
equations (9) to make sense. Namely we have to assume that for any t ∈ N and
W ∈ S

ut(W ) ∈ UW = {α ∈ U : G(W, α, ξ) ∈ S for ξ ∈ Ξ}

with

Gi(W, α, ξ) = gi(F i((I −
∑N

k=1 diag(αik))W i, ξ), P diag(αii) W i,∑
j 6=i diag(αji) W j) (12)

denoting the right hand side of (9). The above equality implies that G(W, 0, ξ) =
F (W, ξ) ∈ S for any W and ξ, which means that 0 ∈ UW , therefore UW is
nonempty for every W ∈ S. Another consequence of (12) is that G(0, α, ξ) =
F (0, ξ) = 0, i.e. 0 remains an absorbing state of Wt even if we apply some agent
operations.

Remark 3. Given (9) it is easy to see that Wt is a controlled Markov chain
with transition probabilities pij(α) = Pr(G(si, α, ξ0) = sj) for i, j = 0, . . . , K,
α ∈ Usi

. The transition matrix for the control u is P (u) = [pij(u(si))]i,j=0,...,K .



5 Analysis of a special case

In this section we shall present more details on the state variables and the state
equations in a simple but nontrivial special case. Let us assume that we use a
homogeneous computational environment, i.e. VCN’s are deployed on different
identical physical nodes. Furthermore assume that the evolution of Ei for each
agent when there are no migrations, partitions or delays related to a higher
background load is like on Fig. 1, i.e. linearly decreasing from the time of the
agent’s creation ts until the end of computations. For each agent the maximal
value Ē of Ei may be different. Assume also that Mi is equal to a positive con-
stant throughout the agent’s life and before its creation and after its destruction
Mi is equal to 0 (Fig. 1). Of course not all computational agents behave in the

Ē

ts ts + Ē

E

t

M̄

ts ts + Ē

M

t

Fig. 1. An agent’s remaining time of computations (in common units, left picture) and
memory requirement (in bytes, right picture)

presented way (e.g. HGS agents [9] do not), but there is an important class of
agents related to CAE computations (e.g. SBS linear solver agents [7]) whose
evolution can be modeled as above.
In order to find appropriate state variables we divide the agents into generations
according to their place in the partition history, i.e. the generation 0 consists
of agents never split and the last generation (with number G) contains agents
too small to be partitioned. We assume that within each generation all agents
have the same memory requirement. Then the memory requirement becomes a
strictly decreasing function of a generation M : {0, . . . , G} −→ N. Denote by
N

j
k,t the number of agents in the generation k at the node j at the time t and

by E
j
k,t the total remaining time (cf. (1)) of all agents in the generation k at the

node j at the time t. Using these notations we define the state variable

W
j
t =

[
E

j
0,t, . . . , E

j
G,t, N

j
0,t, . . . , N

j
G,t

]T

(WT denotes the transposed matrix for W ). Note that both E
j
total =

∑G

k=0 E
j
k

and M
j
total =

∑G
k=0 M(k)N j

k are observables of our system, however they are
not state variables.
Next let us consider the evolution of Wt. To this end let us assume that during
the partition an agent is split into two equal children in such a way that both



get a half of the parent’s remaining time of computations. Then the equations
of the partition for one agent belonging to the generation k (k < G) have the
form {

E
j
k,t+1 = E

j
k,t − e N

j
k,t+1 = N

j
k,t − 1

E
j
k+1,t+1 = E

j
k+1,t + e N

j
k+1,t+1 = N

j
k+1,t + 2

where e is the splitting agent’s remaining time. Thus the partition matrix has
the following form

P =

[
B 0
0 2B

]

where B is the matrix which has 1’s right under the diagonal and 0’s elsewhere.
It means that the system evolution follows (7). Similarly it is easy to see that
(8) describes the dynamics of migration in this situation as well. Therefore let us
concentrate on the ’established’ case. Then the evolution equation of variables
E is the following

E
j
k,t+1 = E

j
k,t − N

j
k,t + D

j
k,t

where D
j
k,t ∈ {0, . . . , N

j
k,t} is a random number of agents delayed due to the high

background load. In order to drop the dependency of the set of values of D on
the current state we shall rewrite it in the following way D

j
k,t = [N j

k,tξ
j
k,t] where

[x] stands for the whole part of x and ξ
j
k,t is a sequence of random variables

with values in [0, 1]. The equations of evolution of variables N are slightly more
complicated, namely we have

N
j
k,t+1 =





N
j
k,t − D̃

j
k,t if E

j
k,t ≥ 2N

j
k,t

E
j
k,t − N

j
k,t − D̃

j
k,t if N

j
k,t < E

j
k,t < 2N

j
k,t

E
j
k,t+1 if E

j
k,t = N

j
k,t

(13)

where D̃
j
k,t ∈ {0, . . . , N

j
k,t−D

j
k,t−1} is another random variable. It represents the

uncertainty about whether agents within a generation are at the same point of
computations: the smaller the value of D̃

j
k,t, the better balanced the generation.

The equality D̃
j
k,t = 0 means that all agents within the generation j are exactly

at the same point. The main reason of a probable poor balancing are agents-
wanderers, which do not perform any computations and migrate over the network
instead for some time, and finally end up at the original node in a very early
stage of computations in comparison to agents which have stayed ’home’ and
worked hard. D̃

j
k,t enables us to consider such situations in a probabilistic way.

As before we put D̃
j
k,t = [(N j

k,t − D
j
k,t)ζ

j
k,t] where ζ

j
k,t is a sequence of random

variables with values in [0, 1). Thus the interpretation of the equations (13) in the
case of the perfect balancing of computations within generations is the following.
The first means that when there is sufficiently much work to do the number of
agents is constant. The second and third mean that at the end of computations
we have a number of agents and each of them is to finish its task in a time unit.
To sum up, in the presented case we have obtained the state equations, which
have the form (5). This shows what F may look like. In general we need to
consider migrations and partitions as well, ending up with equations like (9).



6 Optimal scheduling problem

Now let us recall the definition of the optimal scheduling for a computing MAS.
We shall follow the steps of [3] and put our problem into the stochastic optimal
control framework.
The general form of the cost functional for controlled Markov chains of our type
is (cf. [10])

V (π; s) = E[
∑∞

t=0 k(Wt, ut(Wt))] (14)

where π is a control strategy (10) and s is the initial state of Wt, i.e. W0 = s.

Since 0 is an absorbing state we shall always assume that remaining at 0 has
no cost, i.e. k(0, ·) = 0. This condition guarantees that the overall cost can be
finite.
Let us define the following set of admissible control strategies U =

{
π : ut(W ) ∈

UW , t ∈ N
}
. Now we are in position to formulate the optimal scheduling problem.

Namely given an initial configuration Ŵ we look for a control strategy π∗ ∈ U

such that

V (π∗; Ŵ ) = min
{
V (π; Ŵ ) : π ∈ U, Wt is a solution of (9)

}
. (15)

Consequently, an optimal scheduling for Wt is a control strategy π∗ realizing the
minimum in (15). Changing the cost functional we obtain various criteria for the
optimality of the scheduling.
Let us present here some cost functionals of type (14) which are appropriate for
multi-agent computations. The first one is the expected total time of computa-
tions

VT (π; s) = E
[
inf{t ≥ 0 : Wt = 0} − 1

]
. (16)

In other words, in this case a scheduling is optimal if it is expected to finish the
computations in the shortest time.
The second functional promotes the good mean load balancing over time. It has
the following form

VL(π; s) = E
[∑∞

t=0

∑N
i=1(Li

t − Lt)
2
]
, Lt = 1

N

∑N
i=1 Li

t (17)

where Li
t is the load concentration (1) at the i-th VCN at the time t. These

quantities are well defined because we have assumed that Ei
total and M i

total are
observables of our system.
Both the above examples do not contain an explicit dependency on the control.
Generalizing it a little allows us to penalize migrations. Namely take ϕ : S → R+,
a ≥ 0 and µij

m : [0, 1] → R+ nondecreasing and such that µij(0) = 0, and put

VM (π; s) = E
[∑∞

t=0

(
ϕ(Wt) + a

∑M

m=1

∑
i6=j µij

m(uij
m,t(Wt))

)]
. (18)

In the above expression ϕ can have the form of the term under the estimated
value in (16) or (17), µij allows us to penalize the distance between i-th and
j-th VCN and a is a tuning factor (the greater is the value of a, the greater is
the influence of the ’migration’ term).



7 Existence and characterization of optimal strategies

Let us consider first the existence of solutions for problem (15). To this end let us
denote by R(u) = [pij(u(si))]i,j=1,...,K

the ’probably not absorbing’ part of the
transition matrix for a control u. The following proposition is the main existence
result.

Proposition 4. Assume that
(R1) RK(u) is a contraction for every u such that u(s) ∈ Us or
(R2) Rn(u) is a contraction for some n ≥ 1 and u as above but additionally
k(sj , α) ≥ ε > 0 for j 6= 0, α ∈ Usj

.
Then there exists the unique optimal solution of (15).

Proof. It is sufficient to notice that Us are finite so they are compact and k(sj , ·)
is obviously continuous. It means that the assumptions (A1)–(A3) from [10,
Chap. 4] hold. Thus the thesis is a straightforward consequence of [10, Theorem
4.2].

Corollary 5. Consider our example cost functionals VT , VL and VM .

1. Problem (15) for VT has the unique solution provided (R2) holds.
2. Problem (15) for VL has the unique solution provided (R1) holds.
3. Existence of the solution for (15) for VM depends on the assumption on ϕ.

If the latter is separated from 0 we need (R2) otherwise (R1).

Now we shall present some Bellman-type optimality conditions for (15), which
are another consequence of [10, Theorem 4.2] and its proof. We shall formulate
them in the following proposition.

Proposition 6. Assume (R1) or (R2). Then the optimal solution of (15) is a
stationary strategy π∗ = u∞ = (u, u, . . . ) and it is the unique solution of the
equation

V (π∗; s) = minα∈Us

[∑K
j=1 pij(α)V (π∗; sj) + k(s, α)

]
. (19)

The solution of (19) exists and is the optimal solution of (15).

The simple but important consequence of this proposition is that in order to find
the optimal scheduling we need to consider only stationary strategies. Note that
diffusion strategies defined in [8, 4] are stationary, thus we can try to verify their
optimality (or quasi-optimality) by means of a variant of the equation (19). On
the other hand this equation also allows us to compute the optimal strategy by
means of some iterative procedures like Gauss-Seidel [10].

8 Conclusions

The presented MAS architecture accompanied by diffusion-based agent schedul-
ing strategies make a convenient and efficient environment for large-scale distrib-
uted computations. The presented mathematical model based on the stochas-
tic optimal control theory provides us with a new precise definition of optimal



scheduling in such an environment. It also enables us to obtain some results on
the existence of optimal scheduling strategies (Proposition 4 and Corollary 5) as
well as the optimality conditions (Proposition 6). These results show in particu-
lar that any optimal scheduling must belong to the class of stationary strategies,
which have been utilized during tests [8, 9]. In this paper the formal model has
been extended to allow more general system state. This in turn has enabled us
to provide a more detailed description of the generalized model in an important
special case (Sec. 5) which form the basis for experiments designed to verify the
model. Such experiments are being undertaken with results soon to come.

References

1. Luque, E., Ripoll, A., Cortés, A., Margalef, T.: A distributed diffusion method
for dynamic load balancing on parallel computers. In: Proceedings of EUROMI-
CRO Workshop on Parallel and Distributed Processing, San Remo, Italy, IEEE
Computer Society Press (1995) 43–50

2. Uhruski, P., Grochowski, M., Schaefer, R.: Multi-agent computing system in a
heterogeneous network. In: Proceedings of the International Conference on Parallel
Computing in Electrical Engineering (PARELEC 2002), Warsaw, Poland, IEEE
Computer Society Press (2002) 233–238

3. Smo lka, M., Grochowski, M., Uhruski, P., Schaefer, R.: The dynamics of computing
agent systems. Lecture Notes in Computer Science 3516 (2005) 727–734

4. Grochowski, M., Smo lka, M., Schaefer, R.: Architectural principles and scheduling
strategies for computing agent systems. Fundamenta Informaticae 71(1) (2006)
15–26

5. Smo lka, M.: Optimal scheduling problem for computing agent systems. Inteligencia
Artificial 9(28) (2005) 101–106

6. Smo lka, M., Schaefer, R.: Computing MAS dynamics considering the background
load. Lecture Notes in Computer Science 3993 (2006) 799–806

7. Grochowski, M., Schaefer, R., Uhruski, P.: An agent-based approach to a hard
computing system — Smart Solid. In: Proceedings of the International Confer-
ence on Parallel Computing in Electrical Engineering (PARELEC 2002), Warsaw,
Poland, IEEE Computer Society Press (2002) 253–258

8. Grochowski, M., Schaefer, R., Uhruski, P.: Diffusion based scheduling in the agent-
oriented computing systems. Lecture Notes in Computer Science 3019 (2004)
97–104

9. Momot, J., Kosacki, K., Grochowski, M., Uhruski, P., Schaefer, R.: Multi-agent
system for irregular parallel genetic computations. Lecture Notes in Computer
Science 3038 (2004) 623–630

10. Kushner, H.: Introduction to Stochastic Control. Holt, Rinehart and Winston
(1971)


