
A Memetic Framework for Solving Difficult
Inverse Problems

Maciej Smo�lka(B) and Robert Schaefer

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

{schaefer,smolka}@agh.edu.pl

Abstract. The paper introduces a multi-deme, memetic global opti-
mization strategy Hierarchic memetic Strategy (HMS) especially well-
suited to the solution of a class of parametric inverse problems. This
strategy develops dynamically a tree of dependent populations (demes)
searching with the various accuracy growing from the root to the leaves.
The search accuracy is associated with the accuracy of solving direct
problems by hp–adaptive Finite Element Method. Throughout the paper
we describe details of exploited accuracy adaptation and computational
cost reduction mechanisms, an agent-based architecture of the proposed
system, a sample implementation and preliminary benchmark results.

Keywords: Inverse problems · Hybrid optimization methods · Memetic
algorithms

1 Motivation

Inverse problems form an important area of the contemporary research related
to fundamental problems in science and engineering (see e.g. [1]). Among its
numerous applications one can find such activities as oil and gas explorations,
material processing and others. A quite general definition of the inverse problem
is to find a value of a parameter ω∗ ∈ D realizing

min
ω∈D

{f(uo, u(ω)) : A(u(ω)) = 0} (1)

where A is a direct problem operator, u(ω) ∈ U is the direct solution corre-
sponding to ω, uo ∈ O is an observation (typically a measured quantity related
somehow to the direct solution) and f(O, U) −→ R+ is a misfit functional. In a
typical situation U is a Sobolev space and A : U −→ U ′ is a differential opera-
tor between U and its conjugate. When solving such problems one usually faces
some significant obstacles. One of them is the ill-conditioning, i.e. a small change

The work presented in this paper has been partially supported by Polish National
Science Center grants no. DEC-2012/07/B/ST6/01229 and DEC-2011/03/B/ST6/
01393.

c© Springer-Verlag Berlin Heidelberg 2014
A.I. Esparcia-Alcázar et al. (Eds.): EvoApplications 2014, LNCS 8602, pp. 138–149, 2014.
DOI: 10.1007/978-3-662-45523-4 12

A Memetic Framework for Solving Difficult Inverse Problems 139

in parameters sometimes results in a big change in results. Other noticeable dif-
ficulties are the multi-modality, i.e. the non-uniqueness of solutions, and possible
low regularity of the misfit functional. Both of them significantly reduce the use-
fulness of computationally relatively inexpensive convex optimization methods
(such as gradient-based ones), because in the lack of the misfit differentiability
their use is problematic in general and, even worse, in the case of multiple local
optima they do not deliver the guarantee of finding the global one.

There exist some methods to overcome those difficulties. One of the most
popular is the misfit regularization (see e.g. [2]) providing a modified version of
the misfit, which is regular and convex (hence unimodal). This can be a very
effective technique, however it is not very useful when the considered inverse
problem is inherently multimodal and we need to find all minima. On the other
hand, a careless use of the regularization can lead to the replacement of the orig-
inal problem solution with an artificial solution of the over-regularized misfit. A
different way is to use a stochastic global optimization methods from simple
Monte Carlo type to more sophisticated single- and multi-deme genetic searches
(see e.g. [3–5]). Such methods may handle irregularity and multimodality, but
the price is the high computational cost and the low accuracy. Another pos-
sibility is to perform multiple convex searches from a set of points generated
randomly (multistart strategy). Such methods might be additionally improved
by the sophisticated post-processing leading to the reduction of a random sample
from which local methods are started or the early suspension of non-promising
local searches (see e.g. [6,7]).

The authors intend to synthesize slightly diverse ideas of the inverse analysis
arising from the following sources.

Hierarchic Genetic Strategy (HGS). This strategy develops dynamically a
tree of dependent demes i.e. sub-populations of the total multiset of various
type individuals created by the strategy. The root-deme performs the most global
search with a low accuracy. The search performed by demes located deeper in the
tree is more localized and more accurate. See [8] for details and [9] for HGS float-
ing point encoding implementation. An important HGS extension going towards
the effective solving of the inverse parametric problems is the hp–HGS strategy
(see [10] and references therein) which combines HGS with the hp-adaptive Finite
Element Method (hp–FEM) [11]. This strategy offers the advantageous compu-
tational cost resulting from the common scaling of the hp–FEM error according
to the various accuracy of HGS inverse search in the root deme, branch demes
and leaf demes. The hp–HGS asymptotic guarantee of finding all extremes and
the computational cost reduction rate are discussed in [10].

Memetic algorithms (see e.g. [12]) allow to compose various techniques into
a single population-based stochastic strategy in order to obtain more efficiency
and flexibility. Candidate solutions are represented as software agents, other
agents are responsible for governing populations, which leads to the idea of the
computing Multi-Agent System (MAS) (see e.g. [13,14]). The first attempt to
apply agents in profiling of HGS demes is described in [15]. An example of solv-
ing inverse parametric problem by an Evolutionary Multi-Agent System (EMAS)

140 M. Smo�lka and R. Schaefer

can be found in [16]. The paper [17] shows a different way of a memetic enhance-
ment of genetic search by introducing ’gradient mutation’ into the genetic solving
of inverse problems coming from the computational mechanics.

Clustered Genetic Search (CGS) tries to extract the knowledge from the
genetic sample (the population) or a sequence of samples in order to approximate
central parts of local extreme’s basins of attraction (see e.g. [7]). CGS follows
the simple strategy introduced by Törn [6], which performs a density clustering
of the uniformly sampled population undertaking the elitist selection.

The solution proposed in this paper, called Hierarchic Memetic Strategy
(HMS) combines all mechanisms described above in a form of a loosely coupled
tree of searching demes. The novelty of our proposition consists of the intensive
profiling of searching process towards essential decreasing of computational cost
and exploring multiple extremes. This profiling utilize intensively the knowledge
about the solving problem extracted from the evolving demes and their current
structure.

2 HMS Architecture

The main idea of the HMS is to provide a global optimization tool especially
suited to solving difficult inverse problems. Their difficulty lies in their inherent
multi-modality as well as the nontrivial computational cost of a direct problem
solution, which is necessary for evaluating the misfit. Nevertheless, they also
have some features we can take advantage of. First of all, their global minimum
value is well-known (and equal to 0), which can be used in e.g. the construction
of stopping conditions for stochastic evolution. Second, in some important cases
the cost of the direct problem solution can be modulated by an assumed accuracy
of the solution: it is the case of hp-FEM direct solvers [11].

As a global optimization tool the HMS tries to combine the high-level
exploratory ability with the accuracy and efficiency of a local optimization
method. Contrary to two-phase methods in which the global phase is followed by
local searches, the HMS goes ’memetic way’, i.e. intermixes local-optimization-
oriented mechanisms into a global stochastic search machinery. The global part
follows the multi-population evolutionary approach introduced by the HGS [8].
Namely the global search is performed by a collection of genetic populations. The
populations can evolve in parallel, but they are not mutually independent. The
structure of the dependency relation is hierarchical (i.e. tree-like, see Fig. 1) with
a restricted number of levels. The HGS proved to have considerable exploratory
capabilities together with a good search accuracy especially with floating-point
phenotype encoding [9]. The HMS, naturally, tries to retain these abilities at
the same time going beyond the HGS in some aspects. First of all, it adds local
optimization to the set of operations applied to the genetic individuals. But this
is done with care in order to avoid the premature population convergence on
one hand and the high cost of running instances of a local method from inap-
propriate points on the other hand. Namely some genetic individuals (but not
necessarily all of them) receive an identity and some intelligence hence becoming

A Memetic Framework for Solving Difficult Inverse Problems 141

Level 1

Level 2

Level 3

root deme

branch demes

leaf demes

U1

U2

U3

genetic spaces

low accuracy

high accuracy

Fig. 1. HGS-like evolutionary population tree

independent agents in a multi-agent system (MAS), and the decision of perform-
ing the local search becomes their own responsibility. Moreover the demes are
managed by special controller agents. Note that this is somewhat similar but at
the same time significantly different from the Globally Balanced HGS (GB-HGS)
[15] where only demes have corresponding agents. The idea of turning a passive
genetic individual into an intelligent agent has some further consequences. We
have to redefine the genetic operations in such a way that they can be applied
to agents and while there is no big problem with the mutation and the crossover
(but one has to note that in this case a new agent is activated), the selection
cannot be performed in the simple genetic (or evolutionary) way. Namely we
follow the lines of the EMAS [13,14], thus performing an operation analogous to
the proportional selection but realized as a two-agent rendezvous.

In the sequel we shall present the structure of the HMS starting from a
description of HMS agent types.

2.1 HMS Agent Types

Master Agent (MA). As a global system coordinator it is started as a first agent
in the HMS MAS. Its responsibilities include performing the system initialization
including the activation of other basic agents, i.e. the Objective Agent and a
Local Agent of the deme-tree root. After the initialization, the Master Agent
starts the global loop of deme coordination and checks if the global stopping
condition is satisfied. It is shown in the following algorithm:
1: create OA
2: create root location node
3: repeat
4: receive proposals from DAs and choose one
5: until global stop condition is satisfied.

Deme Agent (DA). It is a deme-tree node coordinator. Each deme has an asso-
ciated level of computational accuracy stored as a property of the corresponding
Local Agent. In fact Deme Agent is an abstract class with two different special-
izations: Evolutionary Agent and Local Agent.

142 M. Smo�lka and R. Schaefer

Evolutionary Agent (EA). This is a simple (passive) evolutionary population
owner. Periodically, after receiving the permission from the Master Agent it lets
its population evolve for a fixed number of generations (this is called a metae-
poch) and then sprouts a new deme from the current best individual unless the
sprout condition is not satisfied (see the algorithm below). Note that similar
agents form the structure of the GB-HGS [15]. The Evolutionary Agent algo-
rithm may be presented in the following way.
1: create initial deme population
2: repeat
3: send a proposal to MA
4: if MA has accepted the proposal then
5: evolve owned population for a fixed step number
6: if the best individual satisfies the sprout condition then
7: create new child DA
8: end if
9: end if

10: until local stop condition is satisfied

Local Agent (LA). The Local Agent owns a population of Computational Agents
and acts as their action local scheduler. Namely it receives action proposals from
Computational Agents, selects one of them according to a probability distribu-
tion, send a proposal to the Master Agent and if the proposal is accepted, lets
the selected Computational Agent perform its action (see the algorithm below).
The Local Agent’s responsibilities include also some action coordination, such
as checking if a pending sprout action is allowed. The Local Agent algorithm is
presented below.
1: create initial deme population
2: repeat
3: send CFP to all active CAs
4: receive action proposals from CAs and choose one
5: send a proposal to MA
6: if MA has accepted the proposal then
7: if CA action creates new individual then
8: create new CA
9: else if chosen action is SPROUT then

10: if sprouting can be performed then
11: create new child DA
12: end if
13: end if
14: end if
15: until local stop condition is satisfied

Computational Agent (CA). It is an active individual of the HMS genetic pop-
ulation. It owns an immutable genotype consisting of an encoded domain point
(a chromosome) and a level of the computational precision. The precision level
must be consistent with the owning Local Agent’s level. The mutable part of a

A Memetic Framework for Solving Difficult Inverse Problems 143

Computational Agent’s state includes a nonnegative memetic parameter called
life energy. The life energy is exchanged during a Computational Agent action
execution such that the total energy remains constant within each deme. Only
agents with the positive life energy are considered active (alive) and take part
in the system evolution. Namely there exists a pool of actions from which an
active Computational Agent can choose one at a time to perform. The available
action pool size depends primarily on the agent’s life energy but can be affected
by other parameters as well. The action selection is determined by a given prob-
ability distribution. Finally, the action is performed only if permitted by the
owning Local Agent (see the algorithm below).
1: request objective computing from OA
2: while life energy > 0 do
3: receive CFP from owning LA
4: choose an available action
5: send the proposal to LA
6: if received permission from LA then
7: perform chosen action
8: update life energy
9: end if

10: end while
There is an energy quantum related to each action, which is spent (during GET
it can sometimes be gained) by a Computational Agent during the action execu-
tion. Currently the following actions are considered (cf. [14]): GET, MUTATE,
CROSSOVER, LOCOPT and SPROUT.

The GET action is the above-mentioned kind of the distributed selection. It
is a two-agent stochastic duel during which the proper quantum energy moves
from the loser to the winner. A Computational Agent with a lower (i.e. better
because closer to the global minimum) objective value has more chances to win.
MUTATE and CROSSOVER are straightforward counterparts of corresponding
genetic (or evolutionary) operations, like e.g. the normal mutation and the arith-
metic crossover. The SPROUT action is inspired by the child branch sprouting
operation, which is fundamental in the HGS [8]. In the HMS it produces a new
deme together with its Local Agent and an initial population of Computational
Agents. The probability of selecting SPROUT increases with the decreasing value
of the objective. Obviously SPROUT makes no sense at the leaf level, where it
can be optionally replaced with LOCOPT. The LOCOPT is a local optimiza-
tion method execution started from the agent’s decoded chromosome. In the
current realization LOCOPT is allowed only at the leaves and, as in the case of
SPROUT, the probability of its selection is high for Computational Agents with
the low objective value.

Objective Agent (OA). In the real HMS use case (i.e. in solving inverse problems)
the objective value is computed externally by a specialized direct solver. The
responsibility of an Objective Agent (typically one in the whole system) is to
provide a proper solver gateway, i.e. to execute the solver process (or several

144 M. Smo�lka and R. Schaefer

parallel processes) properly and to transfer the input data to the solver and
the solver output back to the HMS. Additional Objective Agent activities may
include: caching solver results, solver instance pooling (in the case of the parallel
execution) and scheduling objective computations according to a sophisticated
optimizing policy (e.g. a diffusion-based one [18]).

2.2 Population Structure

As it was stated before the HMS genetic population is decomposed into depen-
dent demes forming a dynamically-changing tree of the fixed maximal depth m.
Genetic individuals, i.e. Computing Agents, located at the tree levels close to
the root perform the chaotic and inaccurate search, whereas going towards the
leaves the search becomes more and more focused and the accuracy is increased
(see Fig. 1). The variability of the search accuracy results from the diversity
of the genotype encoding precision used at different tree levels. The latter of
course depends on the encoding type. In the case of the binary encoding (as in
the Simple Genetic Algorithm) it can be achieved by the binary genotype length
variation, whereas in the case of the real number encoding (as in the Simple
Evolutionary Algorithm) it can be realized by the appropriate phenotype scal-
ing. The latter case is used in the prototype implementation of the HMS so we
present here some details. The description follows the ones presented in papers
[9,15].

In the real number encoding both phenotypes and genotypes are vectors from
R

N . We assume that the solution domain is a box D = [a1, b1] × · · · × [aN , bN]
and we take a sequence of scaling factors ηi ∈ R such that η1 > η2 > . . . ηm−1 >
ηm = 1. Then the genetic universum at the tree level j is

Uj =
[
0,

b1 − a1

ηj

]
× · · · ×

[
0,

bN − aN

ηj

]
(2)

and the encoding mapping at the level j is defined as

D � x �−→
{

xk − ak

ηj

}N

k=1

∈ Uj . (3)

Moreover we define the scaling mapping scalei,j : Ui � x �→ ηi

ηj
x ∈ Uj . In

such a genetic universa the search at lower levels is more chaotic (because the
mutation acts stronger) and less precise (the loss of precision is caused by limita-
tions in the real number representation). One can use various genetic operators
in such an encoding, but among the most important one can find the normal
mutation yi = xi +N (0, σmut

j) for i = 1, . . . , N , where N (0, σmut
j) is a normally-

distributed random variable with the standard deviation σmut
j set separately

for each level j, and the arithmetic crossover yi = x1
i + U([0, 1])(x2

i − x1
i) for

i = 1, . . . , N , where U([0, 1]) is a random variable distributed uniformly over the
interval [0, 1]. Both operators are used in our sample implementation. Further-
more we exploit the classical fitness-proportional (roulette-wheel) selection in

A Memetic Framework for Solving Difficult Inverse Problems 145

passive populations (on Evolutionary Agents) additionally preserving the best
individual of each generation. A newly sprouted deme’s population is sampled
according to the N -dimensional Gaussian distribution centered at the properly
encoded fittest individual of the parent process with the diagonal covariance
matrix with values (σsprout

j)2 on the diagonal. The sprout cannot be performed
in population P at level j if there exists a population P ′ at level j + 1 such that
|y − scalei,i+1(y)| < cj , where y is the best individual in P , y is the average
phenotype of P ′ and cj is a branch comparison constant.

Finally, it should be mentioned that the further utilization of the knowledge
gathered during the multi-level enhanced genetic evolution is possible by means
of the clustering technique, in which better approximation of attraction basins
of the local minima can be developed allowing yet more precise application of
local optimization methods.

3 Sample Implementation

As our algorithmic framework is sophisticated, agent-based one, it also poses
several challenges for the implementation task. Two main goals were especially
considered during the design phase: flexibility and efficiency.

Flexibility. It was quite obvious from the beginning that HMS, being a frame-
work, should be extensively configurable, which means that it has to embrace
changes in such aspects as various particular sub-algorithms (e.g. the computa-
tion of CA action probabilities), local and global stopping conditions, local opti-
mization methods, objective approximations etc. All such issues are addressed
primarily by the extensive use of appropriate design patterns (such as Strategy
or Proxy). Some aspects of configurability are obtained through the inclusion of
scripting capabilities into the solid Java skeleton, namely some sub-algorithms
can be defined in separate JavaScript scripts. There is also a higher level of
flexibility reached by HMS. Through the foundation on the Java Agent Devel-
opment Framework JADE [19] (in version 4.2) it obtained a potential ability of
distributed deployment. The use of JADE is justified by its de facto standard
position in the multi-agent middleware area and the relative easiness to write
code controlling concurrent agents communicating through asynchronous mes-
sage passing. JADE’s FIPA standard compliance encouraged us to base HMS
agent communication protocols on the FIPA solutions as well. Both the location
selection performed by the Master Agent with the cooperation of Local Agents
and the Computational Agent selection conducted by a Local Agent are a mod-
ifications of the FIPA Contract-Net protocol. Another example is the multiple
use of the FIPA Request protocol (e.g. requesting the objective value from the
Objective Agent by a Computational Agent).

Efficiency. A message-intensive multi-agent system may seem not very suitable
for numerical computations. However, one should consider that in our real use
case the cost of solving a direct problem dominates the other costs, including

146 M. Smo�lka and R. Schaefer

agent thread allocation and asynchronous message passing, by far. Hence our
main effort is to reduce the number of the direct solver calls and decrease the cost
of the particular direct solution as far as possible (and this is obtained through
the presented analysis) instead of looking for a more time-effective implementa-
tion environment, which would lack other above-mentioned desired features.

4 Benchmark Tests

Some preliminary benchmark tests were performed. Their aim was basically to
prove the HMS abilities to find the global minimum with the assumed accuracy
in comparison with an already-tested effective tool: GB-HGS [15]. Namely we
took the best accuracy obtained by GB-HGS in the optimization of two popular
benchmark functions and treated this accuracy as the goal for HMS. The chosen
type of tests (i.e. the tests with an assumed accuracy) influenced the setting of
the HMS stopping conditions. Namely the global stopping condition was satisfied
if a leaf approached the global minimum with the given accuracy, whereas a
leaf stopping condition was satisfied if the leaf approached the global minimum
or if a fixed number of its consecutive metaepochs were ineffective, i.e there
was no significant change in the leaf’s population average fitness. As the active
populations do not use the basic notion of metaepoch, for stopping condition
definition we use performing the number of steps equal to the current population
size instead.

As benchmarks we chose the 20-dimensional Rastrigin function over the
box [−512, 512]20 and the 10-dimensional Ackley path function over the box
[−30, 30]10. Both test were repeated 10 times. The tree had 2 levels. At the root
level an Evolutionary Agent (i.e. a passive population) was run, whereas at the
leaf level we executed Local Agents together with populations of Computational
Agents (i.e. active individuals capable of performing the local optimization). The
normal mutation and the arithmetic crossover were used as the genetic opera-
tions. To make the comparison more clear in both benchmarks most of HMS
execution parameters was set exactly (or almost exactly) as in GB-HGS.

In 10D Ackley function minimization we assumed the accuracy of 0.01 (in
this case the obtained accuracy was much better). The execution parameters for
10D Ackley function are summarized in Tab. 1. Note that the metaepoch length
parameter is not directly applicable to Local Agents (see above). Similarly, the
population size in this case is not constant, in our simulations it varied between
10 and 30. The objective call statistics are shown in Tab. 2. The cost of a local
method application is included in the leaf level cost. Note that the average fitness
call number in the case of GB-HGS shows only the order of the actual quantity
but nothing more is available in [15]. In [15], however, one can also find results of
minimizing 10D Ackley function by means of the Simple Evolutionary Algorithm
(SEA). It turns out that SEA after 107 fitness calls approaches the minimum
with the accuracy about 5, which is obviously far from the HMS’s achievement.

In Rastrigin 20D we assumed the accuracy of 1000 (note that this time the
number of local minima is really huge). The execution parameters are summa-
rized in Tab. 3 (the meaning of the parameters is the same as in the Ackley

A Memetic Framework for Solving Difficult Inverse Problems 147

Table 1. HMS execution parameters (Ackley 10D)

Root level Leaf level

Population/initial population 50 10
Metaepoch length 50 -
Encoding scale ηj 4.0 1.0
Mutation rate 0.1 0.03
Crossover rate 0.5 0.5
Mutation standard deviation σmut

j 4.0 0.8

Sprout standard deviation σsprout
j 10.0 2.0

Sprout minimal distances cj 12.0 2.4

Table 2. Average number of objective evaluations (Ackley 10D)

Root level Leaf level Total

GB-HGS 10000000
HMS 147093 4340 151433

Table 3. HMS execution parameters (Rastrigin 20D)

Root level Leaf level

Population/initial population 50 10
Metaepoch length 50 -
Encoding scale ηj 5.0 1.0
Mutation rate 0.1 0.03
Crossover rate 0.5 0.5
Mutation standard deviation σmut

j 68.27 13.65

Sprout standard deviation σsprout
j 170.675 34.125

Sprout minimal distances cj 204.81 40.95

Table 4. Average number of objective evaluations (Rastrigin 20D)

Root level Leaf level Total

GB-HGS 10000000
HMS 194899 3570.1 198469.1

case). The fitness call statistics are gathered in Tab. 4. Note that the number of
fitness calls is much higher at the root level, which is very advantageous from
the point of view of inverse problem solving, because the cost of direct solution
is much less then in case of leaves, because of much lower required accuracy.

Finally let us note that more thorough HMS testing should tackle real inverse
problems (instead of simple benchmark functions). Such tests, involving oil
exploration problems, are planned in the near future.

148 M. Smo�lka and R. Schaefer

5 Conclusions

In the paper we have presented a memetic global optimization framework HMS.
It can be used in general optimization but its main design goal is to solve inverse
problems. The main benefit of the presented framework is a significant reduction
of the computational cost together with the ability of the exploration of multiple
extreme obtained on the several separate, but perfectly focusing ways, namely
(see Sec. 2):

– self-adaptation through construction of a sophisticated deme topology;
– simultaneous error scaling;
– knowledge mining and online search profiling;
– parallel processing.

To develop these features HMS summarizes and improves ideas taken from HGS,
hp-HGS and CGS (see Sec. 1).

The preliminary tests show the advantage of HMS over the refined hierar-
chic genetic strategy GB-HGS dedicated to multimodal problems (number of
fitness calls decreases by two orders) as well as over the single deme evolution-
ary algorithm (here number of fitness call decreases even more). An additional
cost decrement can be obtained by the common error scaling and the deme
clustering, which were not included in the presented series of tests.

References

1. Tarantola, A.: Inverse Problem Theory. Mathematics and its Applications. Society
for Industrial and Applied Mathematics (2005)

2. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathe-
matics and its Applications, vol. 375. Springer, Heidelberg (1996)

3. Pardalos, P., Romeijn, H.: Handbook of Global Optimization (Nonconvex Opti-
mization and its Applications), vol. 2. Kluwer (1995)

4. Chakraborty, U.K. (ed.): Advances in Differential Evolution, vol. 143. Studies in
Computational Intelligence. Springer (2008)

5. Cantú Paz, E.: Efficient and accurate parallel genetic algorithms, vol. 2. Kluwer
(2000)

6. Törn, A.A.: A search clustering approach to global optimization. In: Dixon,
L.C.W., Szegö, G.P. (eds.) Towards Global Optimisation 2, pp. 49–62. North-
Holland, Amsterdam (1978)

7. Schaefer, R., Adamska, K., Telega, H.: Genetic clustering in continuous landscape
exploration. Engineering Applications of Artificial Intelligence 17, 407–416 (2004)

8. Schaefer, R., Ko�lodziej, J.: Genetic search reinforced by the population hierarchy.
In: Foundations of Genetic Algorithms 7, pp. 383–399, Morgan Kaufman (2003)

9. Wierzba, B., Semczuk, A., Ko�lodziej, J., Schaefer, R.: Hierarchical Genetic Strategy
with real number encoding. In: Proceedings of the 6th Conference on Evolutionary
Algorithms and Global Optimization, pp. 231–237 (2003)

10. Barabasz, B., Migórski, S., Schaefer, R., Paszyński, M.: Multi-deme, twin adaptive
strategy hp-HGS. Inverse Problems in Science and Engineering 19(1), 3–16 (2011)

A Memetic Framework for Solving Difficult Inverse Problems 149

11. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.:
Computing with hp Finite Elements II. Frontiers: Three-Dimensional Elliptic and
Maxwell Problems with Applications. Chapman & Hall/CRC (2007)

12. Neri, F., Cotta, C., Moscato, P. (eds.): Handbook of Memetic Algorithms. Studies
in Computational Intelligence, vol. 379. Springer, Heidelberg (2012)

13. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolu-
tion process in multi-agent world (MAW) to the prediction system. In: Tokoro,
M. (ed.) Proceedings of the 2nd International Conference on Multiagent Systems
(ICMAS 1996). AAAI Press (1996)

14. Byrski, A., Schaefer, R., Smo�lka, M., Cotta, C.: Asymptotic guarantee of success for
multi-agent memetic systems. Bulletin of the Polish Academy of Sciences: Technical
Sciences 61(1), 257–278 (2013)

15. Jojczyk, P., Schaefer, R.: Global impact balancing in the hierarchic genetic search.
Computing and Informatics 28(2), 181–193 (2009)

16. Wróbel, K., Torba, P., Paszyński, M., Byrski, A.: Evolutionary multi-agent com-
puting in inverse problems. Computer Science 14(3), 367–383 (2013)

17. Burczyński, T., Orantek, P.: The hybrid genetic-gradient algorithm. In: Proceed-
ings of 3rd KAEGiOG Conference, Potok Z�loty, Poland (1999)

18. Grochowski, M., Smo�lka, M., Schaefer, R.: Architectural principles and scheduling
strategies for computing agent systems. Fundamenta Informaticae 71(1), 15–26
(2006)

19. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

