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Abstract We consider the shape optimiza-
tion problem

in J(G
Gmin (G, uq)

with ug satisfying the hyperbolic equation

ul + Aug = f
uc(0) = u®,  ug(0) =u!
ug=0 on(0,7) x (2\G).

As the class of admissible shapes we take
A(Q), i.e., the family of all open subsets of
a fized open and bounded Q@ C RN. It can
be shown that such a problem in general does
not admit a solution, so we need to apply the
procedure of relaxation. This method consi-
sts of two parts. First we extend, in a sense,
the class of admissible shapes and introduce
the notion of relaxed hyperbolic problem. This
extended admissible set is a suitable family of
Borel measures on ). Then we find the rela-
zation of J on this greater space. The theory
of relaxed functionals ensures the existence of
solutions for such problems. Finally, we pro-
vide some necessary conditions for optimality
for relazed problems.

1. Introduction
We consider the problem of finding a mi-
nimum of a functional

J:Y —R

defined on a topological space Y. In our case
the space Y is not compact, so even if .J is
lower semicontinuous, the existence of a mi-
nimum is not guaranteed. This forces us to
apply the procedure of relaxation. Namely
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we take a larger space X which is compact
and the inclusion

YCcX

is continuous and dense. Then we compute
the relaxed functional for f, i.e. the gre-
atest l.s.c. functional

J: X —R

such that
Jly < J.

It is well known that
J(x) = inf {liminf JYn): Yn €Y, yn X x}
n—oo

or, in other words, that the following two con-
ditions are satisfied:
1. for every sequence (y,) of elements of YV
convergent to x in X

J(z) < liminf J(y,);
n—oo
2. there exists a sequence (y;,) of elements
of Y such that y, — x in X and
J(z) = lim J(yn).
n—oo
J is lower semicontinuous, so if X is compact
the direct method of calculus of variations en-
sures the existence of a minimum.
The relaxed functional is useful for study-
ing the asymptotic behaviour of minimizing
sequences of J as we know that

min J = inf J;
X Y

moreover, every cluster point of a minimizing
sequence for J is a minimum point of J and,



conversely, every minimum point of J is the
limit of a minimizing sequence for J.

In our case Y is the class of all open
subsets of a fixed open and bounded set

Qc RV,

This class is also denoted by A(€2). The next
step is to introduce a topology in A(£2).

Let A: HYQ) — H1(Q) be a symme-
tric elliptic operator in the divergence form,
ie.

N
Av = — Z Dj(a;;j(z)Djv)

1,7=1

with suitable continuity and coercivity condi-
tions. For

G e A(Q)

we define a function
wag € H& (Q)

as the solution of the Dirichlet problem
Awg =1
wg =0

The topology in A(Q) is given as follows:

in G,
in 2\ G.

Gp — G = wg, — wg

weakly in H} ().

As X we take the class My(£2) of nonne-
gative Borel measures y on ) satisfying, for
any Borel subset B of 2, the following two
conditions:

e u(B) =0 if cap(B, ) = 0;

e u(B) =inf{u(G): BCG,

G quasi open}.
Here cap(B,{2) denotes the harmonic capa-
city of B with respect to (2.

A(Q) can be considered as a subspace

of

Mo(Q) by identifying an open set G with
the measure

0 if cap(B\ G,Q) =0,

+o00 otherwise.

ooq\a(B) = {

For € Mo(2) we introduce a Hilbert
space
V() = Hg() N L, ()

with the scalar product

(u,v)y, (@) = / (Du, Dv)dx —l—/ uvdp.
Q Q
Furthermore we define an element
wy, € V,(Q)

as the solution of the relaxed Dirichlet
problem

Awy, + pw, =1
wl/« € VN(Q)7

which is to be understood in the following
way: we look for w,, € V,(€) such that

N
Q. Q Q

t,j=1

for every v € V,(2).
When

K= 0oma

for an open G, we have
V() = Hy(G)

(up to the extending a function from H{(G)
by zero outside G in order to obtain an ele-
ment of Hi($)) and

wy, = wqg-

So if we endow M(€2) with the topology gi-
ven by the equivalence

[ — = Wy, — w, weakly in Hg (),

then A(£2) becomes a topological subspace
of Mo(€2). This topology is called the
topology of y4-convergence.



Proposition 1. My(Q) is a compact metri-
zable space and A(QY) is its dense subset.

For a measure u € My(§2) we define the
following sets

Ap) =
S(p) =

{x e wy(x) >0}
{xe: wy(x) =0} =Q\ A(p)

called, respectively, the regular and the
singular set for p (both are defined up to a
null-capacity set).

It can be shown that any function v € V,(Q2)
vanishes quasi-everywhere outside A(u).

2. Relaxed hyperbolic problems
Fix 0 < T < 400 and denote

Q=(0,T) x Q.

For 1 € Mo(2) we introduce the Gelfand-
Lions triplet of Hilbert spaces

Vu(Q) C Hu(R2) C V,:(Q)
where
H,(Q) — the closure of V,,(Q) in L*(Q).
It can be shown that

H,(Q)={veL*Q): v=0ae in S(u)}.

The relaxed hyperbolic problem is the follo-
wing evolution problem

u' + Au+ pu = f in L2(0,T; V()
u(0) = u

u'(0) = ut

u € C(0,T); V() 1 CH([0, T); H, ()

For any f € LY(0,7T;L*(2)), u® € V,(Q)
and u' € H,(Q) this problem admits a
unique solution. In case u = oog\g this
solution is simply the extension by zero of the
solution of the classical hyperbolic equation
on an open set G with the homogeneous
Dirichlet boundary conditions.

Consider now the sequence of relaxed

hyperbolic problems

un(0) = w
ul,(0) =u

un € C([0,T1; Vi, (2)) N CH([0, T]; H,, (2)).

S= 30

for some fixed f, € LY0,T;L*)),
ud € V,,(Q) and u), € Hy,, (Q).

R. Toader (cf.
theorem.

Theorem 2. Let C > 0. Assume that

'YA

Hn — [,

fn — f weakly in L'(0,T; L*()),
ud — u¥ weakly in H}(Q),
lunllzz, @) <C, VneN,

[9]) proved the following

ul — ul weakly in L*(Q),

u' € H,(Q).
Then u® € V,,(2) and
Uy, — u weakly * in L°°(0,T; H} (Q))
u,, — u’ weakly * in L*°(0,T; LQ(Q))
||Un||L°0(0,T;VM(Q)) < const.
Moreover, for every § € H=1(2)
(0, un(-)) — (8, u(-)) uniformly.
Denote

N
E(v):/ Z aijDiijvdx—F/deu.
Q. Q

i,j=1

Theorem 3. If we assume additionally that

fn — f strongly in L'(0,T; L*(2)),
E(up) — E(u’),
1

Up,

Then
ul, — u' strongly in C([0,T]; L*(Q))

— u! strongly in L*(Q).

and

E(un(-)) — E(u(-)) uniformly.



3. Relaxation of optimal shape design
problems

For p € Mp(f2) consider two linear and
continuous operators

Py Hy(Q) — V()

Pu: LZ(Q) — Hu(Q)
given by the formulae
Py = v,
P = wyuv

where v, is the solution of the relaxed Diri-
chlet problem

Avy + pvy, = Av
vu € V()

(w, is the solution of similar problem with 1
as the right hand side).
For G € A(Q)) we denote

Pa = POOQ\G
and
Pa = POOQ\G'

We consider the following shape optimiza-
tion problems:
Find a minimum of the functional

J(G) = /j(t,x,uc,ulg)dtdaﬁ
Q

4 /Qk(x,ug(T),u’G(T))dx

or

T
J(G) = /0 /Gj(t,:v,uG,u’G)dxdt
+ /Gk(a:,uG(T),u’G(T))dx

over the class A(£2) where ug is the solution
of the hyperbolic equation

ug + Aug = f
ui(0) = Pguo
ug(0) = Paus

ug=0 on (0,7) x (2\G)

for some fixed f € L*(Q), uop € H}(Q) and
u] € LOO(Q).

In general, in neither of the two above
mentioned cases we can guarantee the exi-
stence of a minimum, so the next target
is to compute the explicit form of relaxed
functionals.

The first case (without the explicit de-
pendence on geometric domain G in J) is
much simpler. Namely under some natural
conditions (L2-lower semicontinuity) impo-
sed on J we can show that the form of the
relaxed functional is

J(p) = /ng(t,:v,u“,u;)dtdw
+ /gzk(x,uM(T),uL(T))dx

where 1 € M((2) and wu,, is the solution of a
relaxed hyperbolic problem

uy, + Auy + pu = f
u,(0) = Pyug
uy,(0) = Puuy
uu € O([0, T]; Vu()) N CH([0, TT; H,u(€2))
(RHP)
The second case requires a different treat-
ment and stronger assumptions imposed on J
(we require L2-continuity). The form of the
relaxed functional is, of course, not so simple
as before. Namely, it is

T
T = [ [ it dede
0 JA(p)

N /A(u)k(x’uu(T)?uit(T))dz

+ inf{/ g(x)dx :
B\A(p)

B e B(Q), Au) B}

T
g(z‘):/ i(t,2,0,0) dt + k(z,0,0).
0

and u,, is the solution of (RHP). We use the
convention inf () = 4o0.



Remark. In the original problem we can im-
pose an additional constraint on G

m<|G| <M

for some 0 < m < M < |Q| with M > 0. In
this case the infimum in the relaxed fuctional
should be taken over those Borel sets B which
satisfy m < |B| < M.

4. Optimality conditions

For relaxed shape optimization problems
we can obtain some necessary conditions for
optimality.

Let the cost functional have the form
J(p) = / gt z, u,(t, z)) dtdx
Q
and u,, satisfy the problem

uy + Auy + puy, = f

u,(0) =0
u,(0) =0

u=0on (0,7) x 0.

Assume that the functional
u— / Jj(t, z,u(t,x)) dtdx
Q

is C! with respect to the strong topology in
I2(Q).

Theorem 4. Let the above assumptions hold.
If 1 is a minimal point for J, then

T
/ uupu dt <0
0

almost everywhere in ) and

/ uypy dtdp > 0
Q

where p, is the solution of the adjoint equ-
ation

pZ + Apu + upp = ]u(a '7“#('7 ))

pu(T) =0
P (T) =0
p=0 (0, T) x 0N.

A similar result holds in case of final state
observation, i.e. when the cost functional has
the form

J() = /Q k(2o u(T, 2), 4/ (T, ) dx,

but this time the adjoint equation is

p,u(T) = ku’('a UH(T, ')a uL(Tv ))
p;,L(T) = _ku('7uM(T7 ')’u;L(Tv ))
p=0on (0,7) x ON.
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