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Abstract We consider the shape optimiza-
tion problem

min
G∈A(Ω)

J(G, uG)

with uG satisfying the hyperbolic equation




u′′G + AuG = f
uG(0) = u0, u′G(0) = u1

uG = 0 on (0, T )× (Ω \G).

As the class of admissible shapes we take
A(Ω), i.e., the family of all open subsets of
a fixed open and bounded Ω ⊂ RN . It can
be shown that such a problem in general does
not admit a solution, so we need to apply the
procedure of relaxation. This method consi-
sts of two parts. First we extend, in a sense,
the class of admissible shapes and introduce
the notion of relaxed hyperbolic problem. This
extended admissible set is a suitable family of
Borel measures on Ω. Then we find the rela-
xation of J on this greater space. The theory
of relaxed functionals ensures the existence of
solutions for such problems. Finally, we pro-
vide some necessary conditions for optimality
for relaxed problems.

1. Introduction
We consider the problem of finding a mi-

nimum of a functional

J : Y −→ R

defined on a topological space Y . In our case
the space Y is not compact, so even if J is
lower semicontinuous, the existence of a mi-
nimum is not guaranteed. This forces us to
apply the procedure of relaxation. Namely

we take a larger space X which is compact
and the inclusion

Y ⊂ X

is continuous and dense. Then we compute
the relaxed functional for f , i.e. the gre-
atest l.s.c. functional

J : X −→ R

such that
J |Y ≤ J.

It is well known that

J(x) = inf
{

lim inf
n→∞ J(yn) : yn ∈ Y, yn

X→ x
}

or, in other words, that the following two con-
ditions are satisfied:

1. for every sequence (yn) of elements of Y
convergent to x in X

J(x) ≤ lim inf
n→∞ J(yn);

2. there exists a sequence (yn) of elements
of Y such that yn → x in X and

J(x) = lim
n→∞J(yn).

J is lower semicontinuous, so if X is compact
the direct method of calculus of variations en-
sures the existence of a minimum.

The relaxed functional is useful for study-
ing the asymptotic behaviour of minimizing
sequences of J as we know that

min
X

J = inf
Y

J ;

moreover, every cluster point of a minimizing
sequence for J is a minimum point of J and,



conversely, every minimum point of J is the
limit of a minimizing sequence for J .

In our case Y is the class of all open
subsets of a fixed open and bounded set

Ω ⊂ RN .

This class is also denoted by A(Ω). The next
step is to introduce a topology in A(Ω).

Let A : H1
0 (Ω) −→ H−1(Ω) be a symme-

tric elliptic operator in the divergence form,
i.e.

Av = −
N∑

i,j=1

Di(aij(x)Djv)

with suitable continuity and coercivity condi-
tions. For

G ∈ A(Ω)

we define a function

wG ∈ H1
0 (Ω)

as the solution of the Dirichlet problem
{

AwG = 1 in G,

wG = 0 in Ω \G.

The topology in A(Ω) is given as follows:

Gn → G ⇐⇒ wGn → wG

weakly in H1
0 (Ω).

As X we take the class M0(Ω) of nonne-
gative Borel measures µ on Ω satisfying, for
any Borel subset B of Ω, the following two
conditions:
• µ(B) = 0 if cap(B, Ω) = 0;
• µ(B) = inf

{
µ(G) : B ⊂ G,

G quasi open
}
.

Here cap(B, Ω) denotes the harmonic capa-
city of B with respect to Ω.

A(Ω) can be considered as a subspace
of

M0(Ω) by identifying an open set G with
the measure

∞Ω\G(B) =

{
0 if cap(B \G,Ω) = 0,
+∞ otherwise.

For µ ∈ M0(Ω) we introduce a Hilbert
space

Vµ(Ω) = H1
0 (Ω) ∩ L2

µ(Ω)

with the scalar product

(u, v)Vµ(Ω) =
∫

Ω
(Du,Dv)dx +

∫

Ω
uvdµ.

Furthermore we define an element

wµ ∈ Vµ(Ω)

as the solution of the relaxed Dirichlet
problem

{
Awµ + µwµ = 1
wµ ∈ Vµ(Ω),

which is to be understood in the following
way: we look for wµ ∈ Vµ(Ω) such that

∫

Ω

N∑

i,j=1

aijDiwµDjv dx+
∫

Ω
wµv dµ =

∫

Ω
v dx

for every v ∈ Vµ(Ω).
When

µ = ∞Ω\G

for an open G, we have

Vµ(Ω) = H1
0 (G)

(up to the extending a function from H1
0 (G)

by zero outside G in order to obtain an ele-
ment of H1

0 (Ω)) and

wµ = wG.

So if we endow M0(Ω) with the topology gi-
ven by the equivalence

µn → µ ⇐⇒ wµn → wµ weakly in H1
0 (Ω),

then A(Ω) becomes a topological subspace
of M0(Ω). This topology is called the
topology of γA-convergence.



Proposition 1. M0(Ω) is a compact metri-
zable space and A(Ω) is its dense subset.

For a measure µ ∈ M0(Ω) we define the
following sets

A(µ) = {x ∈ Ω : wµ(x) > 0}
S(µ) = {x ∈ Ω : wµ(x) = 0} = Ω \A(µ)

called, respectively, the regular and the
singular set for µ (both are defined up to a
null-capacity set).

It can be shown that any function v ∈ Vµ(Ω)
vanishes quasi-everywhere outside A(µ).

2. Relaxed hyperbolic problems
Fix 0 < T < +∞ and denote

Q = (0, T )× Ω.

For µ ∈ M0(Ω) we introduce the Gelfand-
Lions triplet of Hilbert spaces

Vµ(Ω) ⊂ Hµ(Ω) ⊂ V ′
µ(Ω)

where

Hµ(Ω) — the closure of Vµ(Ω) in L2(Ω).

It can be shown that

Hµ(Ω) =
{
v ∈ L2(Ω) : v = 0 a.e. in S(µ)

}
.

The relaxed hyperbolic problem is the follo-
wing evolution problem




u′′ + Au + µu = f in L2(0, T ;V ′
µ(Ω))

u(0) = u0

u′(0) = u1

u ∈ C([0, T ];Vµ(Ω)) ∩ C1([0, T ];Hµ(Ω))

For any f ∈ L1(0, T ;L2(Ω)), u0 ∈ Vµ(Ω)
and u1 ∈ Hµ(Ω) this problem admits a
unique solution. In case µ = ∞Ω\G this
solution is simply the extension by zero of the
solution of the classical hyperbolic equation
on an open set G with the homogeneous
Dirichlet boundary conditions.

Consider now the sequence of relaxed
hyperbolic problems




u′′n + Aun + µnun = fn

un(0) = u0
n

u′n(0) = u1
n

un ∈ C([0, T ]; Vµn(Ω)) ∩ C1([0, T ]; Hµn(Ω)).

for some fixed fn ∈ L1(0, T ;L2(Ω)),
u0

n ∈ Vµn(Ω) and u1
n ∈ Hµn(Ω).

R. Toader (cf. [9]) proved the following
theorem.

Theorem 2. Let C > 0. Assume that

µn
γA

−→ µ,

fn −→ f weakly in L1(0, T ; L2(Ω)),
u0

n −→ u0 weakly in H1
0 (Ω),

‖u0
n‖L2

µn(Ω) ≤ C, ∀n ∈ N,

u1
n −→ u1 weakly in L2(Ω),

u1 ∈ Hµ(Ω).

Then u0 ∈ Vµ(Ω) and

un −→ u weakly * in L∞(0, T ; H1
0 (Ω))

u′n −→ u′ weakly * in L∞(0, T ;L2(Ω))
‖un‖L∞(0,T ;Vµn(Ω)) ≤ const.

Moreover, for every θ ∈ H−1(Ω)

〈θ, un(·)〉 −→ 〈θ, u(·)〉 uniformly.

Denote

E(v) =
∫

Ω

N∑

i,j=1

aijDivDjv dx +
∫

Ω
v2 dµ.

Theorem 3. If we assume additionally that

fn −→ f strongly in L1(0, T ; L2(Ω)),
E(u0

n) −→ E(u0),
u1

n −→ u1 strongly in L2(Ω).

Then

u′n −→ u′ strongly in C([0, T ];L2(Ω))

and

E(un(·)) −→ E(u(·)) uniformly.



3. Relaxation of optimal shape design
problems

For µ ∈ M0(Ω) consider two linear and
continuous operators

Pµ : H1
0 (Ω) −→ Vµ(Ω)

Pµ : L∞(Ω) −→ Hµ(Ω)

given by the formulae

Pµv = vµ

Pµv = wµv

where vµ is the solution of the relaxed Diri-
chlet problem

{
Avµ + µvµ = Av

vµ ∈ Vµ(Ω)

(wµ is the solution of similar problem with 1
as the right hand side).
For G ∈ A(Ω) we denote

PG = P∞Ω\G

and
PG = P∞Ω\G

.

We consider the following shape optimiza-
tion problems:
Find a minimum of the functional

J(G) =
∫

Q
j(t, x, uG, u′G) dtdx

+
∫

Ω
k(x, uG(T ), u′G(T )) dx

or

J(G) =
∫ T

0

∫

G
j(t, x, uG, u′G) dxdt

+
∫

G
k(x, uG(T ), u′G(T )) dx

over the class A(Ω) where uG is the solution
of the hyperbolic equation





u′′G + AuG = f

uG(0) = PGu0

u′G(0) = PGu1

uG = 0 on (0, T )× (Ω \G)

for some fixed f ∈ L2(Q), u0 ∈ H1
0 (Ω) and

u1 ∈ L∞(Ω).
In general, in neither of the two above

mentioned cases we can guarantee the exi-
stence of a minimum, so the next target
is to compute the explicit form of relaxed
functionals.

The first case (without the explicit de-
pendence on geometric domain G in J) is
much simpler. Namely under some natural
conditions (L2-lower semicontinuity) impo-
sed on J we can show that the form of the
relaxed functional is

J(µ) =
∫

Q
j(t, x, uµ, u′µ) dtdx

+
∫

Ω
k(x, uµ(T ), u′µ(T )) dx

where µ ∈M0(Ω) and uµ is the solution of a
relaxed hyperbolic problem




u′′µ + Auµ + µu = f

uµ(0) = Pµu0

u′µ(0) = Pµu1

uµ ∈ C([0, T ]; Vµ(Ω)) ∩ C1([0, T ]; Hµ(Ω))
(RHP )

The second case requires a different treat-
ment and stronger assumptions imposed on J
(we require L2-continuity). The form of the
relaxed functional is, of course, not so simple
as before. Namely, it is

J(µ) =
∫ T

0

∫

A(µ)
j(t, x, uµ, u′µ) dxdt

+
∫

A(µ)
k(x, uµ(T ), u′µ(T )) dx

+ inf
{∫

B\A(µ)
g(x) dx :

B ∈ B(Ω), A(µ) ⊂ B
}

where

g(x) =
∫ T

0
j(t, x, 0, 0) dt + k(x, 0, 0).

and uµ is the solution of (RHP ). We use the
convention inf ∅ = +∞.



Remark. In the original problem we can im-
pose an additional constraint on G

m ≤ |G| ≤ M

for some 0 ≤ m ≤ M ≤ |Ω| with M > 0. In
this case the infimum in the relaxed fuctional
should be taken over those Borel sets B which
satisfy m ≤ |B| ≤ M .

4. Optimality conditions
For relaxed shape optimization problems

we can obtain some necessary conditions for
optimality.

Let the cost functional have the form

J(µ) =
∫

Q
j(t, x, uµ(t, x)) dtdx

and uµ satisfy the problem




u′′µ + Auµ + µuµ = f

uµ(0) = 0
u′µ(0) = 0
u = 0 on (0, T )× ∂Ω.

Assume that the functional

u 7−→
∫

Q
j(t, x, u(t, x)) dtdx

is C1 with respect to the strong topology in
L2(Q).

Theorem 4. Let the above assumptions hold.
If µ is a minimal point for J , then

∫ T

0
uµpµ dt ≤ 0

almost everywhere in Ω and
∫

Q
uµpµ dtdµ ≥ 0

where pµ is the solution of the adjoint equ-
ation





p′′µ + Apµ + µpµ = ju(·, ·, uµ(·, ·))
pµ(T ) = 0
p′µ(T ) = 0
p = 0 on (0, T )× ∂Ω.

A similar result holds in case of final state
observation, i.e. when the cost functional has
the form

J(µ) =
∫

Ω
k(x, u(T, x), u′(T, x)) dx,

but this time the adjoint equation is



p′′µ + Apµ + µpµ = 0
pµ(T ) = ku′(·, uµ(T, ·), u′µ(T, ·))
p′µ(T ) = −ku(·, uµ(T, ·), u′µ(T, ·))
p = 0 on (0, T )× ∂Ω.
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