
AI-METH 2005 - Artificial Intelligence Methods November 16–18, 2005, Gliwice, Poland

A Computing Agent Framework

Piotr Uhruski, Robert Schaefer, Marek Grochowski
StanisÃlaw Staszic University of Science and Technology, Department of Computer Science

Al. Mickiewicza 30, 30-059 Kraów, Poland
e-mail: uhruski@ii.uj.edu.pl, schaefer@agh.edu.pl, magja@ii.uj.du.pl

Maciej SmoÃlka
Jagiellonian University, Institute of Computer Science

ul. Nawojki 11, 30-072 Kraków, Poland
e-mail: smolka@ii.uj.edu.pl

Abstract

A software framework that speeds up and simplifies the design and the management of large scale distributed computations
is presented. The computational tasks are wrapped into mobile agents supported by a dedicated set of servers. A diffusion-
based scheduling makes it possible to decompose and allocate the migration enabled computing agents basing only on
local information about the computer network resources. The paper presents some architectural assumptions as well as a
dynamical model of the computing system obtained in this way. Two sample tests showing the efficiency of such solution are
also attached.

Keywords: agents, parallel computations, diffusion scheduling

1. Introduction

One of uncommon architectures of distributed computations
is a collection of autonomous, mobile agents. The efficiency
of such a solution comes from the easy way of the application
design (each task is wrapped into an agent which is going
to satisfy its resource requirements) as well as from fast, de-
centralized scheduling policies (agent partitioning and migra-
tion). An agent scheduling strategy suggested in this paper
is based on the molecular diffusion phenomenon (see. [4]). A
brief report on architectural principles, scheduling algorithms
and a behavioral model of such Multi Agent Systems (MAS)
will be followed by the sample tests showing the efficiency of
such a solution. The paper summarizes our previous research
published in e.g. [6, 3, 7, 2].

2. The software architecture

The framework is composed of two basic components: the set
of computing agents and the software servers called virtual
computational nodes (VCN) associated to the physical com-
puting units (e.g. workstations in the computer network).

VCN’s are organized by the logical connection topology
that defines immediate neighborhood of each server. The
set of servers called Octopus delivers basic functionalities
for computing agents as creation, running, serialization, de-
serialization and migration. Octopus platform provides also
description of relative performance of all VCN, information
about connection speed between VCN through logical paths,
and current load of each VCN.

The most typical computing agent is called Smart Solid. It
is a pair Ai = (Ti, Si) where: Ti stands for the computational
task, which includes all required for computation data and Si

is an agent shell responsible for the agent’s specific logic. The
index i stands for an unambiguous agent identifier.

Each task Ti has to denominate the current requirement
for computational power (Ei, Mi) where: Ei is the task re-
maining time measured in units common for all application

tasks and Mi is the RAM requirement in bytes. Task Ti can
also provide information about its future communication with
other tasks described by the set of pairs Ci = {(Tζ , dataζ)}
where Tζ is another application task, and dataζ is the amount
of data, expressed in bytes, which will be exchanged between
tasks Ti and Tζ .

In order to perform agent partitioning and migration, task
have to allow pausing and continuation of it’s computation.
Task can be also partitioned into two subtasks, but task par-
titioning possibility depends strongly on the computational
problem to be solved.

Figure 1. Smart Solid agent architecture.

Smart Solid API (see Figure 1) is a set of interfaces and
routines that can be referenced by a computational task in
order to access supporting platform and Smart Solid services.
Current implementation of Smart Solid API allows to run
multi agent application under control of Octopus platform,
but chosen architecture enables utilization of other platforms
without changes to computational tasks implementation.
Smart Solid shell, by it’s implementation, realizes also all
agent specific logic such as: searching for resources required
by contained task, or balancing the load of computational
nodes located in immediate neighborhood of the VCN on
which the agent is allocated. These functions are realized
by diffusion scheduling using migration and partitioning of
application agents.

P. Uhruski, R. Schaefer, M. Grochowski, M. SmoÃlka

3. Diffusion scheduling

Diffusion scheduling idea is the most important advantage of
our strategy for supporting large scale computations in multi
agent systems. Let us introduce the crucial parameters of this
strategy:

Binding energy Ei,j of the agent Ai allocated on VCN Pj

is characterized by the following conditions:
– Ei,j is a descending function of Ei and Ci,
– Ei,j is a nonascending function of the load on VCN Pj ,

Binding energy gradient is a vector:
∇i,j = ((j, l), Ei,l − Ei,j) :
Ei,l − Ei,j = maxζ∈Qj{Ei,ζ − Ei,j}, where
Qj is a set of indices of VCN nodes from immediate neigh-
borhood of Pj that are less loaded then Pj ,

Local load concentration of Pj :

Lj =
E

j
total

perfj(M
j
total

)
, where

Ej
total =

P
i∈ωj

Ei, M j
total =

P
i∈ωj

Mi,

ωj – is a set of indices of all agents allocated on VCN Pj ,
perfj – relative performance of VCN Pj strongly depen-
dent on available RAM.

The diffusion scheduling algorithm may be presented in the
following way:

if Qj = ∅ then
continue Ti

else
compute ∇t

i,j

if Ei,l −Ei,j > ε then
pause Ti;
migrate along the gradient ∇t

i,j ;
continue Ti

else
partition Ti → {Ti1 , Ti2};
create {Aij = (Tij , Sij)}, j = 1, 2;
disappear

end if
end if

The above algorithm is processed by the Smart Solid agent
shell just after agent creation, after each migration between
VCN nodes, and also when underlying platform notifies sig-
nificant change of local resources utilization. If any of the dif-
fusion algorithm operation can not be performed completely
then this algorithm is interrupted and agent is continuing con-
tained task computation. Such condition prevents an agent
from going into unexpected state caused by some denial cir-
cumstances, like task inability to perform partitioning.

4. The MAS dynamics

The diffusion-based scheduling strategy has proven to be sim-
ple and efficient in practice (cf. section 6.) but we also need a
theoretical background allowing us to determine if our strat-
egy is optimal or quasi-optimal in any sense. In this section
we state a formal mathematic model for multi-agent compu-
tations. This model does not take into account agents’ com-
munication needs. For details we refer to [6]. Consider for
a while that we are given a space of all possible agents and
denote it by A. Denote by N the set of virtual nodes. We
shall consider discrete-time evolution of a given MAS. Let us

introduce the notion of the vector weight of an agent which is
the mapping w : N×A −→ R2

+ whose components are Ei and
Mi as introduced earlier. Assume that we know how the total
weight of child agents after partition depends on their parent’s
weight before partition and that this dependency is compo-
nentwise and linear, i.e. we know the constants c1, c2 ≥ 0
such that in the case of partition A → {A1, A2} we have

wi
t+1(A1) + wi

t+1(A2) = ciw
i
t(A)

for i = 1, 2. Such an assumption seems realistic, in simple
cases we may have ci = 1.
Next denote by W : N × N −→ R+ the total weight of all
agents allocated on a virtual node at any time, i.e.

Wt(P) =
X

Scht(A)=P

wt(A)

(obviously we put 0 if no agent is maintained by P).
In the sequel we shall assume that the number of virtual nodes
]N = N is fixed. Thus we can consider Wt as a nonnegative
vector in R2N whose j-th component corresponds to Ej

total

and (N + j)-th component corresponds to M j
total. In fact we

shall treat Wt as a stochastic (vector-valued) process. Now we
shall state the equations of evolution of Wt (i.e. state equa-
tions of our system). Let Ft be a time-dependent stochastic
nonnegative vector field on R2N

+ describing the dynamics of
our system in ’established’ state, i.e. when there are neither
migrations nor partitions. Let u1

ij,t(Wt), u
2
ij,t(Wt) ∈ [0, 1]

denote the proportions of the weight components of agents
migrating from node i to node j to the corresponding com-
ponents of the total weight of all agents at node i and let
u1

ii,t(Wt), u
2
ii,t(Wt) denote the proportions of the weight com-

ponents of splitting agents to the corresponding components
of the total weight of all agents at node i. Then the state
equations have the form:8>><>>:

W i
t+1 = F i

t (W̃t) + c1 u1
ii,t(Wt) W i

t

+
P

j 6=i u1
ji,t(Wt) W j

t

W N+i
t+1 = F N+i

t (W̃t) + c2 u2
ii,t(Wt) W N+i

t

+
P

j 6=i u2
ji,t(Wt) W N+j

t

(1)

for i = 1, . . . , N , where8<:W̃ i
t =

�
1−PN

k=1 u1
ik,t(Wt)

�
W i

t

W̃ N+i
t =

�
1−PN

k=1 u2
ik,t(Wt)

�
W N+i

t

with initial conditions W0 = Ŵ . It follows that our Wt is a
controlled stochastic process with a control strategy

π = (u1
t , u

2
t)t∈N. (2)

5. The optimal scheduling problem

Given the state equations we can formulate the optimal
scheduling problem. Let the set of admissible control strate-
gies U be defined as in [6]. Let V (π; Ŵ) denote a cost of ap-
plying the strategy π when the initial state is Ŵ . We search
for a control strategy π∗ ∈ U such that

V (π∗; Ŵ) = min
�
V (π; Ŵ) : π ∈ U,

Wt is a solution of (1)
	
. (3)

A Computing Agent Framework

Next consider three examples of cost functionals which seem
appropriate for multi-agent computations. The first one is
the expected total time of computations

VT (π; Ŵ) = E
�
inf{t ≥ 0 : Wt = 0} − 1

�
. (4)

The second takes into account the mean load balancing over
time. It has the following form

VL(π; Ŵ) = E

" ∞X
t=0

NX
i=1

(Li
t − Lt)

2

#
(5)

where Li
t =

W i
t

perfi(W
N+i
t)

is the load concentration and Lt =

1
N

PN
i=1 Li

t is its mean over all nodes.
The last example allows us to take into account the cost of
migrations. Namely take %m

ij ≥ 0 and put

kM (s, α1, α2) = ϕ(s) +

2X
m=1

X
i6=j

%m
ij (αm

ij)2

and

VM (π; Ŵ) = E

" ∞X
t=0

kM (Wt, u
1
t (Wt), u

2
t (Wt))

#
. (6)

In all above cases under some natural conditions we can show
the existence and uniqueness of optimal strategies. Moreover
we can also characterize these solutions by means of Bellman-
type optimality conditions. The complete considerations can
be found in [6].

6. Experiments

This section presents performed experiments and discusses
how they fit presented analytical model. The results cover
two major problem domains examined in course of our ex-
periments: Mesh Generator (MG) and Hierarchic Genetic
Strategy (HGS). The presented tests are broadly described
in [1, 5, 3] while [8] contains the Octopus implementation de-
tails.
In this paper we present these applications from the sys-
tem dynamics point of view, namely how the diffusion based
scheduling supports different application execution schemas.

6.1. Mesh Generator

The MG is a CAD/CAE task implementation. Each agent
is equipped with a single part of the partitioned solid, for
which the mesh has to be generated. The application has the
following execution path:

1. Create all the agents, equip each with the part of the solid
to generate the mesh for. The agent’s size varies from very
small to large depending on the solid partitioning and each
piece shape - the more complex the shape is, the bigger
mesh is generated.

2. Agents are put on the Octopus network and distribute
freely using the encoded diffusion rule. After a single
agent finds satisfying executing environment it starts com-
putations.

3. Single solid piece meshes are send to the master applica-
tion and joined together.

In short, we have formulated the following two major con-
clusions concerning the results. First, the diffusion based
scheduling allows all agents to spread quickly among com-
puters on the network. The time needed to allocate tasks
is small in comparison to the whole computation time. And
second, the available resources were utilized at 96%, the ap-
plication used up to 32 agents with the neighboring machines
load difference being not greater than 1. That means the
load has been perfectly balanced according to the given local
diffusion law.

6.2. HGS

The HGS [5] is a stochastic, hierarchical genetic algorithm
optimizing a given function on a defined domain. The ap-
plication produces agents dynamically in the course of the
runtime. A single HGS agent is a container, which starts ex-
ecuting its internal populations as soon as it founds suitable
computation environment. The total amount of agents at the
execution time may be different even for a particular input
data. The algorithm execution path is the following:

1. Create single agent with the initial populations, agent mi-
grates to find suitable execution environment.

2. Agent starts computing and the amount of internal pop-
ulations changes due to the genetic evolution.

3. If during the computation agent’s internal populations
amount grows beyond a fixed number, the agent is split
and new one is created out of part of the populations set.

The test showed that the diffusion based scheduling deals
properly and effectively with an adaptive, dynamic reschedul-
ing of the computing units. The HGS application produced
up to 300 actively computing agents with the communication
overhead being around 5% of total execution time.
Therefore the final conclusion may be stated that the diffu-
sion based local scheduling performs well in case of irregu-
lar stochastic problem with dynamic amount of agents. It is
therefore very adaptive and local scheduling evaluation does
not significantly decrease the solution’s effectiveness.
In addition we have also tested the effectiveness of the dy-
namic, diffusion based scheduling versus centralized, greedy
scheduling policy (a Round Robin solution) utilizing low level
network message passing mechanisms (Java RMI). Please
see [5] for detailed results, which showed that the dynamic
scheduling shows moderate speedup loses (up to 30% of to-
tal computation time), which disappear when agent’s amount
grows - in case of 300 agents, diffusion based scheduling per-
forms 10% better than Round Robin.

6.3. Communication Optimized HGS

The HGS is an application with a dynamic execution schema
- agents are created dynamically, the amount of agents and
their scheduling schema can not be determined. Although the
HGS agents do not use an extensive communication, but we
have also checked the diffusion based scheduling properties
under bad network resources availability conditions (see [3]
for details). For such case, the agents binding energy formula
has been extended to also take into account communication
needs - agents need to communicate with each other and bad
network conditions may influence the overall execution time.
The communication factor adds to the diffusion the ability to
include two behaviors into the local scheduling policy. First,

P. Uhruski, R. Schaefer, M. Grochowski, M. SmoÃlka

the agents prefer the migration direction that brings them
closer to the agents with whom they need to communicate.
Second, the Octopus provides to every agent the description
of its immediate neighborhood network links throughput. Us-
ing this information agents elect nodes that are closer in terms
of network connection bandwidth. Both presented behaviors
may intuitively limit the used VCNs amount - agents will pre-
fer nodes that are closer instead of the ones that are free. The
tests showed this behavior but also showed how it influenced
overall effectiveness.
Two following figures present the dynamic of the HGS com-
putation with and without the communication element of the
binding energy. On both figures the thick line shows the
amount of active VCNs while the thin one is the total amount
of computing agents.

time [sec.]
0 200 400 600 800 1000

0

20

40

60

80

100

120

140

160

180

Figure 3. The dynamics of the system utilizing binding

energy formula with no communication element (1).

time [sec.]
0 200 400 600 800 1000

0

20

40

60

80

100

120

140

Figure 4. The dynamics of the system utilizing binding

energy formula where communication factor is taken into

consideration (2).

Please note the amount of used nodes grows slower in the
communication enabled experiment as expected. The follow-
ing table shows the overall computation times in both cases.

Binding
energy

formula

(1) 203
203(2)

126

Migration

Agents
amount

195 26131,2
29587,2

Communication

Parallel
computation
time [sec.]

941
808

Total times [sec.]

Table 1. The execution times of HGS computations with

diffusive scheduling.

As expected, even with smaller amount of VCNs being ef-
fectively used, the communication enabled diffusion performs
better as diffusion optimizes effectively not only the resources
usage, but also the application’s communication require-
ments.

7. Conclusions and further research

The MAS technology speeds up and simplifies the design of
large scale distributed computations. Moreover, the diffusion-
type scheduling can significantly decrease the execution time.
Its effectiveness is achieved by the low complexity of local
scheduling rules and the lack of intensive communication re-
quired by centralized schedulers. The formal description de-
livers the discrete equation of evolution of such systems, de-
finitions of admissible controls and the cost functional. This
approach allows us to characterize the optimal strategies by
means of Bellman-type principles.

References

[1] M. Grochowski, R. Schaefer, and P. Uhruski. Diffusion
based scheduling in the agent-oriented computing sys-
tems. Lecture Notes in Computer Science, 3019:97–104,
2004.

[2] M. Grochowski, R. Schaefer, and P. Uhruski. Octopus —
computation agents environment. Inteligencia Artificial,
2006. accepted.

[3] M. Grochowski, E. Tuska, and P. Uhruski. Influence of
inter-agent communication cost to diffusion scheduling in
irregular parallel computations. Inteligencia Artificial,
2006. accepted.

[4] E. Luque, A. Ripoll, A. Cortés, and T. Margalef. A
distributed diffusion method for dynamic load balancing
on parallel computers. In Proceedings of EUROMICRO
Workshop on Parallel and Distributed Processing, pages
43–50, San Remo, Italy, Jan. 1995. IEEE Computer Soci-
ety Press.

[5] J. Momot, K. Kosacki, M. Grochowski, P. Uhruski, and
R. Schaefer. Multi-agent system for irregular parallel ge-
netic computations. Lecture Notes in Computer Science,
3038:623–630, 2004.

[6] M. SmoÃlka. Optimal scheduling problem for computing
agent systems. Inteligencia Artificial, 2006. accepted.

[7] M. SmoÃlka, M. Grochowski, P. Uhruski, and R. Schaefer.
The dynamics of computing agent systems. Lecture Notes
in Computer Science, 3516:727–734, 2005.

[8] P. Uhruski, M. Grochowski, and R. Schaefer. Multi-agent
computing system in a heterogeneous network. In Pro-
ceedings of the International Conference on Parallel Com-
puting in Electrical Engineering (PARELEC 2002), pages
233–238, Warsaw, Poland, 22–25 Sept. 2002. IEEE Com-
puter Society Press.

