
Math. Nachr. 242 (2002), 79 – 90

An Existence Theorem for Wave–Type Hyperbolic

Hemivariational Inequalities

By Leszek Gasiński
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Abstract. In this paper we prove the existence of solutions for a hyperbolic hemivariational
inequality of the form

u′′ + Bu + ∂j(u) � f

where B is a linear elliptic operator and ∂j is the Clarke subdifferential of a locally Lipschitz function
j. Our result is based on the parabolic regularization method.

1. Introduction

The theory of variational inequalities provides us with an appropriate mathematical
model to describe many physical problems (compare G. Duvaut and J. L. Lions [8]).

It was started in 60s by C. Baiocchi, H. Brezis, G. Duvaut, G. Fichera,

D. Kinderlehrer, J. L. Lions, G. Stampacchia and many others. In 80s,
P. D. Panagiotopoulos introduced so called hemivariational inequalities (see [21,
22, 23]), using the notion of Clarke subdifferential (see F. H. Clarke [7]), which
can be defined for locally Lipschitz functions. An existence theorem for elliptic hemi-
variational inequalities can be found in the book of Z. Naniewicz and P. D. Pana-

giotopoulos [19] (see Theorem 4.25, p. 120), the proof of which exploits so called
surjectivity theorem for pseudomonotone operators (see [19, Theorem 2.6, p. 47]). As
for the parabolic case, an existence result was obtained e. g. by M. Miettinen (see [16,
Theorem 1.1, p. 727]) by means of an approximation method. Hyperbolic hemivaria-
tional inequalities were studied by P. D. Panagiotopoulos (see [25] and [26]) and,
most recently, by L. Gasiński (see [11] and [12]). The latter obtained an existence
theorem for the following problem:
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Find u ∈ C([0, T ]; V ) with u′ ∈ W and χ ∈ H′, such that

(1.1)



u′′(t) +A(t, u′(t)) + Bu(t) + χ(t) = f(t) for a. a. t ∈ (0, T ) ,

u(0) = ψ0 , u′(0) = ψ1 in Ω ,
χ(t, x) ∈ ∂j(g(u(t, x), u′(t, x))) a. e. in (0, T ) × Ω ,

where A : (0, T ) × V → V ′ is a nonlinear, pseudomonotone, locally bounded and
coercive operator, B ∈ L(V, V ′) is a monotone operator, j : IR → IR is a locally
Lipschitz function, g : IR × IR → IR, ψ0, ψ1 : Ω → IR and f : (0, T ) → V ′ are given
functions.

Because of the coercivity of A it is not possible to put A = 0 in the above problem.
The aim of this paper is to prove an existence result for hyperbolic hemivariational
inequality (1.1) without a term depending on the time derivative of the unknown func-
tion. A similar problem (with B = −∆) is mentioned (without details) by J. Rauch

in [30]. Similar problems (i. e. with A = 0) are also considered by P. D. Pana-

giotopoulos in [25] and [26] (in his case the multivalued law ∂j acts only on u′).
However, his assumptions on the right–hand side f are much stronger than ours (he re-
quires f to belong to L2((0, T )×Ω) together with its first and second time derivative).
To prove the existence of solutions he uses an approximation by finite–dimensional
problems containing some kind of regularizations of ∂j, putting additional assump-
tions on these regularizations.

In our proof we shall use the parabolic regularization method from the book of
J. L. Lions and E. Magenes (see [15]), namely we shall approximate the solution of
our problem by a sequence of solutions of (1.1), with operator A replaced by operators
εB vanishing as ε→ 0.

Many applications of hemivariational inequalities can be found in the above men-
tioned monography of Z. Naniewicz and P. D. Panagiotopoulos [19] as well as
in the book [22] of P. D. Panagiotopoulos. For particular application of hyper-
bolic hemivariational inequalities in mechanics (e. g. plane linear elastic body with
nonmonotone skin effects) we refer to P.D. Panagiotopoulos [25] and [26]. Note,
however, that the multivalued reaction–velocity laws presented in [26, Figs. 1, b–f ]
do not satisfy assumption (2.20) of the existence theorem [26, Proposition 2.1]. Our
hypotheses H(j) cover all those cases if considered as reaction–displacement relations.

2. Preliminaries

Let X be a Banach space with a norm ‖ · ‖X and X′ its topological dual. By
〈 · , · 〉X′×X we shall denote the duality brackets for the pair (X,X′). If X is in addition
a Hilbert space, then by ( · , · )X we shall denote the scalar product in X.

In the formulation of our hemivariational inequality the crucial role will be played by
the notion of Clarke subdifferential of a locally Lipschitz function. A function j :X→ IR
is said to be locally Lipschitz if for every x ∈ X there exists a neighbourhood U of x and
a constant kx > 0 depending on U such that |j(z)−j(y)| ≤ kx‖z−y‖X for all z, y ∈ U .
From convex analysis it is well–known (see e. g. I. Ekeland and R. Temam [9]) that
a proper, convex and lower semicontinuous function g : X → IR ∪ {+∞} is locally
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Lipschitz in the interior of its (proper) domain dom g
df
= {x ∈ X : g(x) < +∞}. In

analogy with the directional derivative of a convex function, we define the generalized
directional derivative of a locally Lipschitz function j at x ∈ X in the direction h ∈ X,
by

j0(x; h)
df
= lim sup

x′ → 0
t ↘ 0

j(x+ x′ + th) − j(x+ x′)
t

.

It is easy to check that the functionX 	 h 
−→ j0(x; h) ∈ IR is sublinear and continuous
and that

∣∣j0(x; h)
∣∣ ≤ kx‖h‖X . Hence by the Hahn–Banach theorem j0(x; · ) is the

support function of nonempty, convex and w∗–compact set

∂j(x)
df
=

{
x∗ ∈ X′ : 〈x∗, h〉X′×X ≤ j0(x; h) for all h ∈ X

}
,

known as the Clarke subdifferential of j at x. Note that for every x∗ ∈ ∂j(x) we
have ‖x∗‖X′ ≤ kx. We have also that if j, g : X → IR are locally Lipschitz functions,
then ∂(j + g)(x) ⊂ ∂j(x) + ∂g(x) and ∂(tj)(x) = t∂j(x) for all t ∈ IR. Moreover, if
j : X → IR is also convex then the subdifferential of j in the sense of convex analysis
coincides with the generalized subdifferential introduced above. Finally, if j is strictly
differentiable at x (in particular if j is continuously Gateaux differentiable at x), then
∂j(x) = {j′(x)}.

Let us introduce the following spaces, needed in the sequel:

H = L2(Ω) ,
V = H1(Ω) =

{
v : v ∈ L2(Ω), Dαv ∈ L2(Ω) for 0 ≤ |α| ≤ 1

}
,

V ′ = V ′ =
[
H1(Ω)

]′
.

It is well–known that V ⊂ H ⊂ V ′ form an evolution triple.
In our evolution case, we will also make use of the following spaces:

H = L2(0, T ;H) = L2((0, T ) × Ω) ,
V = L2(0, T ; V ) ,
W = {v : v ∈ V, v′ ∈ V′} .

3. Hyperbolic hemivariational inequality

Let T > 0 be any positive real number and let N ≥ 1. By Ω ⊂ IRN we will denote
any open and bounded set. We consider the following hyperbolic hemivariational
inequality:

Find u ∈ C([0, T ]; V ) ∩ C1([0, T ];H) with u′′ ∈ V′ and χ ∈ H, such that

(HV I)



u′′(t) + Bu(t) + χ(t) = f(t) in V ′ for a. a. t ∈ (0, T ) ,
u(0) = ψ0 , u′(0) = ψ1 in Ω ,
χ(t, x) ∈ ∂j(u(t, x)) for a. a. (t, x) ∈ (0, T )× Ω ,

where B ∈ L(V, V ′), j : IR → IR, ψ0, ψ1 : Ω → IR and f : (0, T ) → V ′ are given.
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For our existence result, we will need the following assumptions:

H(j) j : IR → IR is a locally Lipschitz function, such that

(i) j(ξ) =
∫ ξ

0
β(s) ds, where β ∈ L∞

loc(IR);
(ii) for every ξ ∈ IR there exist limits limζ→ξ± β(ζ);
(iii) for every ξ ∈ IR, we have |β(ξ)| ≤ c0(1 + |ξ|r), with some c0 > 0 and

0 ≤ r < 1.

H(B) B : V → V ′ is a linear operator, such that

(i) B is continuous, i. e. there exists αB > 0, such that for all v, u ∈ V , we
have 〈Bu, v〉V ′×V ≤ αB ‖u‖V ‖v‖V ;

(ii) B is coercive, i. e. there exists βB > 0, such that for all v ∈ V , we have
〈Bv, v〉V ′×V ≥ βB ‖v‖2

V ;
(iii) B is symmetric, i.e. for all v, w ∈ V , we have 〈Bv, w〉V ′×V = 〈Bw, v〉V ′×V .

H(f,ψ) f ∈ H, ψ0 ∈ V , ψ1 ∈ H .

Now we can state our main result.

Theorem 3.1. If hypotheses H(j ), H(B) and H(f, ψ) hold, then (HV I) admits a
solution.

First, for any ε > 0 we consider the following regularized hyperbolic hemivariational
inequality:

Find uε ∈ C([0, T ]; V ) with u′ε ∈ W and χε ∈ H, such that

(HV Iε)



u′′ε (t) + εBu′ε(t) + Buε(t) + χε(t) = f(t) ,
uε(0) = ψ0 , u′ε(0) = ψ1 ,

χε(t, x) ∈ ∂j(uε(t, x)) .

Lemma 3.2. If hypotheses H(j), H(B) and H(f, ψ) hold, then for any ε > 0 there
exists at least one solution uε of (HV Iε).

Proof . This is a consequence of the result of L. Gasiński (see [11] or [12]). Note
that our hypotheses suffice to obtain such a solution (see [12, Theorem 3.1]). It is
worth mentioning that the method exploited in [11, 12] does not in general work with
r = 1 in hypothesis H(j)(iii) (see [12, Remark 3.3]). �

In the next lemma we show an estimate on selections of ∂j(u).

Lemma 3.3. If hypotheses H(j) hold and u ∈ C([0, T ]; V ) with u′ ∈ W and η ∈ H
are such that η(t, x) ∈ ∂j(u(t, x)) for almost all (t, x) ∈ (0, T ) × Ω then

(3.1) ‖η‖H ≤ c̄ (1 + ‖u‖H) ,

with some constant c̄ = c̄ (Ω, T, c0) > 0, not depending on u, η and r.



Gasiński and Smo�lka, Wave–Type Hemivariational Inequality 83

Proof . Using hypothesis H(j)(iii), we obtain

‖η‖2
H =

∫ T

0

‖η(t)‖2
H dt

=
∫ T

0

∫
Ω

|η(t, x)|2 dx dt

≤
∫ T

0

∫
Ω

4c20 (1 + |u(t, x)|)2 dx dt

≤ 8 c20

∫ T

0

(|Ω|+ ‖u(t)‖2
H

)
dt

≤ 8 c20
(
T |Ω|+ ‖u‖2

H
)
,

so estimate (3.1) holds, with c̄
df
= c02

√
2max

{√
T |Ω| , 1}. �

The following lemma gives some estimates on the solutions of (HV Iε).

Lemma 3.4. If hypotheses H(j), H(B), H(f, ψ) hold and uε is a solution of (HV Iε),
then for any ε ∈ (0, 1), we have

(3.2)
max

t∈[0,T ]
(‖uε(t)‖V + ‖u′ε(t)‖H) +

√
ε ‖u′ε‖V + ‖u′′ε‖V′

≤ ¯̄c (1 + ‖ψ0‖V + ‖ψ1‖H + ‖f‖H) ,

where ¯̄c = ¯̄c(Ω, T, c0, αB, βB) > 0 is a constant not depending on ε, ψ0, ψ1, B, f and j.

Proof . As uε, u
′
ε ∈ V, so in particular uε is an absolutely continuous function and

uε(t) =
∫ t

0

u′ε(s) ds+ ψ0 for all t ∈ (0, T )

(see Barbu [3, Theorem 2.2, p. 19]). Thus for any s ∈ (0, T ), we have

(3.3) ‖uε(s)‖2
H ≤ 2T

∫ s

0

‖u′ε(τ )‖2
H dτ + 2 ‖ψ0‖2

H .

From the equality in (HV Iε), taking the duality brackets on u′ε(s) and integrating
over interval (0, t), for any t ∈ (0, T ), we obtain∫ t

0

〈
u′′ε (s), u′ε(s)

〉
V ′×V

ds + ε

∫ t

0

〈
Bu′ε(s), u

′
ε(s)

〉
V ′×V

ds

+
∫ t

0

〈
Buε(s), u′ε(s)

〉
V ′×V

ds +
∫ t

0

〈
χε(s), u′ε(s)

〉
V ′×V

ds(3.4)

=
∫ t

0

〈
f(s), u′ε(s)

〉
V ′×V

ds .

We will estimate separately each term in (3.4). First, we have∫ t

0

〈
u′′ε (s), u′ε(s)

〉
V ′×V

ds =
1
2
‖u′ε(t)‖2

H − 1
2
‖u′ε(0)‖2

H =
1
2
‖u′ε(t)‖2

H − 1
2
‖ψ1‖2

H
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(compare Zeidler [31, Proposition 23.23(iv), pp. 422 – 423]).
Next, hypothesis H(B) (ii) implies

ε

∫ t

0

〈
Bu′ε(s), u

′
ε(s)

〉
V ′×V

ds ≥ εβB

∫ t

0

‖u′ε(s)‖2
V ds .

Using the differentiation formula (see Zeidler [31, Proof of Theorem 32.E(III), p. 881])
and hypotheses H(B)(i) and (ii), we obtain∫ t

0

〈
Buε(s), u′ε(s)

〉
V ′×V

ds =
1
2

∫ t

0

d

ds

〈
Buε(s), uε(s)

〉
V ′×V

ds

=
1
2

〈
Buε(t), uε(t)

〉
V ′×V

− 1
2

〈
Buε(0), uε(0)

〉
V ′×V

≥ βB

2
‖uε(t)‖2

V − αB

2
‖ψ0‖2

V .

Next, using hypothesis H(j)(iii), estimate (3.3) and the continuity of the embedding
V ⊂ H , for all t ∈ (0, T ) we have∫ t

0

〈
χε(s), u′ε(s)

〉
V ′×V

ds =
∫ t

0

(χ(s), u′ε(s))H ds

≥ −
∫ t

0

‖χ(s)‖H ‖u′ε(s)‖H ds

≥ −1
2

∫ t

0

‖u′ε(s)‖2
H ds− 1

2

∫ t

0

∫
Ω

c20 (1 + |uε(s, x)|)2 dx ds

≥ −1
2

∫ t

0

‖u′ε(s)‖2
H ds− c20

∫ t

0

(|Ω| + ‖uε(s)‖2
H

)
ds

≥ − 1
2

∫ t

0

‖u′ε(s)‖2
H ds − c20 T |Ω|

− c20

∫ t

0

(
2T

∫ s

0

‖u′ε(τ )‖2
H dτ + 2 ‖ψ0‖2

H

)
ds

≥ −1
2

∫ t

0

‖u′ε(s)‖2
H ds− 2Tc20

∫ t

0

∫ s

0

‖u′ε(τ )‖2
H dτ ds

− Tc20
(|Ω|+ 2 ‖ψ0‖2

V

)
.

Finally, for all t ∈ (0, T ) we have∫ t

0

〈
f(s), u′ε(s)

〉
V ′×V

ds ≤
∫ t

0

(f(s), u′ε(s))H ds

≤
∫ t

0

‖f(s)‖H ‖u′ε(s)‖H ds

≤ 1
2

∫ t

0

‖u′ε(s)‖2
H ds+

1
2

∫ t

0

‖f(s)‖2
H ds

≤ 1
2

∫ t

0

‖u′ε(s)‖2
H ds+

1
2
‖f‖2

H .
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Putting all the above estimates into (3.4), for all t ∈ (0, T ) we obtain

1
2
‖u′ε(t)‖2

H +
βB

2
‖uε(t)‖2

V + εβB

∫ t

0

‖u′ε(s)‖2
V ds

≤ c1 + c2 ‖ψ0‖2
V +

1
2
‖ψ1‖2

H +
1
2
‖f‖2

H +
∫ t

0

‖u′ε(s)‖2
H ds

+ 2Tc20

∫ t

0

∫ s

0

‖u′ε(τ )‖2
H dτ ds ,

with c1
df
= Tc20 |Ω|, c2 df

= 2Tc20 + αB

2 . Thus we have

1
2
‖u′ε(t)‖2

H +
βB

2
‖uε(t)‖2

V + εβB

∫ t

0

‖u′ε(s)‖2
V

≤ c3
(
1 + ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f‖2

H
)

+ c4

∫ t

0

‖u′ε(s)‖2
H ds(3.5)

+ c4

∫ t

0

∫ s

0

‖u′ε(τ )‖2
H dτ ds ,

where c3
df= max

{
1
2
, c1, c2

}
and c4

df= max{1, 2Tc20}. Now, using the generalization
of the Gronwall–Bellman inequality (see Pachpatte [20, Theorem 1, p. 758]), for all
t ∈ (0, T ), we obtain

(3.6) ‖u′ε(t)‖2
H ≤ c5

(
1 + ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f‖2

H
)
,

where c5
df= 2c3

(
1 + 2Tc4eT (2c4+1)

)
, so

(3.7) ‖u′ε(t)‖H ≤ c6 (1 + ‖ψ0‖V + ‖ψ1‖H + ‖f‖H) ,

where c6
df=

√
c5. Applying (3.6) to (3.5), we obtain

(3.8) ‖uε(t)‖2
V ≤ c7

(
1 + ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f‖2

H
)

and

(3.9) ε ‖u′ε‖2
V ≤ c7

(
1 + ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f‖2

H
)
,

where c7
df
= 2

βB

(
c3 + Tc4c5

(
T
2 + 1

))
, hence

(3.10) ‖uε(t)‖V ≤ c8 (1 + ‖ψ0‖V + ‖ψ1‖H + ‖f‖H)

and

(3.11)
√
ε ‖u′ε‖V ≤ c8 (1 + ‖ψ0‖V + ‖ψ1‖H + ‖f‖H) ,

where c8
df
=

√
c7.
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Using Lemma 3.3, continuity of the embedding V ⊂ H and estimate (3.8), for any
ε > 0, we have

‖χε‖2
H ≤ 2 c̄ 2

(
1 + ‖uε‖2

H
)

≤ 2c̄ 2
(
1 + ‖uε‖2

V
)

≤ 2c̄ 2 + 2c̄ 2

∫ T

0

‖uε(t)‖2
V dt

≤ c9
(
1 + ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f‖2

H
)
,

where c9
df
= 4c̄ 2Tc7.

Finally using the equation in (HV Iε), hypothesis H(B)(i), continuity of the embed-
ding H ⊂ V ′, inequalities (3.8) and (3.9) and the last inequality, for all ε ∈ (0, 1) we
can estimate ‖u′′ε‖V′ , as follows

‖u′′ε‖2
V′ =

∫ T

0

‖u′′ε(t)‖2
V ′ dt

≤ 4ε2
∫ T

0

‖B(u′ε(t))‖2
V ′ dt+ 4

∫ T

0

‖B(uε(t))‖2
V ′ dt

+ 4
∫ T

0

‖χε(t)‖2
V ′ dt+ 4

∫ T

0

‖f(t)‖2
V ′ dt

≤ 4ε2α2
B

∫ T

0

‖u′ε(t)‖2
V dt+ 4α2

B

∫ T

0

‖uε(t)‖2
V dt

+ 4
∫ T

0

‖χε(t)‖2
H dt+ 4

∫ T

0

‖f(t)‖2
H dt

≤ 4εα2
B ‖u′ε‖2

V + 4α2
B

∫ T

0

‖uε(t)‖2
V dt+ 4 ‖χε‖2

H + 4 ‖f‖2
H

≤ c10

(
1 + ‖ψ0‖2

V + ‖ψ1‖2
H + ‖f‖2

H
)
,

where c10
df
= 4

(
α2

Bc7(T + 1) + c9 + 1
)
, so

(3.12) ‖u′′ε‖V′ ≤ c11(1 + ‖ψ0‖V + ‖ψ1‖H + ‖f‖H) ,

with c11 =
√
c10.

Finally, from (3.7), (3.10), (3.11) and (3.12), we obtain (3.2), with ¯̄c df= c6+2c8+c11.
�

Now we are in position to prove our main result.

Proof of Theorem 3.1. From Lemma 3.4, it follows that for any ε ∈ (0, 1), we have

max
t∈[0,T ]

(‖uε(t)‖V + ‖u′ε(t)‖H) + ‖u′′ε‖V′ ≤ c12 ,

with some constant c12 > 0 not depending on ε ∈ (0, 1). Thus, we can choose a
sequence {εn}n≥1 ⊂ (0, 1), such that εn ↘ 0 and

uεn −→ u weakly∗ in L∞(0, T ; V ) ,(3.13)
u′εn

−→ u weakly∗ in L∞(0, T ;H) ,(3.14)
u′′εn

−→ u weakly in V′ .(3.15)
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But in fact u = u′ and u = u′′.
It is easy to see that (HV Iε) is equivalent to the following problem:
Find uε ∈ C([0, T ]; V ) with u′ε ∈ W and χε ∈ H, such that

(
HV I′ε

) 

u′′ε + εB̂u′ε + B̂uε + χε = f in V′ ,
uε(0) = ψ0 , u′ε(0) = ψ1 in Ω ,
χε(t, x) ∈ ∂j(uε(t, x)) for a. a. (t, x) ∈ (0, T ) × Ω ,

where B̂ : V → V′ is the Nemytski operator corresponding to the operator B. Our
aim now is to “pass to the limit” in

(
HV I′ε

)
.

First, as B̂ is a linear and bounded operator, from (3.13) we obtain that

(3.16) B̂uεn −→ B̂u weakly in V′ .

Next, from Lemma 3.4, we see that the sequence
{√

εn u
′
εn

}
n≥1

remains bounded in
V, hence

εnu
′
εn

−→ 0 in V .
But using hypothesis H(B)(i), we have that

∥∥εnB̂u
′
εn

∥∥
V′ ≤ αB

∥∥εnu
′
εn

∥∥
V , thus in fact

(3.17) εnB̂u
′
εn

−→ 0 in V′ .

As {uεn}n≥1 ⊂ W (see (3.13) and (3.14)) and the embedding W ⊂ H is compact we
obtain

uεn −→ u in H ,

and, in particular, possibly passing to a subsequence,

(3.18) uεn(t, x) −→ u(t, x) for a. a. (t, x) ∈ (0, T )× Ω .

Using convergence (3.13), Lemma 3.3 and extracting a new subsequence if necessary,
we obtain

(3.19) χεn −→ χ weakly in H ,

with some χ ∈ H, hence also

(3.20) χεn −→ χ weakly in L1((0, T ) × Ω) .

Now, because of (3.14), (3.16), (3.17) and (3.19), we can “pass to the limit” in the
equation in

(
HV I′ε

)
and obtain

(3.21) u′′ + B̂u+ χ = f in V′ .

Since for all n ≥ 1, we have that χεn(t, x) ∈ ∂j(uεn(t, x)) for almost all (t, x) ∈
(0, T ) × Ω, thus, using convergences (3.18) and (3.20) and applying Theorem 7.2.2,
p. 273 of Aubin and Frankowska [2] (recall that ∂j is a lower semicontinuous
multifunction with convex and closed values), we get

(3.22) χ(t, x) ∈ ∂j(u(t, x)) for a. a. (t, x) ∈ (0, T ) × Ω .



88 Math. Nachr. 242 (2002)

Finally, from (3.13) and (3.14), we have that uεn → u weakly in H1(0, T ;H), hence
also weakly in C([0, T ];H). Analogously from (3.14) and (3.14), we have that u′εn

→ u′

weakly in H1(0, T ; V ′), hence also weakly in C([0, T ]; V ′). In particular, we have that

(3.23)
uεn(0) −→ u(0) weakly in H ,

u′εn
(0) −→ u′(0) weakly in V ′ .

To end our proof it remains to show that

(3.24) u ∈ C([0, T ]; V ) ∩ C1([0, T ];H) .

For this purpose let us recall the definition of the following function space introduced
in the book of J. L. Lions and E. Magenes [15]

Cs([0, T ];X) df= {u ∈ L∞(0, T ;X) : 〈u∗, u( · )〉X′×X is continuous for all u∗ ∈ X′} .
Of course one has

C([0, T ];X) ⊂ Cs([0, T ];X) .

Moreover, if X and Y are two Banach spaces, X being reflexive, with the dense
embedding X ⊂ Y , from [15, Lemma 8.1, p. 297] we know that

(3.25) Cs([0, T ]; Y ) ∩ L∞(0, T ;X) = Cs([0, T ];X) .

In our case, due to (3.13) – (3.14) we have that

u ∈ C([0, T ];H)∩ L∞(0, T ; V ) ,
u′ ∈ C([0, T ]; V ′) ∩ L∞(0, T ;H) ,

hence, from (3.25)

u ∈ Cs([0, T ]; V ) ,(3.26)

u′ ∈ Cs([0, T ];H) .(3.27)

Next, using the same argument as in the proof of Lemma 3.4 (see (3.4) and the sequel),
for any t ∈ [0, T ] we can prove the following energy equality

‖u′(t)‖2
H + 〈Bu(t), u(t)〉V ′×V = ‖ψ1‖2

H + 〈Bψ0, ψ0〉V ′×V

+ 2
∫ t

0

〈
f(s) − χ(s), u′(s)

〉
V ′×V

ds .

This shows that the function

E : [0, T ] 	 t 
−→ ‖u′(t)‖2
H + 〈Bu(t), u(t)〉V ′×V ∈ IR

is continuous.
Take tn, t ∈ [0, T ] such that tn → t and put

δn = ‖u′(tn) − u′(t)‖2
H + 〈Bu(tn) −Bu(t), u(tn) − u(t)〉V ′×V

= E(tn) +E(t) − 2〈Bu(t), u(tn)〉V ′×V − 2 (u′(tn), u′(t))H .



Gasiński and Smo�lka, Wave–Type Hemivariational Inequality 89

Thanks to (3.26), (3.27) and the continuity of E we have that

δn −→ 2E(t) − 2〈Bu(t), u(t)〉V ′×V − 2 ‖u′(t)‖2
H = 0 ,

which, together with the inequality

δn ≥ ‖u′(tn) − u′(t)‖2
H + βB ‖u(tn) − u(t)‖2

V ,

gives us (3.24).
Now, from (3.21), (3.22), (3.23) and (3.24) we obtain that u is a solution of the

following problem:
Find u ∈ C([0, T ]; V ) ∩ C1([0, T ];H) with u′′ ∈ V′ and χ ∈ H, such that

(HV I′)



u′′ + B̂u+ χ = f in V′ ,

u(0) = ψ0 , u′(0) = ψ1 in Ω ,

χ(t, x) ∈ ∂j(u(t, x)) for a. a. (t, x) ∈ (0, T ) × Ω ,

and in particular u is a solution of (HV I). �
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[18] Migórski, S.: Existence, Variational and Optimal Control Problems for Nonlinear Second Order
Evolution Inclusions, Dynamic Sys. Appl. 4 (1995), 513 – 528

[19] Naniewicz, Z., and Panagiotopoulos, P. D.: Mathematical Theory of Hemivariational In-
equalities and Applications, Dekker, New York, 1995

[20] Pachpatte, B. G.: A Note on Gronwall–Bellman Inequality, J. Math. Anal. Appl. 44 (1973),
758 – 762

[21] Panagiotopoulos, P. D.: Nonconvex Problems of Semipermeable Media and Related Topics,
Z. Angew. Math. Mech. 65 (1985), 29 – 36

[22] Panagiotopoulos, P. D.: Inequality Problems in Mechanics and Applications. Convex and
Nonconvex Energy Functions, Birkhäuser, Basel, 1985
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