
Fundamenta Informaticae 71 (2006) 15–26 15

IOS Press

Architectural Principles and Scheduling Strategies for Computing
Agent Systems

Marek Grochowski, Robert Schaefer
�

Computer Science Department, AGH University of Science and Technology

Kraków, Poland

Maciej Smołka
�

Institute of Computer Science, Jagiellonian University

Kraków, Polnad
�
grochows,smolka,schaefer � @ii.uj.edu.pl

Abstract. The paper introduces the formal description of a computing multi-agent system (MAS),
its architecture and dynamics (sections 2–4). The optimal scheduling problem for the MAS as well
as a way of its verification are presented in terms of such a model (section 5). A brief report of test
results published previously in [13, 3, 4, 8] is contained in the section 6.

Keywords: Distributed computations, multi-agent systems, task scheduling

1. Motivation

The application of the MAS paradigms for designing and implementing large-scale distributed computing
system is rather unusual. Typical solutions in this area are based on the low level communication libraries
(PVM, MPI). Even recent ideas arising in the cross grid installations (Condor [12], Globus OGSA [2])
do not include the active software modules for a task implementation. We may expect a reasonable
improvement in the phase of design, implementation and running if a distributed application is a variable-
size collection of intelligent agents. First of all we can speed up the design of computational modules by

�
Address for correspondence: Computer Science Department, AGH University of Science and Technology, Al.Mickiewicza

30, 30-059 Kraków, Poland�
This author has been supported by the State Committee for Scientific Research of the Republic of Poland under research grants

2 P03A 003 25 and 7 T07A 027 26

16 M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS

wrapping the computational tasks in the agent shell, which is responsible for some management duties
(task scheduling, partitioning, etc.). Basing on the idea of task diffusion (see e.g. [7]) we propose a
scheduling policy which consists of an on-demand task partitioning and a task remapping obtained by
the dynamic agent creation and the agent migration within a computer network. A simple diffusion rule
is applied locally and simultaneously for groups of agents. It decreases significantly the computational
and communication costs arising in centralized scheduling policies. The paper introduces the formal
description of the MAS under consideration, the underlying agent architecture and the dynamics of
the whole system (sections 2–4). The optimal scheduling problem for a MAS as well as a way of its
verification is presented in terms of a such model (section 4). A brief report of test results published in
[13, 3, 4, 8] is contained in section 6.

2. The Architecture

2.1. Formal description

The MAS under consideration that allows the diffusion governed scheduling is a collection of: a com-
putational environment (MAS platform) and a computing application composed of mobile agents called
Smart Solid Agents (SSA). The computational environment is a quadruple

���������	��
�����������������
, where:

�������! "��#�#�#����%$'&
, where

��(
is a Virtual Computation Node (VCN). Each VCN can maintain more

than one agent (the number of hardware processors used is not relevant in our assumptions).
�)�

is the connection topology
�*�+�,��-� "��#�#�#���-*$.&/��-*(10��

is an immediate neighborhood of
�2(

(including
��(

as well).

�����3���4
�����5 "��#�#�#"��
������$'&/��
������(26/7!8:9;7!8

is a family of functions, which describes relative perfor-
mance of all VCN with respect to the total memory request <

(
=?>@=?ACB of all allocated agents. If <

(
=?>@=?ACB

on
�%(

is small,

�����D(

turns back the constant value, which depends only on the CPU architecture.
As <

(
=?>@=?ACB grows larger,

�����D(
decreases due to the intensive memory swap utilization.

�������E6/�GF3��9,7H8
is a function, which describes up-to-date connection speed between two VCNs.

The connection speed is expressed in number of bytes per second which can be transmitted as a
body of regular platform messages.

Each SSA is represented by the pair I (J�K�ML�(N�PO�(Q�
where

L�(
is the computational task executed by agent,

including all data required for computation, and
O%(

stands for the shell responsible for the agent’s logic.
The index R stands for an unambiguous agent identifier.
Each task

L�(
has to denominate the current requirement for computational power

��S	(N� < (Q� where:
ST(

is the task remaining time measured in units common for all application tasks, and < (
is the RAM

requirement in bytes. Task
LJ(

can also provide information about its future communication with other
tasks described by the set of pairs U (H�V�W�ML�XY��Z5[5\N[WX���&

where
L�X

is another application task, and
Z5[5\N[.X

is the amount of data, expressed in bytes, which will be exchanged between tasks
L](

and
L�X

.
Another important condition we impose on the task is that it must allow pausing and continuation of
its computations. The pausing is needed for the task hibernation in the case of the agent migration
or partitioning, and the continuation is needed to restore the paused job. In particular the task can be
designed in such a way that it can do its job between checkpoints and during the checkpoint operation it

M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS 17

saves its current state. Moreover each task
L%(

can be partitioned into two subtasks
L%(�9 ��L�(� �NL�(� & such

that
S (�� S (�

, < (�� < (� , � ���D�	�
. The task partitioning rule depends strongly on the computational

problem to be solved (see [9]).

2.2. The state of the computing application

The state of the computing application is the triple
��
 = �� = �PO2��� = � , \���� � ����:� where:

 = is the set of application agents,

 = � � I�� � & � ������� , � = is the set of indices of agents active at the time\

,

� = is the tree representing agents partitioning at the time
\
. All agents constitute the set of nodes � �"! I�� , # �$ =%&(' � % , while edges of

� = show the partitioning history. All information on
how to rebuild

� = is spread among all agents in such a way that each of them is aware of only its
neighbors in the tree.

�DO2��� = & = �*) '+ 8-,�. is the family of functions such that
O2��� = 6/
 = 9 �

is the current schedule of applica-
tion agents among the MAS platform servers. The function is represented by the sets 0 % of agents’
indices allocated on each

� % � � . Each of 0 % is locally stored and managed by
� % .

The shell
O�(

communicates with both
LJ(

and the local server
� % � O2���%� I (� . It supports inter-task

communication and queries task requirements for resources, implementing the necessary logic to perform
scheduling as well. Each server

� % � �
periodically asks all local agents (allocated on

� %) for their
requirements and computes the local load concentration

1 % � S %=?>@=?ACB
����� % � < %=?>@=?ACB � where
S %=?>@=?ACB �32

(4�656� S (and < %=?>@=?ACB �32
(4�656� < ((1)

Then
� % communicates with neighboring servers and establishes

7 % ���W� 1 XD��S X=?>@=?ACB � <
X
=?>@=?ACB ��
�����DX���& where 8 is such that

�2X9� - % (2)

as well as the set of node indices : % such that

; � : %=<?> ;A@� � , �CBD� - % , 1 %�E 1 B��F� (3)

The current values of both
7 % and : % are available to the local agents.

Moreover we may include inter-agent communication to our model, which is based on the set U (con-
taining information about the future communication activity of the task

L](
. The communication cost

associated with agent I (containing task
L�(

is evaluated as

�P(%� 2
G H�I + J A�=?A I .K�"LNM

Z5[5\N[WX
�������H�QO2���%� I (�C�PO2���%� I XD�4� (4)

18 M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
���

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Task implementation (e.g. MeshG3D, HGS or LEO)

Implementation dependent on underlying platform

Smart Solid API
scheduling, grain, monitoring, ...

computational task

MAS platform
(e.g. Octopus, NOMADS, ADAJ, IBM Aglets)

Smart Solid shell

Figure 1. Architecture of Smart Solid Agent, located on the top of MAS platform (for descriptions of MAS
platforms see [11, 1, 5]).

2.3. Three layer architecture

Our solution is structured as the three layer architecture due to various reasons. The most important is the
ability to separate responsibilities for several logically independent aims such as solving numerical task,
finding needed resources together with balancing the load of entire computing system and supporting
hardware and operating systems by a MAS platform. Such a separation allows to do an independent
research in different areas and combine research results into one complex system, with the possibility of
exchanging the implementation of various architectural elements.
Figure 1 depicts dependencies between Smart Solid Agent shell, implementation of computational task
and the part of the agent implementation dependent on the underlying platform. White rectangles repre-
sent API’s (Application Programming Interfaces) of Smart Solid Agent including interfaces for schedul-
ing, grain controlling, monitoring, whilst shaded rectangles represent relevant implementations which
can be extended or exchanged to achieve particular needs (see section 6). Smart Solid provides default
implementations of these interfaces where the most important is the implementation of the scheduling
strategy realized as an analogy to diffusion phenomena.

3. Diffusion of the Smart Solid agent

We introduce the binding energy � (+ % of the agent I (allocated on VCN
� % characterized by the following

conditions:

� (+ % is a descending function of
��S (N���P(�

and a nonascending function of
1 % (5)

One of the simplest form of the binding energy utilized in computational tests (see section 6) is

� (% ���������S��H($������! CS (�������P(����� 1 % ��� & (6)

where
�! ������D�����

are the proper scaling parameters and
S��H($

stands for the minimum binding energy
assigned to each agent.
We assume that the agent I (is able to evaluate dynamically its binding energy for other nodes from the
neighborhood

- % using the information contained in
7 % as well as its communication cost

����XD&/� 8 � - % .

M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS 19

The current value of the binding energy gradient is a vector defined by
� =(+ % �K�4� � ���Q�C� � (+ B E � (+ % � (7)

where
� % � O2���%� I (� and

�C� : % are such that � (+ B E � (+ % ������ X ���/� � � (+ X E � (+ % &/#
An agent I (allocated on

� % migrates to
� B indicated by

� =(+ % if the binding energy � (+ B on the destination
VCN exceeds the current � (+ % more than � . The threshold � stands for the migration parameter.
In general Smart Solid Agent I (���ML�(@�PO�(�

currently allocated on
� % �:� can perform the following

actions:

(a-1) Execute task
L�(

(solve and communicate with other agents).

(a-2) Pause
L�(

.

(a-3) Continue
L�(

.

(a-4) Denominate own load requirements
��S (@� < (� and future communication description U (.

(a-5) Compute
� =(+ % and check the condition � (+ B E � (+ % � � .

(a-6) Partition
L�(%9 ��L�(� �NL�(� & , create child agents

� I (�:�K�ML�(�Y�PO�(����&/� � � �D�	�
.

(a-7) Migrate to
� B � ����� @� � .

(a-8) Disappear.

These actions allow I (to accomplish two goals:

(G-1) Perform computation of carried task by executing action (a-1) and then perform action (a-8) when
the task is done.

(G-2) Find a better execution environment. We suggest the following algorithm utilizing actions (a-2) -
(a-8).

if : % = � then
continue

L�(
else

compute
� =(+ %

if � (+ B E � (+ % � � then
pause

L�(
; migrate along the gradient

� =(+ % ; continue
L�(

else
partition

L�(%9 ��L�(� �NL�(� & ;
create

� I (� �K�ML�(�Y�PO�(����&
, � � �D�	�

;
��� = gets modified

&
disappear

end if
end if

The overall SSA intention is to accomplish the goal (G-1) in the shortest possible time. If the agent
recognizes the local VCN resources as insufficient, it tries to accomplish the goal (G-2). On the other
hand,

� % may force
� I (@&/� R � 0 % to realize goal (G-2) when its performance is endangered.

20 M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS

4. The MAS dynamics

The diffusion-based scheduling strategy has proven to be simple and efficient (cf. section 6) but it lacks
a theoretical background allowing to determine if it is optimal or quasi-optimal in any sense. In this
section we state a formal mathematic model for multi-agent computations. This model was presented
first in [10], here we give its version with slightly changed notation and a little bit more explanation on
introduced quantities. Consider for a while that we are given a space of all possible agents and denote
it by

. We shall consider discrete-time evolution of a given MAS. Let us introduce the notion of the

vector weight of an agent which is the mapping

� 6���F
 E 9,7 � 8

whose components are
S (

and < (as introduced earlier. Assume that we know how the total weight of
child agents after partition depends on their parent’s weight before partition and that this dependency
is componentwise, i.e. we know the functions

� �C� � 6 7!8�9 7!8
such that in the case of partition

I 9 � I "� I ��& we have
�
(
= 8% � I �� � �

(
= 8% � I ���]� � (� � (= � I �4�

for R �3�D�	�
. Such an assumption seems realistic, in simple cases

� (
can be even the identity. Note that

probably the weakest reasonable assumption on
� (

is that

� (�K�5�!� � #
(8)

Next denote by � 6���F3� E 9,7H8
the total weight of all agents allocated on a virtual node at any time, i.e.

� = ��� �!� 2
����� � G	� . &�

� = � I �

(obviously we put
�

if no agent is maintained by
�

). The main idea of introducing such a notion is the
need to find a global quantity describing the state of the system appropriately and allowing us to avoid
considering the dynamics of a single agent.
In the sequel we shall assume that the number of virtual nodes

� �+� -

is fixed. Thus we can consider
� = as a nonnegative vector in

7 ��
whose � -th component corresponds

to
S %=?>@=?ACB and

��- � � � -th component corresponds to < %=?>@=?ACB . In fact we shall treat
� = as a stochastic

(vector-valued) process. Now we shall state the equations of evolution of
� = (i.e. state equations of our

system). To this end consider three different cases.

1. ’Established’ evolution, i.e. the one without migrations or partitions. Then the state equation has
the form � = 8% ��� = � � = �
where

� = is a given stochastic nonnegative vector field.

M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS 21

2. Partition at node � . Then we have��� ��
� %= 8% �K� � E ���% � � = �4� � %= � � �����% � � = � � %= �� 8 %= 8% �K� � E ���% � � = �4� � 8 %= � � � �����% � � = � � 8 %= �
� (
= 8% � � (

= for R @� � ��-�� �
where

���% �����% 6 7 8 9 � � � �	�
are the proportions of the weight components of splitting agents to

the corresponding components of the total weight of all agents at node � .
3. Migration from � to

;
. In this case the state equations have the form�������� �������

� %= 8% �K� � E�
 �% B � � = �4� � %=� 8 %= 8% �K� � E�
 �% B � � = �4� � 8 %=� B
= 8% � � B

= �
 �% B � � = � � %=� 8 B
= 8% � � 8 B

= �
 �% B � � = � � 8 %=� (
= 8% � � (

= for R @� � � ; ��-�� � ��-�� ;

with
 �% B �
 �% B analogous to
��� �����

.

Putting all the above cases together we obtain the following state equations������� ������
� (
= 8% ��� (= ��� = �-� � �� ���(+ = � � = � � (

=�� E ���(+ = � � = � � (
=

E�� B��& (
 �(B + = � � = � � (
= � � % �& (
 �% (+ = � � = � � %=� 8�(

= 8% ��� 8�(
= ��� = �-� � ��� ���(� � = � � 8�(

= � E ���(� � = � � 8�(
=

E � B��& (
 �(B � � = � � 8�(
= � � % �& (
 �% (� � = � � 8 %=

(9)

where �� � �� (
= � � � E ���(+ = � � = � E�� B��& (
 �(B + = � � = � � � (

=�� 8�(
= � � � E ���(+ = � � = � E � B��& (
 �(B + = � � = � � � 8�(

=
for R � �D��#�#�#���-

. To simplify the notation put� �((+ = �� �(+ = � � �((+ = �� �(+ = (10)

and � �(% + = �
 �(% + = � � �(% + = �
 �(% + = for R @� � # (11)

Then the state equations have the simpler form������� ������
� (
= 8% ��� (= ��� = �-� � �� � �((+ = � � = � � (

= � E � � B & � �(B + = � � = � � � (
=

� � % �& (� �% (+ = � � = � � %=� 8�(
= 8% ��� 8�(

= ��� = �-� � ��� � �((+ = � � = � � 8�(
= � E � � B & � �(B + = � � = � � � 8�(

=
� � % �& (� �% (+ = � � = � � 8 %=

(12)

22 M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS

with �� � �� (
= � � � E�� B & � �(B + = � � = � � � (

=�� 8�(
= � � � E � B & � �(B + = � � = � � � 8�(

=
Note that in the above equations we have the control term� � � � � � � � � (13)

where � � � � � 6 ��F 7 � 8 E 9 � � � �	� � #
(14)

From the nature of our problem it follows that without loss of generality we can impose the following
conditions on all control strategies������ �����

� �(% + = ������� � �% (+ = �����]� � �� �(% + = ������� � �% (+ = �����]� �
for R @� � �� B & � �(B + = ������� �D�� B & � �(B + = ������� �

for R � �D��#�#�#���- #
(15)

for any
\ � �

and
����7 � 8

. The first pair of equalities means that at a given time migrations between
two nodes may happen in only one direction. The remaining conditions say that the number of agents
leaving a node must not exceed the number of agents present at the node just before the migration.
The initial state of equation (12) � ' ����

(16)

often has all but one components equal to
�

which means that an application starts with one big agent or
a batch of agents allocated on a single virtual node but this is not the most general case and we need not
make such an assumption.

5. The optimal scheduling problem

In real computational environments both the available memory and the maximal computation time is
limited and naturally quantized so we can safely assume that

� = has finite number of states. Hence
for the following considerations we assume that it is a controlled Markov chain with a finite state space�
	 ' � � ��	W ���#�#�#"��	 � & . We also assume that

�
is its absorbing state (cf. [6]). This condition is very natural

in our situation since
�

is the desired final state of our system. Reaching
�

means that the computations
are done so we do not want the system to leave this state.
Consider two examples of cost functionals which seem appropriate for multi-agent computations. The
first one is the expected total time of computations� H � �� �� �!� S=� �����P�"\��F�16 � = � �W& �W#

(17)

The second takes into account the mean load balancing over time. It has the following form

��� � �� �� �!� S � ,2
= &('

2
(&

� 1 (= E 1 = � ��� (18)

M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS 23

where 1 (= �
� (
=
������(4� � 8�(
= �

is the load concentration and
1 = � �

-

2
(&

1 (=

is its mean over all nodes. Let us introduce the following notation for the set of admissible controls

� ��� � �K� � � � � � �H6 � satisfies conditions (14) and (15)
&/#

(19)

Assume that
�

has either the form (17) or (18). Given an initial configuration
��

our optimal scheduling
problem is now to find such control strategy � � � �

that� � � � �� �]�� ����� � � �� �� �H6 � � � � �
is a solution of (12)

�
(16)

&/#
(20)

Now let us consider the existence of optimal strategies. To this end let us denote by
� = � � = � � = � � = �4� the

right hand side of (12) and by
'(% � \P� �� �]� � � � = ��	D(N� �� �!� 	 % � (21)

the transition probabilities of
� = . Moreover denote by � the set of all possible values of controls eval-

uated at any state and any time, i.e. the set of those elements of
� � � �	� � G � �.

which satisfy conditions
(15). Finally denote by � � �� �!� �
'(% �K� � �� ��	D(� � (&
the ’probably not absorbing’ part of the transition matrix for �� � � and by

� $ � �� � the analogous part of
n-step transition matrix obtained by applying the stationary control � = � �� .

Proposition 5.1. Assume that

1. Functions

�(% � \P� � � are continuous on �

2. For
� � � H matrix

� $ � �� � is a contraction for some �� � � �4� � �
.

3. For
� � ���

matrix
� � � �� � is a contraction for every �� � � .

Then there exists an optimal solution of (20).

Proof:
Notice that � is a compact set and that both cost functionals do not depend explicitly on � . Then it is a
straightforward consequence of [6, Theorem 4.2] provided that we notice moreover that when

� � � H
we have � H � � � �� �]� S � ,2

= &('
; � � = � � � �

where ; ��	D(�!� �
for all

	Y(@� �
and

; �K�5�!� �
. ��

24 M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS

6. Numerical tests

This section presents the performed experiments and points out on various efficiency aspects of the
computing MAS application. The results cover two major problem domains examined in the course of
our experiments: 3D Mesh Generator and Hierarchic Genetic Strategy (HGS). Here we present their
short description with follow-up references.

� The 3D Mesh Generator [4] is a CAD/CAE task implementation. Each agent is equipped with a
single part of a partitioned solid, for which the mesh has to be generated. If the solid is partitioned
in a fixed way, the agents’ number and size is also fixed and so are their computation power
demands.

� The HGS [14] is a stochastic, hierarchical genetic algorithm optimizing a given function on a
defined domain. The application produces agents dynamically during the runtime. A single HGS
agent is a container, which starts executing its internal populations as soon as it finds a suitable
computation environment. The total number of agents at the execution time may be different even
for the same input data. On the other hand, the sizes of agents are almost equal.

The major aim of the 3D Mesh Generator application was to prove the efficiency of the diffusion-based
scheduling in the case of a regular problem. The main points of the results’ analysis was to check if the
local, diffusion-based scheduling policy does not put too much overhead on the total execution time and
if the available resources were fully utilized.
The paper [4] presents the runtime properties of the 3D Mesh Generator application in detail as well
as the actual realization of the analytical model. It concludes that the diffusion-based, local scheduling
policy is well suited for such regular problems — available resources were utilized at 96%. The results
also confirm that the communication factor may be omitted for a certain class of applications since the
total communication overhead is minimal. Also the communication required for the diffusion (examin-
ing a VCN node neighborhood and reevaluating the binding energy for every agent) did not decrease the
system efficiency.

The HGS application [7] is an example of irregular, stochastic application, where agents are created
dynamically as the genetic populations examine the optimized function domain thoroughly. On the con-
trary to the 3D Mesh Generation single agent acts as a container for the processed genetic populations,
which are treated as computational tasks executed sequentially.
The communication overhead and dynamic scheduling efficiency were tested within this experiment.
The effectiveness of the dynamic scheduling was tested versus centralized, greedy scheduling policy (a
Round Robin solution) utilizing low level network message passing mechanisms (Java RMI). The final
conclusion can be stated that the diffusion-based local scheduling performs well also in the case of an
irregular stochastic problem with variable number of agents. Although it is moderately slower for small
problems (about 3 times slower) than the dedicated fast low-level solution, it proves very adaptive and its
local scheduling evaluation does not significantly decrease the solution’s effectiveness — the observed
communication overhead is about 5% of total execution time.

M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS 25

Serial Diffusive Scheduling Round-Robin

time Total number Parallel Speedup Parallel Speedup

[sec] of agents time [sec] time [sec]

4580 218 304 15,06579 209 21,91388

6891 244 371 18,57412 318 21,66981

6766 299 299 22,62876 334 20,25749

3387 122 374 9,05615 163 20,77914

4267 235 294 14,51361 206 20,71359

2687 94 228 11,78509 131 20,51145

4221,9 183,7 288,2 14,44104 204,9 20,66099

Table 1. Speedup of HGS computations for the Griewangk objective with Round-Robin and Diffusive Schedul-
ing. Arbitrary selected times for most significant experiments and mean values computed for all conducted exper-
iments (last row) are shown.

7. Conclusions and Further Research

The diffusion analogy as well as the MAS technology give way effectively to designing a local diffusion-
based scheduling strategy for a distributed environment. Its effectiveness is achieved by the low complex-
ity of local scheduling rules and the lack of intensive communication required by centralized schedulers.
However when we want to find out if our heuristic strategy is optimal (or probably � -optimal) in any
strict mathematical sense, we need to provide an appropriate mathematical model which would describe
the considered system. Such a model is presented in sections 4 and 5 together with a theoretical result on
the existence of optimal scheduling strategies. From the model we expect many further practical results,
including the most interesting ones — optimality conditions. There is also a set of related problems to
consider, e.g. one needs to estimate (and compute) the quantities constituting equations (12).
As mentioned in section 6, a series of various experiments have been passed (see [13, 3, 4, 8]). They
showed the efficiency of the diffusion governed scheduling, together with the easiness of the MAS driven
approach to distributed computations’ deployment and maintenance.
Extending the current solution we intend to build OGSA compatible GRID services [2] to expose MAS
platforms to the Internet and allow migration of Smart Solid Agents between many local computer net-
works.

References

[1] Felea, V., Olejnik, R., Toursel, B.: ADAJ: A Java Distributed Environment for Easy Programming Design
and Efficient Execution, Schedae Informaticae, 13, 2004, 9–36.

[2] The Globus Alliance, http://www.globus.org/: Open Grid Services Architecture.

[3] Grochowski, M., Schaefer, R., Uhruski, P.: An Agent-Based Approach to a Hard Computing System —
Smart Solid, Proceedings of the International Conference on Parallel Computing in Electrical Engineering
(PARELEC 2002), IEEE Computer Society Press, Warsaw, Poland, 22–25 September 2002.

26 M. Grochowski et al. / Architectural Principles and Scheduling Strategies for Computing MAS

[4] Grochowski, M., Schaefer, R., Uhruski, P.: Diffusion Based Scheduling in the Agent-Oriented Computing
Systems, Lecture Notes in Computer Science, 3019, 2004, 97–104.

[5] IBM, http://aglets.sourceforge.net/: IBM Aglets.

[6] Kushner, H.: Introduction to Stochastic Control, Holt, Rinehart and Winston, 1971.

[7] Luque, E., Ripoll, A., Cortés, A., Margalef, T.: A Distributed Diffusion Method for Dynamic Load Balancing
on Parallel Computers, Proceedings of EUROMICRO Workshop on Parallel and Distributed Processing,
IEEE Computer Society Press, San Remo, Italy, January 1995.

[8] Momot, J., Kosacki, K., Grochowski, M., Uhruski, P., Schaefer, R.: Multi-Agent System for Irregular Parallel
Genetic Computations, Lecture Notes in Computer Science, 3038, 2004, 623–630.

[9] Schaefer, R., Flasiński, M., Toporkiewicz, W.: Optimal Stochastic Scaling of CAE Parallel Computations,
Lecture Notes in Computer Science, 1424, 1998, 557–564.

[10] Smołka, M., Grochowski, M., Uhruski, P., Schaefer, R.: The Dynamics of Computing Agent Systems, Lec-
ture Notes in Computer Science, 3516, 2005, 727–734.

[11] Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G. A., Jeffers, R., Mitrovich, T. S.: An Overview
of the NOMADS Mobile Agent System, Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP’2000), Sophia Antipolis and Cannes, France, 2000.

[12] Thain, D., Tannenbaum, T., Livny, M.: Condor and the Grid, in: Grid Computing: Making the Global
Infrastructure a Reality (F. Berman, G. Fox, T. Hey, Eds.), Wiley, 2002.

[13] Uhruski, P., Grochowski, M., Schaefer, R.: Multi-Agent Computing System in a Heterogeneous Network,
Proceedings of the International Conference on Parallel Computing in Electrical Engineering (PARELEC
2002), IEEE Computer Society Press, Warsaw, Poland, 22–25 September 2002.

[14] Wierzba, B., Semczuk, A., Kołodziej, J., Schaefer, R.: Hierarchical Genetic Strategy with Real Number En-
coding, Proceedings of 6th Conference on Evolutionary Algorithms and Global Optimization, Wydawnictwa
Politechniki Warszawskiej, Łagów Lubuski, Poland, 2003.

