
Agent-based Model of Hierarchic Genetic Search

Robert Schaefera, Aleksander Byrskia, Joanna Ko lodziejb, Maciej Smo lkac

aAGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland, {schaefer,olekb}@agh.edu.pl

bUniversity of Bielsko-Biala
ul. Willowa 2, 43-309 Bielsko-Bia la, Poland, jkolodziej@ath.bielsko.pl

cJagiellonian University
ul. Lojasiewicza 6, 30-348 Kraków, Poland smolka@ii.uj.edu.pl

Abstract

An effective exploration of the large search space by single population genetic-
based metaheuristics may be very time consuming and complex process, es-
pecially in the cases of dynamic changes in the system states. Speeding up
the search process by the metaheuristic parallelization must have a significant
negative impact on the search accuracy.

There is still a lack of complete formal models for parallel genetic and
evolutionary techniques, which might support the parameter setting and im-
prove the whole (often very complex) structure management.

In this paper we define a mathematical model of Hierarchical Genetic
Search (HGS) based on the genetic multi-agent system paradigm. The model
has a decentralised population management mechanism and the relationship
among the parallel genetic processes has a multi-level tree structure. Each
process in this tree is Markov-type and the conditions of the commutation
of the Markovian kernels in HGS branches are formulated.

Keywords: genetic algorithms, multi-agent genetic system, global
optimisation, hierarchic genetic strategy

1. Introduction

An effective exploration of the large search space by single population Ge-
netic Algorithms (GAs) may be a very time consuming and complex process,
especially in the cases of dynamic changes in the system state (grid, cloud
and network computing) and dynamic boundary conditions of the considered
optimisation problem. Speeding up the search process must have a significant

Preprint submitted to Computers & Mathematics with Applications May 16, 2012

negative impact on the search accuracy. The parallelisation of standard GAs
is the simplest solution for the improvement of the genetic search effective-
ness, especially in heterogeneous environments. Thus complex systems may
be created, e.g. leveraging concepts of agency and evolution, applied to var-
ious problems, stanard ones like global optimisation [1, 2], or sophisticated
ones, like intrusion detection [3].

The island GA model [4] is the most popular parallel GA approach in
global optimisation. However, the effectiveness of the island GA search is
very low in the regions with the ‘low-quality’ local optima in sense of global
optimisation of the considered objective(s). In such cases Hierarchic Genetic
Strategy (HGS) with its tree structure has proven its effectiveness in solving
very complex continuous, discrete and combinatorial optimisation problems
in static and dynamic environments [5], [6], [7].

HGS method has been introduced by Schaefer and Ko lodziej [5] as a mul-
tipopulation genetic strategy with an adaptive (various) search accuracy at
the various HGS tree levels. This can be achieved by increasing the density
of the binary or affine coding meshes and the reducing the mutation param-
eter values (mutation probabilities or standard deviation of the mutation
probability distribution) in the HGS branches.

A concept of the genetic search with an adaptive modular accuracy has
been intensively studied in the literature. The adaptive search mechanism in
HGS is similar to Dynamic Parameter Encoding (DPE) method proposed by
Schraudolph and Belew in [8], where the accuracy of encoded parameters is
dynamically adjusted to increase the resolution of the solution and to focus
the search in the most promising region of the search space. The search
outside the chosen region is then suspended.

Another example is Delta Coding algorithm introduced by Whitley et
al. [9]. In this method after each run of single population genetic algorithm
(GENITOR algorithm is applied) the diversity of the population is checked
and monitored by measuring of the Hamming distance between each of the
parameter in the best and worst strings in population. Then a delta iteration
is initialised, where the length of codes of individuals in the new population
is reduced (typically by single bit for each parameter). Whitley applied Delta
coding strategy in parallel in the island model.

The search accuracy modulated by the dynamic mutation and crossover
parameters was proposed as a main genetic mechanism in Adaptive Genetic
Algorithms, (AGAs) [10]. The probabilities of crossover and mutation greatly
determine the degree of solution accuracy, because AGAs utilise the popula-

2

tion information in each generation and adaptively adjust the genetic oper-
ators’ parameters in order to maintain the population diversity as well as to
sustain the convergence capacity. This adjustment of crossover and mutation
probabilities depends on the fitness values of the solutions. This procedure is
different in Clustering-based Adaptive Genetic Algorithm (CAGA) [11], where
a simple cluster analysis is used to judge the optimisation states of the pop-
ulation, and then the adjustment of genetic operators’ parameters depends
on these optimisation states. In many recent works to improve the search
adaptation mechanism the GA’s framework is combined with the Artificial
Neural Network (ANN) mechanism and fuzzy clustering technologies [12].

The search process in HGS starts by activating a mono-population GA
with the low accuracy of search, which governs the whole search process and
is responsible for the detection of promising partial solutions and exploration
of the new unrecognised regions in an optimisation domain. This process is
called a root of the HGS tree structure. The more accurate processes are
activated in the neighborhoods of the partial solutions found by the core in
order to prevent the premature convergence of the strategy and for a possible
improvement of the best found solutions. The activation of new processes
does not increase significantly the complexity of the hierarchic strategy be-
cause of three main reasons: (i) differently to the hybrid strategies, where the
components are usually composed of various meta-heuristics and local search
methods, we use the same general framework for the algorithms working at
all levels of the HGS; (ii) the HGS tree extension is steered by the specialised
operations responsible for the deactivation of the ineffective processes and
by the effectiveness of the search in the core of the tree; (iii) Finally, the
synchronisation of the search is provided with use of predefined agents act-
ing at the nodes of the HGS tree, that in the advanced cases may be also
responsible for e.g., load balancing.

In this paper we develop a formal agent-based mathematical model for
HGS. Our contributions include:

• A development of a formal agent-based model for HGS strategy.

• A design of the agent actions and mechanisms associated with the main
HGS branching and genetic operators.

The rest of the paper is organized as follows. In Sec. 2 we define a basic
formal model for single population GAs, which is then used in modeling the
whole strategy. The HGS basic operators parameters and the main concept

3

of its agent-based model are presented in Sec. 4.1–7. We conclude the paper
in Sec. 8.

2. Preliminaries

2.1. Global optimisation problem

A general global optimisation problem addressed in this paper can be defined
as follows.

Definition 2.1. Let us denote by D ⊂ RN the admissible domain and by
ξ ∈ D the vector decision variable. We assume that D is compact and regular
in the space (RN ; ‖ · ‖), where ‖ · ‖ is the standard Euclidean measure. An
objective is a bounded, real-valued function Φ : D → R such that

∀ξ ∈ D c ≤ Φ(ξ) ≤ C (1)

for some fixed c, C ∈ R. A global minimisation problem is defined as the
problem of finding all ξ̂ ∈ D satisfying:

ξ̂ = arg min
ξ∈D

{Φ(ξ)}. (2)

It can be observed that the problem of the minimisation of the objective
Φ can be easily transformed into the maximisation of Φ̃(ξ) = −Φ(ξ) + (C −
c); ∀ξ ∈ D.

2.2. Population and individuals

A simple single-population GA is usually specified as a process of trans-
formation of populations of individuals . Each population P is defined as a
finite multi-set of elements selected (with repetitions) from U . It means that
the set P may contain many clones of a given genotype (few genotypes may
have the same genetic representation). Formally, the population P is defined
as a tuple P = (U, ηP), where ηP : U → N ∪ {0} denotes a function, which
counts the number of the clones of genotypes in P . The cardinality µ = #P
of population P is computed as the sum of the values of the function ηP for
all different genotypes appearing in P , i.e. µ =

∑
ξ∈U ηP (ξ) (see, e.g., [13]).

If U and P are finite sets, then the population is usually represented by its

4

frequency vector x of appearance of all possible genotypes from U in P , that
is to say:

x =
1

µ
[ηP (ξ1), . . . , ηP (ξr)]

T , (3)

where N 3 r = #U , and U = {ξ1, . . . , ξr}. The coordinates of vector x are
identical with the baricentric coordinates of elements of the standard unit
(r − 1)-dimensional simplex Λr associated with the finite genetic universum
U , which is defined as follows:

Rr ⊃ Λr = {x ∈ Rr : 0 ≤ xξ ≤ 1, ∀ ξ ∈ U,
∑
ξ∈U

xξ = 1}. (4)

Note that Λr contains all frequency vectors of all possible populations of
individuals from U .

Let us denote by Xr
µ the finite subset of points in Λr corresponding to all

populations of the size µ. The set Xr
µ becomes dense in Λr when µ→∞ (see

[14]). Notice, that Λr can be also identified with the space of all probabilistic
measures M(U) on the set of genotypes (see, e.g., [15], [13]). Hereafter
we will denote byM(A) the space of probabilistic measures defined on a Σ-
algebra over the set A. To avoid confusion we formally introduce a one-to-one
mapping

Θ : Λr 3 x→ Θ(x) ∈M(U) (5)

that allows us to identify a frequency population vector x ∈ Λr with the
related probabilistic measure Θ(x) ∈M(U).

2.3. Genetic operators and succession schemes

In order to describe comprehensively the dynamics of finite and infinite
population genetic algorithms with finite genetic universa, we will consider
the selection operator F : Λr → Λr that represents the stochastic effect of
selection and the mixing operator M : Λr → Λr associated with the genetic
operations, namely the crossover coupled with the mutation (see [14], [16],
[15]).

The ξ-th coordinate of the selection operator returns the probability of
selecting an individual with the genotype ξ ∈ U from the population rep-
resented by the vector x ∈ Λr. Formally, we denote this probability as
Θξ(F (x)). Similarly Θξ(M(x)) is the probability of obtaining individual with
the genotype ξ ∈ U by mixing from the population represented by the vector
x ∈ Λr.

5

In the case of genetic universum composed of binary strings (e.g. the
SGA case, U = Ω [16]) the selection operators imposed by proportional,
tournament and ranking selection schemes are described in [16, Section 4.2],
whereas the mixing consisted in binary crossover and positional, bitwise mu-
tation in [16, Sections 4.3–4.5].

Observation 2.1. Given a probability distribution ρ ∈ M(U) such that ρξ
is the probability of obtaining the individual with the genotype ξ ∈ U in the
next epoch, the probability of obtaining the next population of cardinality µ <
+∞, represented by the vector y ∈ Xr

µ is given by the polynomial probability
distribution

Prµρ(y) =
µ!∏

ξ∈U (µ · yξ)!
∏
ξ∈U

(ρξ)
µ·yξ . (6)

We will apply two succession schemes (the schemes of obtaining the next
epoch population from the current one). The first one will be called Standard
Succession Scheme (SSS) and consists of selecting the intermediate popula-
tion of parental individuals of the same cardinality µ, by independent µ-fold
sampling according to the probability distribution Θ(F (x)). The probability
of obtaining the intermediate population might be computed using formula
(6) by setting ρ = Θ(F (x)), where x ∈ Xr

µ stands for the current population
vector. The next-epoch population is then derived from the intermediate one
by means of admissible genetic operations (the mixing is the composition of
those operations). The probability of the next-epoch population may be eval-
uated again using (6) by setting ρ = Θ(M(z)), where z ∈ Xr

µ denotes now
the intermediate population vector. Summing up, according to the Bayes
rule (see e.g. [17]) the probability of the next-epoch population obtained by
the standard succession rule is described by the following function

τSt : Xµ ×Xµ 3 (x, y)→ τSt(x, y) =
∑
z∈Xµ

PrµΘ(F (x))(z) · Γzy, (7)

where the n× n matrix Γ is given by the formula:

Γxy = PrµΘ(M(x))(y), x, y ∈ Xr
µ. (8)

In Vose Succession Scheme (VSS), there is a heuristic operator: G =
M ◦ F : Λr → Λr introduced by [16] for the Simple Genetic Algorithm.
The probability of the next epoch population is given now by the following
function

τG : Xr
µ ×Xr

µ 3 (x, y)→ τG(x, y) = PrµΘ(G(x))(y). (9)

6

The VSS might be implemented by µ-fold execution of the following three
steps [16, Chapter 5]:

1. select two parental individuals from the current population,

2. mutate each of them,

3. cross the mutated parents and add one randomly selected child to the
next epoch population.

Because Xr
µ is finite (#Xr

µ = n < +∞), the transition probability func-
tions (7), (9) can be represented by a transition matrix Q in the following
way: for each pair of population vectors x, y ∈ Xr

µ we have

Qxy =

{
τSt(x, y) if SSS is applied,
τG(x, y) if VSS is used.

(10)

The interpretation of the matrix Q depends on the context in which the
succession scheme is determined.

Observation 2.2. The transition probability function in kstep ∈ N epochs
of evolution τkstep : Xr

µ →M(Xr
µ) is defined by using the following formula:

τkstep(x, y) = ((Q)kstep)xy, ∀x, y ∈ Xr
µ. (11)

2.4. The stopping rule based on the search efficiency

To define a fair stopping condition for GAs may be still a challenging
task, especially in the case of the limited abilities of the exploration and
exploitation of a huge search space. In such a case the algorithm is stopped
after the execution of the kstep of evolution epochs if there is no significant
improvement in the fitness optimisation. It means that for the following
population vectors x(t), x(t+kstep) ∈ Xr

µ, the GA procedure will be continued
if the following condition is satisfied:

(x(t) − x(t+kstep), f) ≥ lsc > 0, (12)

where lsc ∈ R+ denotes the stopping threshold parameter. GA is stopped, if

(x(t) − x(t+kstep), f) < lsc. (13)

Hereafter (·, ·) will denote the Euclidean scalar product in Rr.

7

Observation 2.3. Let us assume that x ∈ Xr
µ is the current population. We

can calculate the probability of stopping GA due to the efficiency condition
(see Eq. (12)) by using the following formula:

S(x) = 1−
∑
y∈Xr

µ

τkstep(x, y) [((x− y, f)− lsc) ≥ 0], (14)

where [·] is a “logic expression” operator. Formally, S(x) may be interpreted
as the probability of terminating GA after kstep genetic epochs, and lsc is
the stopping criterion parameter.

Let us denote by A an event when GA passes from the state x ∈ Xr
µ to

the state y ∈ Xr
µ by executing kstep genetic epochs, by B an event when the

computation is terminated after kstep genetic epochs, and by C the event
of the continuation of the computation after the execution of kstep genetic
epochs. Using the Eqs. (11), (12), and (13) we can compute the following
conditional probabilities:

Pr(B|A) =

{
0 if (x− y, f) ≥ lsc
τkstep(x, y) if (x− y, f) < lsc,

Pr(C|A) =

{
0 if (x− y, f) < lsc
τkstep(x, y) if (x− y, f) ≥ lsc.

(15)

Based on Observation 2.3 and using the general formula for conditional
probability [17] we can define the following observation:

Observation 2.4. The probability of stopping the GA process due to the
efficiency condition (see Eq. (12)) in the state y ∈ Xr

µ is defined as follows:

S(x) τkstep(x, y) [(x− y, f) < lsc] (16)

and the probability of continuation of the GA search process in the state
y ∈ Xr

µ is defined as follows:

(1− S(x)) τkstep(x, y) [(x− y, f) ≥ lsc]. (17)

3. Primitives of the HGS model

In the described case we deal with a scalable system that may be easily
implemented and run on parallel computation systems, such as clusters or

8

grids. Because of the terminology used in such systems, from now on, the
population being part of HGS tree, will be called deme.

Now, let us introduce the following settings and notions for HGS that
will be used later on:

• We define a family of m ∈ N genetic universa Ui, i = 1, . . . ,m , #Ui =
ri ∈ N, ri < +∞ for all i = 1, . . . ,m.

• For {Ui}mi=1 we define the following family of associated encoding oper-
ators:

codei : Ui → D; i = 1, . . . ,m (18)

with the progressive increase of the search accuracy. It means that
there exists the following sequence of encoding parameters:

∃ d1, . . . , dm−1 ∈ N; ri+1 = di ri, i = 1, . . . ,m− 1 (19)

and each di estimates the increment rate in the search accuracy in a
pair of Ui and Ui+1 (and thus the encoding resolution or density of the
encoding mesh). For binary implementation of HGS (see [5]) we defined
a Nested Coding procedure, which generates a set of binary encoded
meshes associated with binary genetic universa.

• let us introduce the following sequence of inheritance surjective map-
pings:

inheriti : Ui → Ui−1, i = 2, . . . ,m (20)

and sets

Ui|ξ = (inheriti)
−1(ξ)

= {ζ ∈ Ui : inheriti(ζ) = ξ}, ξ ∈ Ui−1, i = 2, . . . ,m.
(21)

Moreover we assume, that

∀i = 2, . . . ,m, ∀ξ ∈ Ui−1 #Ui|ξ = di−1

∀i = 2, . . . ,m, ∀ξ, ζ ∈ Ui−1 Ui|ξ ∩ Ui|ζ = ∅. (22)

By using the inheriti each Ui, i > 1 can be decomposed into the set
of disjoint clusters Ui|ξ indexed by the elements ξ ∈ Ui−1 so that⋃
ξ∈Ui−1

Ui|ξ = Ui. The family of inheritance mapping is strictly as-
sociated with the family of the encoding functions.

9

• We introduce the family of fitness functions

fi : Ui → [0,∆], i = 0, . . . ,m. (23)

Each fi is associated with Φ (e.g. Ui 3 ξ → fi(ξ) = c + Φ(codei(ξ)))
and the following coherency condition holds:

codei(ξ) = codej(ζ)⇒ fi(ξ) = fj(ζ), ∀i, j ∈ {0, . . .m}, ξ ∈ Ui, ζ ∈ Uj.
(24)

The value of the constant ∆ depends on the values of c and C pa-
rameters specified for the considering optimisation problem defined in
Eq. (2). Each fitness function fi may be identified with the vector of
its values fi = ((fi)ξ)ξ∈Ui .

• We denote by µ1, . . . , µm, the sizes of demes and byX1 = Xr1
µ1

,. . ., Xm =
Xrm
µm the demes in HGS branches of degrees 1, . . . ,m, respectively.

• We denote by kstep1, . . . , kstepm the lengths of “metaepochs” for each
type of searches.

• Each GA process in HGS branches is governed by its own selection and
mixing operators Fi,Mi : Λri → Λri and by one of the possible suc-
cession schemes SSS or VSS. Subsequently, the probability transition
matrix Qi can be defined using formulas (7) - (10). Next, analogously
as in Observation 2.2 the transition operator τi : Xi → M (Xi) such
that

τi(x, y) =
(
(Qi)kstepi

)
x,y
, i ∈ {0, . . . ,m} (25)

can be established. The value τi(x, y) is equal to the probability of
passing between the states x and y after kstepi epochs of evolution in
the arbitrary HGS branch of i-th type.

• For each HGS branch but the core we define the efficiency stopping rule
parameter lsci (see Eq. (12), Eq. (13)) and the function Si : Xi → [0, 1]
which defines the probability of stopping the genetic process in a given
branch of i-th type (see Observation 2.3).

4. The states of HGS Markov model

4.1. HGS tree

The HGS tree constitutes m-level bidirectional graph HGSTREE =<
V,E, F >. The number of child nodes may vary through levels, but on

10

each level it is constant (equals to ki, i = 1, . . . ,m − 1). The labeling F
assigns simply the path from the root to each node. Let us define Ki =
{1, . . . , ki}, i = 1, . . . ,m− 1 and

K1 = {1} ×
∏m−1

p=1 {0}, Km = {1} ×
∏m−1

p=1 Kp,

Ki = {1} ×
∏i−1

p=1 Kp ×
∏m−1

p=i {0}, m > i > 1,

K =
⋃m
i=1K

i, Kpar = K \Km =
⋃m−1
i=1 Ki.

(26)

where K is the domain of all labels (F : V → K), Kpar labels of parental
demes and Km labels of leaf demes respectively. Moreover, we will need the
function

l : K → {1, . . . ,m} :

l(j) =

{
m if ji > 0, ∀i = 1, . . . ,m
1 ≤ s < m if j1, . . . , js > 0, js+1, . . . , jm = 0.

(27)

which returns the length l(j) of the path j ∈ K. The root is the unique
node for which j = (1, 0, . . . , 0) and l(j) = 1. The length of the path l(j)
determines also the level of the HGSTREE in which the node labelled by
j is located. Furthermore, we can assign the set of child indices Ij ⊂ K to
each parental node indexed by j. Namely for j ∈ K such that l(j) < m we
have

Ij =
{
η ∈ K l(j)+1 | η1 = j1, . . . , ηl(j) = jl(j)

}
. (28)

4.2. The space of states

The state of the whole HGS tree is composed of the states of all active
and all potentially active demes. All such demes are contained in nodes V
of the HGSTREE structure described in Section 4.1.

The state of a deme located in the HGSTREE will be determined by
its deme vector xj ∈ Xl(j). Moreover, the state of each deme except the root
deme will be characterised by the status label which can take values from the
set {inactive, new, active, stopped}. The status of the root deme may take
only two values {active, stopped}.

A starting deme vector of the root deme is generated by multiple sampling
(sampling with return) from U1 according to a given probability distribution,
and its status is primarily set to active.

The lower level demes xj : l(j) > 1 might take the status:

11

• inactive if it has not been activated yet by the sprouting operation. The
deme vector of each inactive deme from the i-th level is considered to
have the same, arbitrary value from Xi. This setting is performed only
from the formal reasons and does not affect the computation result in
any way.

• new if it is just sprouted by its parental deme. A deme with this status
cannot sprout another deme. The status new is changed to active or
stopped after having processed the deme’s first metaepoch. Sprouting
changes the value of xj as well (the initial setting is removed). The
parental deme has to be active in at least one of the previous steps.

• active if it was new or active one metaepoch ago and the efficiency
condition was not satisfied.

• stopped if the efficiency stopping condition held currently or in the
past. The deme marked stopped once stays stopped up to the end of
computation and does not change its deme vector. In case of parental
demes of the higher order then leaves the status stopped is set also when
all their child-demes had been activated (i.e. they have status active
or stopped). Such a situation appears very rarely in the computational
practice.

Therefore, the HGS space of states may be considered as a subset of the
following space:

X = {active, stopped} ×X1×
×
∏m

i=2

(∏gi
p=1 ({inactive, new, active, stopped} ×Xi)

)
,

(29)

where gi =
∏i−1

s=1 ks. Note that each HGS state is strictly associated with
the HGSTREE node indexed by j ∈ K and it has two components: sj

containing its current status and xj ∈ Xl(j) being the current deme vector of
the deme located at node j.

5. Agent-based synchronization

Proper synchronization mechanism that allows the demes to work accord-
ing to the HGS strategy may be formalised as a multiagent system. Each
node being the member of the set V (the set of nodes in the HGSTREE

12

structure) is equipped with the governing agent. The agents will be denoted
using the same indexing role as in case of deme vectors and statuses, so
{agj}, j ∈ K.

Entrusting parts of the system to agents allows for further development of
the system, making possible introducing various enhancements on its compu-
tational (e.g., indivdiual adaptation of the parameters of the local variation
operators) and technical level (e.g., load balancing). The presented way of
modelling has already been applied to several agent-based computing sys-
tems, c.f. [1, 2] related to modelling of EMAS [18, 19, 20].

Let us assume, that in the initial state, all demes residing in the whole
HGS tree are inactive instead of root-deme set to be active. The status of
a deme is encapsulated in its agent, and may be changed by communicating
with the agent, i.e. after the agent receives appropriate message, the status
of its deme is affected.

In order to simplify the description of the agents’ algorithms, we assume,
that the elements of the system state, such as demes, inactive agents’ indexes
(see (42)), agents’ statuses are entrusted to agents, so the agents act directly
on them, without need to update them directly. Therefore, in the pseu-
docodes below, change of the agent’s state affects directly the set described
by (42).

The following functions will be used in the pseudocodes in the further part
of this section. They are explained here without giving detailed algorithm:

• GEN ROOT () – generates randomly the root deme by µ1-times sam-
pling with return from U1.

• GEN DEME(i, seed) – generates randomly the deme by µi-times sam-
pling with return from Ui, where according to the given probability
distribution σseedi−1 (see (37)).

• PARENT (agentidx) – returns the index of parent of the agentidx ∈
K \K1 : parentidx ∈ K : agentidx ∈ Iparentidx (see (28)).

• GET STATUS(agentidx, {status1, status2, . . .}) – returns the indexes
of the children of the agentidx with selected statuses – Iagentidx (see
(28)).

• METAEPOCH() – runs the metaepoch for the current deme.

• CHECK GLOBAL STOP () – checks the global stopping condition.

13

Pseudocode 5.1: Root agent’s algorithm (agj , j ∈ K1)

status← active
deme← GEN ROOT ()
stopCondition← false
newagidx← mind(deme, j)
send(newagidx,ACTIV ATE)
b receive(newagidx,ACTIV ATED)
repeat

children← GET STATUS(j, {active, stopped, new})
for each a ∈ children do send(a,RUNMETA)
if status = active
then METAEPOCH()

for each a ∈ children do b receive(a,READY)
for each a ∈ children do send(a,RUNSPROUT)
if status = active

then

seed← b1(deme)
newagidx← mind(deme, j)
send(newagidx, seed,ACTIV ATE)
b receive(newagidx,ACTIV ATED)

for each a ∈ children do b receive(a, SPROUTED)
if GET STATUS(j, {inactive}) = ∅
then status← stopped

stopCondition← CHECK GLOBAL STOP ()
until stopCondition
for each a ∈ children do send(a, FINISH)
status← inactive

• CHECK STOP COND() – checks the local stopping condition for
chosen deme.

Morever, we will use the functions bi, i ∈ k, l and mind introduced in
the HGS description, see (38), (27), (43), respectively. Messages used in
the agent activities described in the pseudocodes are sent and received using
proper communication primitives, that make possible asynchronous block-
ing b receive(agidx,message) and non-blocking send(agidx,message) oper-
ations. Such primitives operate using message queues. The details of such
a mechanism is standard (see e.g. [21]) and will not been explained in this
paper.

The Pseudocode 5.1 shows the algorithm of the root agent. The compu-
tation starts with running of the root agent agj, j ∈ K1. Its algorithm is

14

presented in Pseudocode 5.1).
The root agent agj, j ∈ K1 first generates the initial root deme using

GEN ROOT () function, then the metaepoch is run. Next, the agent per-
forms sprout action activating one of the child agents. Here, the main loop
of root agent is started. Issuing an order of running the metaepoch by its
children is followed by running its own metaepoch (if the status of the root
agent is active).

After receiving from its children the confirmation that their metaepochs
are finished, the sprout order for them is sent. Just like before, active root
agent follows with sprouting here.

After receiving confirmations of finishing the sprout action by its children,
the root agent checks their status – if there is no inactive child, the status
of root is set to stopped. Now the global stopping condition is checked, if
it is satisfied the computation is finished and all agents are stopped (an
appropriate order is issued). Otherwise, the loop continues.

Let us consider now the medium-level agent agj, j ∈ Kpar \ K1. Its
algorithm is described in Pseudocode 5.2.

After initializing some basic attributes such as status or loop control vari-
able, the medium-level agent starts working in a loop consisting of receiving
and fulfilling the following orders sent from its parent:

• ACTIV ATE – the deme is initialized and the status of the agent is
set to new.

• FINISH – the agent stops the computation and sends appropriate
message to all its children

• RUNMETA – the agent sends the same order to all its children then
runs its own metaepoch if its status is new or active. Now the agent
waits for the response from their children (READY). After checking
the stopping condition the status of the agent may be changed. In the
end READY message is sent to the parent.

• RUNSPROUT – if the children are not leaves of the agent tree, they
are ordered by the agent to do SPROUT action. If the status of
the agent is active, the sprout is performed. Now the agent waits
for SPROUTED message from all its children. If there is no inac-
tive children, the status of the agent is changed to stopped. Finally,
SPROUTED message is sent to the parent.

15

Pseudocode 5.2: Child agent (agj : j ∈ Kparent \K) pseudocode

status← inactive
finished← false
parentidx← PARENT (j)
while not finished

b receive(parentidx, order)
switch order

case ACTIV ATE

{
deme← GEN DEME(l(j), seed)
status← new

case FINISH

status← inactive
for each a ∈ GET STATUS(j, {active})
do send(a, FINISH)

finished← true

case RUNMETA

children← GET STATUS(j, {active, stopped, new})
if not children = ∅
then for each a ∈ children do send(j, RUNMETA)

if status ∈ {new, active}
then METAEPOCH()

for each a ∈ children do b receive(a,READY)
if CHECK STOP COND()
then status← stopped
else status← active

send(parentidx,READY)

case RUNSPROUT

if i < m− 1

then

{
for each a ∈ children
do send(a,RUNSPROUT)

if status = active

then

seed← bl(j)(deme)
newagidx← mind(deme, j)
send(newagidx, seed,ACTIV ATE)
b receive(newagidx,ACTIV ATED)

if i < m− 1

then

{
for each a ∈ children
do b receive(a, SPROUTED)

if GET STATUS(j, {inactive}) = ∅
then status = stopped

send(parentidx, SPROUTED)

Finally, the algorithm of the leaf-agents {agj}, j ∈ Km is described in
Pseudocode 5.3. After initializing basic attributes such as status or loop
control variable, the leaf agent starts working in a loop consisting of receiving
and fulfilling the following orders sent from its parent:

16

Pseudocode 5.3: Leaf agent (agj , j ∈ Km) pseudocode

status← inactive
finished← false
parentidx← PARENT (j)
while not finished

b receive(parentidx, order)
switch order

case ACTIV ATE

{
deme← GEN DEME(m, seed)
status← new

case FINISH

{
status← inactive
finished← true

case RUNMETA

if status ∈ {new, active}
then METAEPOCH()

if CHECK STOP COND()
then status← stopped
else status← active

send(parent,READY)

• ACTIV ATE – the deme is initialized and the status of the agent is
set to new.

• FINISH – the agent stops the computation

• RUNMETA – the agent runs its metaepoch if its status is new or
active. After checking the stopping condition the status of the agent
may be changed. In the end READY message is sent to the parent.

6. Stochastic operators associated with the agents’ actions

6.1. General structure of operators

Each action αj of the agent agj, j ∈ K can be represented as a pair of
functions (δjα, ϑ

j
α). Function

δjα : X → M({0, 1}) (30)

makes it possible to take the decision whether the action can be performed.
The action αj is performed with probability δjα(x)(1) by the agent agj at
state x ∈ X and rejected with probability δjα(x)(0).

Furthermore, the formula

ϑjα : X →M(X) (31)

17

defines non-deterministic state transition functions showing the effect of ex-
ecuting action αj by the agent agj. The value of ϑjα(x)(y) denotes the prob-
ability of passing from the state x to y during the execution of αj.

If any action is rejected, the trivial state transition

ϑnull : X →M(X), ϑnull(x)(y) =

{
1 if x = y
0 otherwise

(32)

is performed.
The probability transition function for action αj performed by the agent

agj, i.e. %jα : X →M(X) is then defined by the formula

%jα(x)(y) = δjα(x)(0) · ϑnull(x)(y) + δjα(x)(1) · ϑjα(x)(y), (33)

where x ∈ X denotes a current state and y ∈ X is a consecutive state
resulting from a conditional execution of αj.

We will consider two type of actions:

• metaepoch actions {metaj| j ∈ K} available for all agents;

• sprouting actions {sproutj| j ∈ Kpar} defined only for the parental
agents.

6.2. Metaepoch operators

Let us consider two consecutive states x, y ∈ X appearing during the
HGS computation. We will denote by (sj, xj) the components of x and by
(zj, yj) the components of y.

We will start with the simplest one called metaj = (δjmeta, ϑ
j
meta). If

j ∈ K1 (the root deme) we have

δjmeta(x)(1) =

{
1 if sj = active,

0 if sj 6= active
(34)

and for j ∈ K \K1 (lower level demes)

δjmeta(x)(1) =

{
1 if sj = active or sj = new,

0 if sj = inactive or sj = stopped,
(35)

18

and δjmeta(x)(0) = 1 − δjmeta(x)(1). Now on the base of Observation 2.4,
setting i = l(j) we obtain

ϑjmeta(x)(y) = τi(x
j, yj)·

Si(xj) [(xj − yj, fi) < lsci] if zj = stopped and
sη = zη, xη = yη, ∀η ∈ K \ {j},

(1− Si(xj)) [(xj − yj, fi) ≥ lsci] if zj = active and
sη = zη, xη = yη, ∀η ∈ K \ {j},

0 otherwise.
(36)

6.3. Sprouting operators

Let us introduce several technical notions necessary for defining sprout
operators. First, we consider the following family of probability distributions:{

σξi

}
ξ∈Ui, i=1,...,m−1

∈M(Ui+1);

σξi (Ui+1|ξ) = 1, ∀ξ ∈ Ui, i = 1, . . . ,m− 1

(37)

that are concentrated on the clusters Ui+1|ξ (see (21)) (we will use it later
for sprouting purposes).

Now we are able to define the family stochastic functions, that give us
probability of creating the deme of individuals from Ui+1|ξ by sampling
according to the probability distribution σξi . The probability of obtain-
ing the arbitrary y ∈ Xi may be computed using the Observation 2.1 as
Prµi+1

ρ (y), ρ = σξi .
Let us introduce a family of the following functions {bi}, i = 1, . . . ,m−1,

such that:

bi : Xi 3 x→ η ∈ Ui;

η = min{ζ ∈ Ui; xζ > 0, fi(ζ) ≤ fi(γ)∀γ ∈ Ui}.
(38)

Each of these functions selects the best fitted individual η having the minimal
genotype (according to an arbitrary order in Ui) from the deme with the
vector x.

19

Finally, let us introduce the family of stochastic functions

Ti : Xi →M (Xi+1) ; Ti(x, y) = Prµi+1
ρ (y), ρ = σξi , ξ = bi(x),

i = 1, . . . ,m− 1.
(39)

In order to compare an individual to a deme we define the functions
{Ci}i=1,...,m−1 such that

Ci : Ui ×Xi+1 → {0, 1} (40)

and Ci(ξ, x) returns 1 if the individual ξ is close enough in some sense to
the deme represented by x and 0 otherwise. An important particular case of
{Ci}i=1,...,m−1 family checks the distance between the phenotype codei(ξ) and
the center of the deme phenotypes 1

µi+1

∑
ξ∈Ui+1

xξ codei+1(ξ), so that

Ci(ξ, x) =

 1 if
∥∥∥codei(ξ)− 1

µi+1

∑
ξ∈Ui+1

xξ codei+1(ξ)
∥∥∥ ≤ disti

0 otherwise,
(41)

where {disti}, i = 1, . . . ,m− 1 are parameters of the family.
Next, let us define the sets of labels of child nodes of j inactive in the

state x ∈ X.
I inj (x) = {η ∈ Ij|sη = inactive} , (42)

where (sη, xη) is a component of the state x ∈ X and j ∈ Kpar. Moreover,
we define Iasj (x) = Ij \ I inj (x). We will also need two functions

a : X ×Kpar 3 (x, j)→ a(x, j) = #I inj (x) ∈ N,

mind : X ×Kpar → K; mind(x, j) ∈ I inj (x)
(mind(x, j))l(j)+1 = min

{
ηl(j)+1|η ∈ I inj (x)

}
.

(43)

Now we are ready for defining the decision functions and the Markov
kernels for the sprout operations of demes indexed by j ∈ Kpar;

δjsprout(x)(1) =

1 if sj = active and

Ci(ζ, xη) = 0 ∀η ∈ Iasj (x),
for ζ = bi(x

j),

0 otherwise

(44)

and δjsprout(x)(0) = 1− δjsprout(x)(1). Setting i = l(j) we have:

20

ϑjsprout(x)(y) =

Ti(xj, w) if ((zj = active and a(x, j) > 1) or
(zj = stopped and a(x, j) = 1)) and
zmind(x,j) = new and ymind(x,j) = w and
sη = zη, yη = xη, ∀η ∈ K, η 6= mind(x, j),

0 otherwise.
(45)

7. The transition probability function for the whole system

Let us take two arbitrary Markov kernels

%1, %2 : X →M(X). (46)

Their composition %2 ◦%1 : X →M(X) can be computed using the following
formula

%2 ◦ %1(x)(y) =
∑
u∈X

%1(x)(u) %2(u)(z), ∀x, y ∈ X. (47)

In the sequel we shall show that for some actions αj, αj
′

of the same type α
their kernels commute, i.e.

%jα ◦ %j
′

α = %j
′

α ◦ %jα,

which means that the effect of the actions’ execution is independent upon the
order of the execution. And this in turn means that the actions do not need
mutual synchronization, therefore they can be safely performed in parallel.

We shall start from defining a property of actions especially useful in the
context of the commutativity.

Definition 7.1. Let L be a nonempty subset of K. We say that a kernel
% : X →M(X) is localized in L if

1) it does not change components of the system state describing demes
from outside L, i.e. for any x, y ∈ X such that there exists j ∈ K \ L
with (sj, xj) 6= (zj, yj) we have

%(x)(y) = 0; (48)

21

2) it does not depend upon components of the system state describing
demes from outside L, i.e. for any x, x, y, y ∈ X equalities

(sj, xj) = (zj, yj), (sj, xj) = (zj, yj) for j 6∈ L

and
(sj, xj) = (sj, xj), (zj, yj) = (zj, yj) for j ∈ L

imply that
%(x)(y) = %(x)(y). (49)

The usefulness of the locality property is shown by the following propo-
sition.

Proposition 7.1. Any two kernels localized in disjoint sets of demes com-
mute, i.e. for every %1 localized in L1 and %2 localized in L2 with L1∩L2 = ∅
we have

%2 ◦ %1 = %1 ◦ %2.

Proof. Take arbitrary x, y ∈ X. Let us compute the composition %2 ◦ %1.
Namely

%2 ◦ %1(x)(y) =
∑
u∈X

%1(x)(u)%2(u)(y). (50)

Thanks to (48) the sum is in fact taken over such u = (tj, uj)j∈K that

(tj, uj) = (sj, xj) for j ∈ K \ L1 (51)

(tj, uj) = (zj, yj) for j ∈ K \ L2. (52)

But since L1 ∩ L2 = ∅ we have that L1 ⊂ K \ L2 and L2 ⊂ K \ L1. Hence
either (sj, xj) 6= (zj, yj) for some j ∈ K \ (L1 ∪ L2) and then both sides
of (50) are equal to 0, or the only u satisfying conditions (51) is given by the
following formula

(tj, uj) =

(sj, xj) for j ∈ L2

(zj, yj) for j ∈ L1

(sj, xj) = (zj, yj) for j ∈ K \ (L1 ∪ L2).

Furthermore, if we take u ∈ X such that (t
j
, uj) = (zj, yj) for j ∈ L2 (and

hence j 6∈ L1) and (t
j
, uj) = (sj, xj) for j 6∈ L2, then from (49) we obtain

%2(u)(y) = %2(x)(u).

22

Thus,
%2 ◦ %1(x)(y) = %1(x)(u)%2(x)(u).

Exactly the same result is obtained when we compute %1 ◦ %2(x)(y).

Proposition 7.1 is the tool for showing the commutativity of the vast part
of considered actions. It is performed in the following series of propositions
and corollaries.

Proposition 7.2. Action metaj is localized in {j}.

Proof. It is a straightforward consequence of the definition of δjmeta,ϑ
j
meta and

ϑnull, as we note that δjmeta depends only on sj, ϑ
j
meta depends only on xj and

it changes only sj and xj. ϑnull does not depend on anything and does not
change anything.

Corollary 7.3. Kernels of metaepoch actions performed in different demes
commute, i.e. for j, j′ ∈ K such that j 6= j′ we have

%jmeta ◦ %
j′

meta = %j
′

meta ◦ %
j
meta.

Proposition 7.4. Action sproutj is localized in {j} ∪ Ij.

Proof. Condition (48) is easily verified because ϑjsprout changes at most com-

ponents sj, smind(x,j) and xmind(x,j) with mind(x, j) ∈ Ij. Similarly, to
prove (49) it is enough to note that δjsprout depends only on sj, xj and xη for

η ∈ Iasj (x) ⊂ Ij, whereas ϑjsprout depends only on xj and sη for η ∈ Ij.

Corollary 7.5. Kernels of sprouting actions performed in different demes
such that neither of them is the parent of the other commute, i.e. for j, j′ ∈ K
such that j 6= j′, j′ 6∈ Ij and j 6∈ Ij′ we have

%jsprout ◦ %
j′

sprout = %j
′

sprout ◦ %
j
sprout.

The following proposition fills the gap. It is, however, not a consequence
of Proposition 7.1 and it has to be proved in a different way.

Proposition 7.6. Kernels of sprouting actions performed in different demes
such that one of them is the parent of the other commute, i.e. for j, j′ ∈ K
such that j 6= j′, j′ ∈ Ij and j ∈ Kpar we have

%jsprout ◦ %
j′

sprout = %j
′

sprout ◦ %
j
sprout.

23

Proof. Take arbitrary x, y ∈ X. We have to compute

%j
′

sprout ◦ %
j
sprout(x)(y) =

∑
u∈X

%j
′

sprout(u)(y)%jsprout(x)(u).

Let us start by noting that if j′ = mind(x, j), then during sproutj it changes
its status from inactive to new. In neither of them it may sprout, hence it is
forced to perform null action, which is trivially commutative with any other.
Thus, without the loss of generality we can assume that j′ 6= mind(x, j).
Similarly, when the conditions of the performability of sprout are not satisfied
in j or j′ we obtain at least one null term, so the commutativity becomes
trivial. To sum up, the only interesting case is when

j′ ∈ Ij, j′ 6= mind(x, j), sj = sj
′
= active

Cl(j)
(
bl(j)(x

j), xη
)

= 0 for η ∈ Iasj (x)

Cl(j′)
(
bl(j′)(x

j′), xη
)

= 0 for η ∈ Iasj′ (x).

In this case the decision of performing sproutj is obviously positive. More-
over, from (45) we have that

ϑjsprout(x)(u) = Tl(j)(xj, w)

for tj = active or stopped (depending on a(x, j)), tmind(x,j) = new, umind(x,j) =
w and (tη, uη) = (sη, xη) for η 6= mind(x, j). In particular tj

′
= sj

′
= active

and uj
′
= xj

′
. As a consequence

Cl(j′)
(
bl(j′)(u

j′), xη
)

= Cl(j′)
(
bl(j′)(x

j′), xη
)

= 0

for η ∈ Iasj′ (u) = Iasj′ (x). Hence, also the decision of performing sproutj
′

is
positive. Moreover, I inj′ (u) = I inj′ (x), thus a(u, j′) = a(x, j′) andmind(u, j′) =
mind(x, j′). Hence, we obtain

ϑj
′

sprout(u)(y) = Tl(j′)(uj
′
, w′) = Tl(j′)(xj

′
, w′)

for zj
′
= active or stopped (depending on a(x, j′)), zmind(x,j′) = new,

ymind(x,j′) = w′ and (zη, yη) = (tη, uη) for η 6= mind(x, j′). To sum up, the
only components of y that are not uniquely determined are ymind(x,j) and
ymind(x,j′). Hence, we obtain∑

u∈X

%j
′

sprout(u)(y)%jsprout(x)(u) =
∑

w∈Xl(j)

∑
w′∈Xl(j′)

Tl(j)(xj, w)Tl(j′)(xj
′
, w′).

The same result is obtained when we compute %jsprout ◦ %
j′

sprout(x)(y).

24

Corollary 7.7. Kernels of any two sprouting actions performed in different
parental demes commute, i.e. for j, j′ ∈ Kpar such that j 6= j′ we have

%jsprout ◦ %
j′

sprout = %j
′

sprout ◦ %
j
sprout.

The agent based synchronisation scheme ensures, that the metaepoch
steps are completed by all active demes before the sprouts are activated
(see Section 5). The transition probability function for the metaepoch step
τmeta : X →M(X) is the composition of Markov kernels %jmeta, j ∈ K, so

τmeta =©j∈K %
j
meta, (53)

where© denotes the group composition operator. The order of composition
(53) is unimportant (see Corollary 7.3). Similarly, the transition probability
function for the sprout step τsprout : X → M(X) is the composition of
Markov kernels %jsprout, j ∈ Kpar, so

τsprout =©j∈Kpar %jsprout, (54)

where again the order of composition is unimportant (see Corollary 7.7).
The transition probability function τ : X →M(X) for the whole system

is the composition imposed by metaepoch and sprout steps, so

τ = τsprout ◦ τmeta. (55)

8. Conclusions

The families of stochastic operators {τi}i=1,...,m, {Ti}i=1,...,m−1, and deter-
ministic functions {Ci}i=1,...,m−1, (see (25), (39), (40)) constitute the core of
the stochastic dynamic of the HGS strategy. We delivered their important
case based on the Vose’s concept of SGA [16] in Section 2. The presented
stochastic model can be extended to other cases of encoding and genetic
operations by redefining these operators.

The agent based scheme presented in this paper introduced minimum
synchronisation that allows to express HGS behaviour by the single Markov
chain dynamics. More relaxed synchronisation scheme that allows for inde-
pendent branch development was presented in [22].

Agent-based synchronisation mechanism allows to further enhance the
system in order to introduce inter-agent information exchange resulting, e.g.,

25

in adaptation of parameters of local variation operators, following the trends
observed in the neighboring agents. Agents may also participate in enhancing
the technical level of the computation, taking care of, e.g., load balancing on
the computational nodes.

The proposed pseudocode describes a system that may be easily imple-
mented after performing more full analysis and design. The required matters
that were not covered in the pseudocode are, e.g., data structures for holding
the information about HGS tree, the agent’s life-cycle (initiation of all agents
in the beginning of computation should be replaced by dynamic creation and
disposal, etc.).

Therefore, two main goals of the presented pseudocode are: explanation
of the actual algorithms of the system synchronisation and making possible
maintaining Markov-conditions (dependence of the subsequent state only on
the last perceived one) for the verification of the asymptotic features of the
model.

The transition probability function for the whole system was defined along
with sketching the proofs of commutativity of sprout and metaepoch actions.
These proofs are necessary to allow Markov-chain modelling of this parallel
system.

The proposed synchronisation mechanism allows easy implementation of
the system in distributed computational environments because of easy, scal-
able communication structure (along inter-agent tree edges).

Acknowledgments

The work has been partially supported by the Polish Ministry of Science
and Higher Education grant no. NN 519 447739.

[1] A. Byrski, R. Schaefer, Stochastic model of evolutionary and immuno-
logical multi-agent systems: Mutually exclusive actions, Fundamenta
Informaticae 95 (2-3) (2009) 263–285.

[2] R. Schaefer, A. Byrski, M. Smo lka, Stochastic model of evolutionary and
immunological multi-agent systems: Parallel execution of local actions,
Fundamenta Informaticae 95 (2-3) (2009) 325–348.

[3] M. Carvalho, C. Perez, An evolutionary multi-agent approach to
anomaly detection and cyber defense, in: CSIIRW ’11: Proceedings

26

of the 7th Annual Workshop on Cyber Security and Information Intel-
ligence Research, ACM, 2011.

[4] W. D. Whitley, S. B. Rana, R. B. Heckendorn, Island model genetic
algorithms and linearly separable problems, in: Selected Papers from
AISB Workshop on Evolutionary Computing, Springer-Verlag, London,
UK, 1997, pp. 109–125.

[5] R. Schaefer, J. Ko lodziej, Genetic search reinforced by the population
hierarchy, in: K. D. Jong, et al. (Eds.), Foundations of Genetic Algo-
rithms VII, Morgan Kaufmann, 2003, pp. 369–385.

[6] J. Ko lodziej, W. Jakubiec, M. Starczak, R. Schaefer, Hierarchical genetic
strategy applied to the problem of the coordinate measuring machine ge-
ometrical errors, in: T. Burczyński, et al. (Eds.), IUTAM’02 Symposium
on Evolutionary Methods in Mechanics, 24-27 September 2002, Cracow,
Poland, Kluwer Ac. Press, 2004, pp. 22–30.

[7] J. Ko lodziej, F. Xhafa, Enhancing the genetic-based scheduling in com-
putational grids by a structured hierarchical population, Future Gener-
ation Computer Systems 27 (2011) 1035–1045.

[8] N. N. Schraudolph, R. K. Belew, Dynamic parameter encoding for ge-
netic algorithms, Machine Learning 9 (1992) 9–21.

[9] D. Whitley, K. Mathias, P. Fitzhorn, Delta coding: An iterative search
strategy for genetic algorithms, in: R. Belew, L. Booker (Eds.), Proc. of
the 4th International Conference on Genetic Algorithms, Morgan Kauf-
mann, 1991, pp. 77–84.

[10] M. Srinivas, L. Patnaik, Adaptive probabilities of crossover and muta-
tion in genetic algorithms, IEEE Transactions on Systems, Man and
Cybernetics 24 (1994) 656–667.

[11] J. Zhang, H. Chung, W. Lo, Clustering-based adaptive crossover and
mutation probabilities for genetic algorithms, IEEE Transactions on
Evolutionary Computation 11 (2007) 326–335.

[12] X. Yueju, L. Shuguang, Y. Jingfeng, C. Qiang, Genetic algorithm based
adaptive neural network ensemble and its application in predicting car-
bon flux, in: Proc. of the 3rd International Conference on Natural Com-
putation (ICNC 207), IEEE Press, 2007, pp. 183–187.

27

[13] R. Schaefer, H. Telega, Foundation of Global Genetic Optimization,
Vol. 74 of Studies in Computational Intelligence, Springer Verlag, Berlin,
Heidelberg, New York, 2007.

[14] A. E. Nix, M. D. Vose, Modeling genetic algorithms with Markov chains,
Annals of Mathematics and Artificial Intelligence 5 (1992) 79–88.

[15] L. M. Schmitt, Theory of genetic algorithm, Theoretical Computer Sci-
ence 259 (2001) 1–61.

[16] M. Vose, The Simple Genetic Algorithm: Foundations and Theory, MIT
Press, Cambridge, MA, USA, 1998.

[17] P. Billingsley, Probability and Measure, Wiley-Interscience, 1995.

[18] K. Cetnarowicz, M. Kisiel-Dorohinicki, E. Nawarecki, The application of
evolution process in multi-agent world (MAW) to the prediction system,
in: M. Tokoro (Ed.), Proc. of the 2nd Int. Conf. on Multi-Agent Systems
(ICMAS’96), AAAI Press, 1996.

[19] A. Byrski, R. Schaefer, M. Smo lka, C. Cotta, Asymptotic analy-
sis of computational multi-agent systems, in: R. Schaefer, C. Cotta,
J. Ko lodziej, G. Rudolph (Eds.), Proceedings of 11th International Con-
ference on Parallel Problem Solving from Nature — PPSN XI, Vol. 6238
of LNCS, Springer-Verlag, 2011, pp. 475–484.

[20] A. Byrski, M. Kisiel-Dorohinicki, M. Carvalho, A crisis management
approach to mission survivability in computational multi-agent systems,
Computer Science 11 (2010) 99–113.

[21] A. Silberschatz, P. B. Galvin, G. Gagne, Operating System Concepts
with Java 8th Edition, Willey, 2010.

[22] J. Momot, K. Kosacki, M. Grochowski, P. Uhruski, R. Schaefer, Multi-
agent system for irregular parallel genetic computations, in: W. I.
Grosky, F. Plasil (Eds.), SofSem 2002: Theory and Practice of Infor-
matics, Vol. 3038 of LNCS, Springer Verlag, 2004, pp. 623–630.

28

