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Abstract. The refined model for the biologically inspired agent-based computation systems EMAS
and iEMAS conforming to the BDI standard is presented. Moreover, their evolution is expressed
in the form of the stationary Markov chains. This paper generalizes the results obtained by Byrski
and Schaefer [7] to a strongly desired case in which some agent’s actions can be executed in paral-
lel. In order to find the Markov transition rule, the precise synchronization scheme allowing for the
stepwise stochastic evolution of the system has to be established. The crucial feature which allows
to compute the probability transition function in case of parallel execution of local actions is the
commutativity of their transition operators. Some abstract conditions expressing such a commuta-
tivity which allow for easy classification of agent’s actions as local or global ones are formulated
and verified. The above-mentioned Markov model constitutes the basis of the asymptotic analysis
of EMAS and iEMAS necessary to evaluate their search possibilities and efficiency.
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1. Introduction

Evolutionary Multi-Agent Systems (EMAS) proposed in 1996 by Cetnarowicz [9] and later researched in
[4, 2, 3, 12] try to enrich the classical evolutionary mechanisms using social inspirations [1]. The idea of
EMAS was extended to the system iEMAS that involves also the immunologically inspired mechanisms
(see [4, 2, 3]). The paper introduces the formal models of EMAS and iEMAS dynamics which express
their evolution in the form of he stationary Markov chains.

Agents in EMAS may be perceived as autonomous individuals. Every agent is capable of observing
its environment by gathering information which it finds important, making decisions which affect its
activity and performing actions which lead to changes in the overall state of the system (see e.g. [10, 11]).

We will focus on system that solves the global optimization problems which consist of finding all
global minimizers arg min{Φ(x)}, x ∈ D of the objective: Φ : D → R+ where D ⊂ RN stands for
the admissible set of solutions. Every EMAS agent contains an immutable genotype, which stands for
the encoded solution of the problem. Genotypes belong to the binary or real-number based genotype
universum U .

Agents are assigned to locations (analogous of ”islands”, see e.g. [8]) and may migrate among them.
Genetic operations performed on the agent’s genotypes, such as crossover and mutation, are similar to
those used in classical evolutionary algorithms.

Each agent is transformed asynchronously in the EMAS system. Selection mechanisms correspond
to their prototype and are based on the existence of a non-renewable resource called life energy, which is
gained and lost when agents perform actions [12]. Direct employment of different selection techniques
(such as proportional or tournament-based) is impossible because of the asynchronous nature of the sys-
tem and decomposition of the population. In order to enhance the possibilities of managing selection,
especially to flexible change the selection pressure, the dedicated, agent-based techniques can be intro-
duced. One such technique of enhancing EMAS consists of the introduction of a new group of agents
acting as lymphocytes [2]. They are responsible for recognizing (assuming some predefined affinity func-
tion) and penalizing (by decreasing the agent’s energy or even making it inactive) agents with genotypes
similar to the pattern possessed. Thus immunological EMAS (iEMAS) is created [3].

This paper generalizes the results obtained by Byrski and Schaefer [7] to the strongly desired case in
which some agent’s actions can be executed in parallel. The agent’s actions may fall into two separate
classes: global and local. Global actions depend on and may change the whole state of the system, so
their execution has to be mutually excluded. Each local action depends and may change only the state of
the agents in the location of the agent that it currently executes, so they may be performed concurrently
in separate locations.

In order to find the Markov transition rule, the precise synchronization scheme allowing for the
stepwise stochastic evolution of the system have to be established. The additional governing agents
and the mechanism of the blocking communication among them are introduced. These agents allow for
executing single global action or at most one local action in each location in the single evolution step.
The space of states and the definitions of actions as well as their transition operators described in [7] will
be intensively utilized.

The main tool for obtaining the final formula is the Bayes theorem (as in the case of previous pa-
per [7]) which allows to derive the formula of probability transition as the barycentric combination of
elementary stochastic transformations implemented in particular actions. The crucial feature that allows
to establish the probability transition function in case of parallel execution of local actions is commuta-



R. Schaefer, A. Byrski, M. Smołka / Stochastic Model (. . . ) Parallel Execution of Local Actions 1003

tivity of their transition operators. The abstract conditions of such commutativity which allow for easy
classifying of agent’s or T-cell’s actions as local or global ones will be formulated and verified.

The Markov model mentioned above constitute the basis of the asymptotic analysis of EMAS ans
iEMAS systems in order to evaluate their search possibilities and efficiency. It seems to be the way of
verifying their probabilistic guarantee of success (e.g. by checking the ergodicity) and comparing with
the other stochastic algorithms by comparing their limit invariant measures (if their exist).

2. EMAS definition

2.1. EMAS structure

EMAS contains a dynamic collection of agents that belong to the predefined finite set Ag one-to-one
mapped on set U × {1, . . . , p}, where p is assumed maximum number of agents containing the same
genotype. In other words, every agent aggen,n ∈ Ag contains one potential solution of the given problem
encoded as gen ∈ U , however, there may be more than one agent present in the system, containing this
solution and the index n ∈ {1, . . . , p} is used to distinguish them. We restrict our considerations to the
case of finite universa #U = r < +∞.

Active EMAS agents are contained in locations described by a set of immutable integer labels Loc =
{1, . . . , s}. The locations are linked by the channels along which agents may migrate from one location
to another. The topology of channels is determined by the symmetric relation Top ⊂ Loc2. We assume
that the connection graph 〈Loc, Top〉 is coherent, and does not change during the system evolution.

The state of a single agent is characterized by the vector ãggen,n from [0, 1]s such as at most one entry
is strictly positive, which stands for the fraction of the total energy gathered by the agent. The position
of the positive entry in ãggen,n denotes the location from {1, . . . , s} in which the agent is present. When
ãggen,n is a zero vector it means that the agent is inactive and is not present in any location.

EMAS may be modeled as the following tuple:

< U,Loc, Top, Ag, {agseli}i∈Loc, locsel, {LAi}i∈Loc,MA, ω,Act > . (1)

where:

MA (master agent) – it is used to synchronize the work of the locations; it allows to perform either one
of global actions or all local ones signalled at a time. This agent is also used to introduce necessary
synchronization into the system.

locsel : X →M(Loc) is the function used by MA to determine which location should be allowed to
perform the next action,

LAloc (local agent) – assigned to each location; it is used to synchronize the work of computational
agents present in its location, LAloc chooses the agent and let it evaluate the decision and perform
the action at the same time asking MA whether this action may be performed.

agselloc : X →M(Ag) is the family of functions used by local agents to select agent that may per-
form the action, so every location loc ∈ Loc has its own function agselloc. The probability
agselloc(x)({gen}) vanishes when the agent aggen,n is inactive in the state x ∈ X or it is present
in other location than loc,
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ω is the function used by agents for selecting actions from the set Act, both these symbols will be
described later.

Here and later M(·) stands for the space of probabilistic measures.

2.2. EMAS state

Let us introduce the set of three-dimensional, incedence and energy matrices Λ (the same as in [7]) with
s layers (corresponding to all locations) ince(i) ∈ U × {1, . . . , p}, i = 1, . . . , s. The layer ince(i)
will contain energies of agents in i-th location a.e. ince(i, gen, n) = ãggen,n(i). In other words, if
ince(i, gen, k) > 0, it means that the k-th clone of the agent containing the gene gen ∈ U is active, its
energy equals ince(i, gen, k) and it is located in i-th location.

Describing the space of states in e.g. [6] we assumed that there may be only one agent representing
one unique genotype in all locations present in the system however now we relax this assumption making
possible to create more than one agent in the system containing the same genotype (what is quite common
in evolutionary computation, see e.g. [13]).

We need to introduce following assumptions and coherency conditions for the space of system states:

• each layer ince(i) contains at most qi values greater than zero, what denotes maximum capacity
of the i-th location,

• reasonable values of p should be greater or equal to 1 and less or equal to
∑s

i=1 qi. We assume
the most convenient solution p =

∑s
i=1 qi, by which each configuration of agents in locations is

available, respecting the constrained total number of active agents
∑s

i=1 qi. Increasing of p over
this value does not enhance the descriptive power of the presented model,

• (·, j, k)-th column (which makes ãgj,k) contains at most one value greater than zero, what ex-
presses that the agent with k-th copy of j-th genotype may be present in only one location at a
time, of course other agents containing copies of j-th genotype may be present in other locations,

• incedence and energy matrix entries are non-negative ince(i, j, k) ≥ 0, ∀ i = 1, . . . , s, j =
1, . . . , r, k = 1, . . . , p and

∑s
i=1

∑r
j=1

∑p
k=1 ince(i, j, k) = 1, what means that total energy

contained in the whole system is constant, equal to 1.

Gathering all these conditions, the set of three-dimensional incedence and energy matrices may be
described in the following way:

Λ =



ince ∈ [0, 1]s·r·p :

s∑

i=1

r∑

j=1

p∑

k=1

ince(i, j, k) = 1

and ∀ i = 1, . . . , s
r∑

j=1

p∑

k=1

[ince(i, j, k) > 0] ≤ qi

and ∀j = 1, . . . , r, k = 1, . . . , p

s∑

i=1

[ince(i, j, k) > 0] ≤ 1

}
(2)

where [·] denotes the value of the logical expression contained in the parentheses.
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EMAS space of states consists of the set of three-dimensional incedence and energy matrices:

X = Λ (3)

Depending on context, it will be convenient to describe the state of the system by both x ∈ X or
ince ∈ Λ. The advantage of this solution may be clearly seen in Section 3.

2.3. EMAS behavior

Every agent starts its work in EMAS immediately after being activated. In every observable moment a
certain agent gains the possibility of changing the state of the system by executing its action.

There are two types of agents’ actions of agents may be divided into two distinct types:

• global – they change the state of the system in two or more locations, only one global action may
be performed at a time,

• local – they change the state of the system inside one location respecting only the state of local
agents, only one local action for one location may be performed at a time.

Functions locsel and agseli∈Loc (see (1)) are used do determine, which agent will be the next one
to interact with the system. After being chosen, the agent chooses one of the possible actions, then it
checks whether the associated condition is true, if so, the agent performs the action. The agent suspends
its work in the system after performing the action which results in its death.

The more detailed description of computational agent behavior will be given by the algorithm pseudo-
code (see Listing 1) in Section 2.5.

Every agent may perform actions contained in a predefined, finite set Act. The action, whose decision
is to be evaluated by an agent, is chosen using the following function

ω : U ×X →M(Act). (4)

Notice, that the selection of action by all agents containing the same genotype gen in the same state x
is performed according to the same probability distribution ω(gen, x) and does not depend on the whole
agent’s identifier gen, n ∈ Ag. In the simplest case ω returns the uniform probability distribution over
Act for all (gen, x) ∈ U ×X

Every action α ∈ Act is the pair (δα, ({ϑgen,n
α }, (gen, n) ∈ U × {1, . . . , p})) where

δα : U × {1, . . . , p} ×X → M({0, 1}) (5)

will denote the decision. The action α is performed with the probability δα(gen, n, x)({1}) by the agent
aggen,n in the state x ∈ X i.e. when the decision δα is undertaken (δα is positively evaluated). Moreover

ϑgen,n
α : X →M(X) (6)

defines the non-deterministic state transition caused by the execution of the action α by the agent aggen,n.
The trivial state transition

ϑnull : X →M(X) (7)
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such that for all A being the measurable set in X and all x ∈ X

ϑnull(x)(A) =

{
1 if x ∈ A

0 otherwise
(8)

is performed with the probability δα(gen, n, x)({0}) i.e. when the decision δα is not undertaken (δα is
evaluated as zero).

We assume that agents in EMAS perform the actions contained in the following set:

Act = {repr, get, migr} (9)

where:

repr the decision of get is based on checking whether there are neighboring agents in the same location,
if certain neighbor has enough energy to reproduce, new agent is activated (its genotype is based
on the genotype of its parents) and energy is transferred from the parents to the offspring agent,

get the decision of get is based on checking whether there are neighboring agents in the same location,
if this condition is true, the agent chooses one of its neighbors and compares its genotype with own
using predefined fitness function, then part of energy is transferred from worse to better agent,

migr the decision of migr is based on checking whether there are any neighboring locations, if this
condition is true the agent is removed from its location and placed in one of neighboring locations.

The detailed descriptions of decisions and state transition functions for these actions may be found in
[7].

We will use the family of functions %gen,n
α : X →M(X) where gen ∈ U , n = 1, . . . , p, α ∈ Act.

Each of them expresses the probability transition imposed by agent aggen,n that performs the action
α ∈ Act. They are given by the general formula:

%gen,n
α (x)(A) = δα(gen, n, x)({0}) · ϑnull(x)(A) + δα(gen, n, x)({1}) · ϑgen,n

α (x)(A) (10)

The definitions of the probability transition functions for each action is presented in observations 1–3 in
[7].

2.4. Commutativity of local actions

Regarding the notions of global and local actions mentioned in Section 2.3 we divide the Act set in the
following way:

Act = Actgl ∪Actloc (11)

Speaking informally, local actions (elements of Actloc) change only the entries of the layer ince(i) of
the incedence and energy matrix if the location i ∈ Loc contains the agent performing certain action.
Moreover these actions do not depend on other layers of ince. Action null is obviously ’the most local
one’, because it does not change anything at all.

The above definition can be formalized as follows. The action α ∈ Act is local (α ∈ Actloc) when
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1. α does not change anything except the part of the state (i.e. ince(l) being the l−th layer in ince
matrix) that describes the location l in which aggen,n is performing the action α:

∀ ince ∈ X : %gen,n
α (ince)(Al(ince)) = 1, (12)

where
Al(ince) = {incenext ∈ X : ince(i) = incenext(i) for i 6= l},

and incenext denotes one of the state that can be reached at step immediately following the state
in which the state x appears,

2. α is independent upon any other layers of ince:

∀ ince1, ince2 ∈ X, ince1(l) = ince2(l)
∀B1 ⊂ Al(ince1), B2 ⊂ Al(ince2), πl(B1) = πl(B2) :

%gen,n
α (ince1)(B1) = %gen,n

α (ince2)(B2); (13)

here πl : [0, 1]s·r·p → [0, 1]r·p denotes the natural projection onto the l-th layer.

πl(ince) = ince(l). (14)

All other actions are considered global (elements of Actgl).

Proposition 2.1. Let %1, %2 : X → M(X) satisfy (12) and (13) with, respectively, l1 and l2, l1 6= l2.
Then ∫

X
%2(y)(A)%1(x)(dy) =

∫

X
%1(y)(A)%2(x)(dy) (15)

for all Borel measurable subsets A of X .

Proof Let us fix x = ince ∈ X . In the sequel we shall use a concise notation of l-th layer of x, i.e.

xl = ince(l) ∈ [0, 1]rp.

Denote by %2,1(x)(A) the left-hand side of (15). First let us show that the measure %2,1(x) is concentrated
on the following set.

Al1,l2(x) = {x′ ∈ X : x′i = xi for i 6= l1 and i 6= l2}

In other words, we shall show that
%2,1(x)(Al1,l2(x)) = 1. (16)

To this end, let us note that the following obvious inclusions hold.

Al1(x) ⊂ Al1,l2(x), Al2(x) ⊂ Al1,l2(x)

Moreover, if we take any y ∈ Al1(x) than for every z ∈ Al2(y) we have

zi = yi for i 6= l2
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and, since yi = xi for i 6= l1, we have also that

zi = xi for i 6= l1, i 6= l2,

which means that
Al2(y) ⊂ Al1,l2(x).

A consequence of the latter inclusion together with (12) is the following equality holding for all y ∈
Al1(x).

%2(y)(Al1,l2(x)) = 1. (17)

Now note that another consequence of (12) is that

%2,1(x)(Al1,l2(x)) =
∫

X
%2(y)(Al1,l2(x))%1(x)(dy) =

∫

Al1
(x)

%2(y)(Al1,l2(x))%1(x)(dy).

Finally, from (17) and, again, (12) we have

%2,1(x)(Al1,l2(x)) =
∫

Al1
(x)

%1(x)(dy) = %1(x)(Al1(x)) = 1.

Hence (16) holds. Note that it is symmetric with respect to indices 1 and 2, so the same condition holds
for %1,2(x).

From (16) it follows that it suffices to prove (15) for A ⊂ Al1,l2(x). First consider a special type of
such sets (sometimes called ’measurable rectangles’), i.e.

A = {x′ ∈ X : x′l1 ∈ C1, x′l2 ∈ C2, x′i = xi for other i} (18)

with some Borel measurable Cj ∈ [0, 1]rp. As above, from (12) we know that
∫

X
%2(y)(A)%1(x)(dy) =

∫

Al1
(x)

%2(y)(A)%1(x)(dy).

Take y ∈ Al1(x). There are two possible situations: y ∈ A and y /∈ A.
When y ∈ Al1(x)\A, we have yi = xi for i 6= l1, so in particular yl2 ∈ C2 and therefore yl1 /∈ C1.
Moreover, for all z ∈ Al2(y) we have zl1 = yl1 /∈ C1, which implies that z /∈ A. In other words

A ∩Al2(y) = ∅.
On the other hand, when y ∈ Al1(x) ∩A, it is easy to see that

πl2(A ∩Al2(y)) = C2 = πl2(A ∩Al2(x)).

Hence, from (13) it follows that

%2(y)(A ∩Al2(y)) = %2(x)(A ∩Al2(x)).

Since
%2(y)(A) = %2(y)(A ∩Al2(y)),
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which is another consequence of (12), we have proven that

%2(y)(A) =

{
%2(x)(A ∩Al2(x)) if y ∈ Al1(x) ∩A,

0 if y ∈ Al1(x)\A.
(19)

Now let us compute the left-hand side of (15) for the above-defined A. From previous considerations it
follows that

%2,1(x)(A) =
∫

Al1
(x)

%2(y)(A ∩Al2(y))%1(x)(dy).

Applying (19) we obtain

%2,1(x)(A) =
∫

A∩Al1
(x)

%2(x)(A ∩Al2(x))%1(x)(dy) = %2(x)(A ∩Al2(x)) · %1(x)(A ∩Al1(x))

= %2(x)(A)%1(x)(A)

As this equality is symmetric with respect to the layer number, we can repeat the same reasoning obtain-
ing exactly the same result for %1,2(x)(A), which means that

%2,1(x)(A) = %1,2(x)(A)

holds for ’rectangular’ A. To finish the proof note that such ’rectangles’ generate the σ-algebra of Borel
measurable subsets of Al1,l2(x), thus the latter equality can be extended to the whole σ-algebra using
standard properties of a measure. ¤

A straightforward consequence of the above proposition is the following corollary.

Corollary 2.1. Any two local actions executed by agents present in different locations commute.

Proof Take gen, gen′ ∈ U , n, n′ ∈ {1, . . . , p}. Let aggen,n perform a local action α in layer l and
ag′gen′,n′ perform a local action α′ in a layer l′ different from l. The transition function of the composite
action in which α is performed before α′ is given by the following formula.

(%gen′,n′
α′ ◦ %gen,n

α )(x)(A) =
∫

X
%gen′,n′

α′ (y)(A) %gen,n
α (x)(dy) (20)

Since both actions are local (i.e. they satisfy (12) and (13)) and they are performed in different locations,
the assumptions of Proposition 2.1 are satisfied. From the proposition we obtain

(%gen′,n′
α′ ◦ %gen,n

α )(x)(A) = (%gen,n
α ◦ %gen′,n′

α′ )(x)(A) (21)

¤

Local actions must be mutually exclusive in the location and global actions are mutually exclusive
in the whole system, so only one global action may be performed in one time moment in the system, but
many local actions (at most one in each location) may be performed at the same time.
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Observation 1. In the specific case of EMAS global and local actions are following Actgl = {migr},
Actloc = {get, repr}.

Proof Taking into account Observations 2 and 4 in [7], the value of probability transition function im-
posed by get and repr actions, performed by the agent agj,k being present in the particular location l,
depend only on the elements of the system state contained in its location (the layer ince(l)). Both actions
may introduce changes only in entries of state in the same layer ince(l). Hence actions get and repr
satisfy both locality conditions (12) and (13).

Action migr does not satisfy conditions (12) and (13) because the value of the probability transition
function imposed by this action depends not only on the elements of the system state contained in one
location. The action migr introduces changes in entries of state associated with the location different
from the current location of migrating agent as well (see Observation 6 in [7]). ¤

2.5. Parallel execution of local actions in EMAS

In order to construct Markov model of the system with relaxed synchronization (i.e. agents present in
locations may act in parallel), some timing mechanism must be introduced, i.e. all state changes must be
assigned to subsequent time moments t0, t1, . . ..

Below we present the algorithms of computational agents, LAi, i ∈ Loc and MA using pseudocode
inspired by C++ programming language.

Computational agent CA = aggen,n, present in the location i in every observable time moment
chooses the action it wants to perform (using ω probability distribution to choose it randomly) and ask
its supervisor – local agent LAi for the permission, sending the communicate containing the chosen
action with send() function. Then it suspends its work waiting for the permission (or denial) that will
be returned from LAi using b receive() blocking function. When the permission is granted and the
decision assigned to the considered action is true, computational agent changes the state of the location
(see Listing 1). Afterwards agent suspends its work again in order to get the permission for trying to
perform subsequent action.

Here and later A(B) denotes the effect of random sampling one of the elements from the set B with
random distribution A. We also assume that the sets localact, globalact ⊂ Act contain the local and
global actions’ signatures respectively.

Local agent (see Listing 2) starts with checking whether the location contains any agents, in this
case it sends the communicate to master agent, waits for the reply and then does nothing. Otherwise,
when there are agents in the location, LAi receives the signals containing actions to be performed from
all its agents and puts them into hashmap indexed by genotypes and containing actions. Then the local
agent utilizes agseli function to choose the agent which should try to perform its action. This action
is reported to master agent and after receiving permission, agent is granted the possibility to perform
the action. All other agents (and the chosen one when the permission is not granted) are revoked to
perform their actions. Afterwards agent waits for all local agents to report that they are ready to perform
subsequent actions, report this fact to master agent and after receiving permission, lets them do it.

Master agent (see Listing 3) waits for all requests from location and then chooses randomly one
location. If this location asked for the permission to perform global action, it is granted this permission
and all other locations are revoked. Otherwise all locations that asked for the permission to perform
global action are revoked and all asking for permission to perform local action – are granted. In the end,
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master agent waits once more for all locations to report finishing their work and to let them try to perform
subsequent action.

Listing 1. Computational agent’s algorithm

whi le ( 1 ) {
r e p l y =0;
α = ω(aggen,n, x) ;
send (LAi , α ) ;
b r e c e i v e (LAi , r e p ) ;
i f ( r e p && δα(aggen,n, x) )
{

xnext = ϑgen,n
α (x)

}
send (LAi ) ;
b r e c e i v e (LAi ) ;

}

2.6. Parallel EMAS dynamics

In the current section we present the parallel model of EMAS, that partially relaxes mutually exclusion
among all actions (see [7]) allowing for performing local actions (performed in locations) in parallel,
using introduced agents LAloc, loc ∈ Loc and MA as means for synchronization.

In the observable time moment all agents in all locations notify their local agents about their intent to
perform an action, all local agents choose an agent with the distribution given by the agselloc, loc ∈ Loc
function and then notify master agent that they want to let to perform an action to one of their agents.
Master agent chooses the location with the distribution given by locsel function.

The probability that in the chosen location i ∈ Loc agent wants to perform local action is as follows:

ξi(x) =
∑

gen∈U

p∑

n=1

(agseli(x)({gen, n}) · ω(gen, x)(Actloc)) (22)

The probability, that master agent chose the location with agent intending to perform local action is:

ζ loc(x) =
∑

i∈Loc

locsel(x)({i})ξi(x) (23)

of course the probability of choosing global action by master agent is:

(1− ζ loc(x)) = ζgl(x) (24)
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Listing 2. Local agent’s algorithm

whi le ( 1 ) {
l o c a l g e n ={U × 1, . . . , p 3 (j, k) : ince(i, j, k) > 0}
g e n a c t =hashmap (U × 1, . . . , p , Act ) ;
a c t =0 ;
r e p l y =0;
i f (# l o c a l g e n ==0)
{

send (MA ,ϑnull ) ;
b r e c e i v e (MA ) ;
send (MA ,ϑnull ) ;
b r e c e i v e (MA ) ;

}
e l s e
{

f o r ( g ∈ l o c a l g e n )
{

b r e c e i v e ( g , a c t ) ;
g e n a c t [ g ]= a c t ;

}
gchosen = agseli(x) ;
r e p o r t ( g e n a c t [ gchosen ] , gchosen ) ;

}
}

void r e p o r t ( a c t , chosen )
{

send (MA , a c t ) ;
b r e c e i v e (MA , r e p l y ) ;
i f ( r e p l y )

send ( chosen , 1 ) ;
e l s e

send ( chosen , 0 ) ;
f o r ( g ∈ l o c a l g e n \ { chosen } )
{

send ( g , 0 ) ;
}
f o r ( g ∈ l o c a l g e n )
{

b r e c e i v e ( g ) ;
}
send (MA ) ;
b r e c e i v e (MA ) ;
f o r ( g ∈ l o c a l g e n )
{

send ( g ) ;
}

}
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Listing 3. Master agent’s algorithm

whi le ( 1 ) {
l o c a l = {i : i ∈ [1, s]} ;
l o c a l l o c =∅ ;
l o c a l g l o b =∅ ;
a c t =0 ;
r e p =0;

f o r ( j ∈ l o c a l )
{

b r e c e i v e ( j , a c t ) ;
i f ( a c t ∈ Actglobal )

l o c a l g l o b = l o c a l g l o b ∪ { j }
e l s e

l o c a l l o c = l o c a l l o c ∪ { j }
}
l c h o s e n = locsel(x) ;
i f ( l c h o s e n ∈ l o c a l g l o b )
{

send ( l c h o s e n , 1 ) ;
f o r ( j in l o c a l \ { l c h o s e n } )
{

send ( j , 0 ) ;
}

}
e l s e
{

f o r ( j ∈ l o c a l l o c )
{

send ( j , 1 ) ;
}
f o r ( j ∈ l o c a l g l o b )
{

send ( j , 0 ) ;
}

}
f o r ( j ∈ l o c a l )
{

b r e c e i v e ( j ) ;
}
f o r ( j ∈ l o c a l )
{

send ( j ) ;
}

}
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If the global action was chosen, the state transition is as follows:

τ gl(x)(A) =
∑

i∈Loc

locsel(x)({i}) ·

 ∑

gen∈U

p∑

n=1

agsel(x)({gen, n})·

 ∑

α∈Actgl

ω(gen, x)({α}) · %gen,n
α (x)(A)





 (25)

Let us state the set of action sequences containing at least one local action:

Act+1loc =

{
(α1, . . . , αs) ∈ Acts;

s∑

i=1

[αi ∈ Actloc] > 0

}
(26)

The probability that in i-th location the agent aggeni,ni chooses the action αi is as follows:

µαi,geni,ni(x) = agseli(x)({geni, ni})ω(geni, x)({αi}) (27)

Let us define the multi-index

ind = (α1, . . . , αs; (gen1, n1), . . . , (gens, ns)) ∈ IND = Acts × (U × {1, . . . , p})s (28)

the probability that in consecutive locations agents aggeni,ni choose the actions αi is given by:

µind(x) =
s∏

i=1

µαi,geni,ni(x) (29)

Transition function for parallel system is following:

τ loc(x)(A) =
∑

(α1,...,αs)∈Act+1loc

∑

ind∈IND

µind(x)(πind
1 (x) ◦ , . . . , ◦πind

s (x))(A) (30)

where:

πind
i (x) =

{
%geni,ni

αi (x), αi ∈ Actloc

ϑnull, αi ∈ Actgl

(31)

Let us observe, that the value of (πind
1 (x) , ◦, . . . ◦ πind

s (x))(A) does not depend on the composition
order, because transition functions associates with local actions commutate pairwise (see Corollary 2.1
and Observation 1). It validates the following observation.

Observation 2. The probability transition function for parallel EMAS model is given by the formula

τ(x)(A) = ζgl(x)τ gl(x)(A) + ζ loc(x)τ loc(x)(A) (32)

and the formulas (22) – (31).

Observation 3. The stochastic state transition of EMAS given by formula (32) satisfies the Markov
condition.

Proof All transition functions and probability distributions given by formulas (22)–(31) depend only on
the current state of the system, what motivates the Markovian features of the transition function τ given
by (32). ¤
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3. iEMAS extension

3.1. iEMAS structure

The Immunologically based Evolutionary Multi-Agent System (iEMAS) contains a dynamic collections
of agents that belong to the predefined finite set Ag identical as in case of EMAS and a dynamic col-
lection of lymphocytes that belong to the finite set Tc. Lymphocytes are unambiguously indexed by the
genotypes from U , so that #Tc = #U = r.

The lymphocytes have the similar structure as the agents previously defined, however their actions
differ (because their goals differ from agents’ goals) and their total energy does not have to be constant.

The iEMAS may be modeled as the following tuple

〈U,Loc, Top,Ag, T c, {typeseli}i∈Loc, {agseli}i∈Loc,

{tcseli}i∈Loc, locsel, {LAi}i∈Loc,MA, ω, ϕ,Act, T cact〉 (33)

where:

typeseli is the function used to select the type of agent in i-th location to interact with the system in the
current step,

tcseli is used to choose the lymphocyte in i-th location to interact with the system in the current step,

ϕ is the decision function for the lymphocytes,

Tcact is the set of actions that may be performed by the lymphocytes.

other symbols are defined similarly as in Section 2 (however some of them will be redefined in the course
of this section).

The lymphocyte Tc 3 tcgen contains the genotype gen ∈ U that plays the role of pattern that is used
to detect similar genotypes by the means of predefined matching function MATCH : U ×U → {0, 1}.
It also posses its own energy that belongs to the interval [0, tcemax].

3.2. iEMAS state

In addition to the EMAS state describing the location and energy of the agents (see (3)) we need to
consider the set of matrices containing similar information for lymphocytes. Yet there is no need to assure
the constant total energy for lymphocytes. We describe this additional set of lymphocyte incedence and
energy matrices in the following way:

Γ =



tcince ∈ [0, tcemax]r·s : ∀ i = 1, . . . , s

r∑

j=1

[tcince(i, j) > 0] ≤ tcqj

and ∀ j = 1, . . . , r

s∑

i=1

[tcince(i, j) > 0] ≤ 1

}
(34)

where tcince(i, j) stands for the energy of tcj being active in the location i. The integers tcqj , j =
1, . . . , s stand for the maximum number of lymphocytes in the particular locations. It is most convenient
to assume tcqj = qj , ∀j = 1, . . . , s.
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The space of iEMAS state is given by:

X = Λ× Γ (35)

where Λ is given by (3).

3.3. iEMAS behavior

We introduce two disjoint action sets, first one is designed for agents

Act = {repr, get, migr} (36)

The outcome of actions repr, migr belonging to Act set is similar like in EMAS.In the case of iEMAS
the domain of the decision and transition functions are formally extended because additional incidence
and energy matrix for lymphocytes tcince is added (see (35)). The decisions and the transition functions
of these actions do not depend on and do not change the new state components in full extent. The effects
of their operations are visible only on the part of the system state identical to EMAS. In particular, the
changes of the state described before showing current state x = ince and next state after the action
xnext = incenext, now have the form x = (ince, tcince), xnext = (incenext, tcincenext) respectively,
where the index next has similar meaning as in Section 2.4.

We also extend the trivial state transition ϑnull in the same way.
The single action get inherited from EMAS is modified. When the agent performs this action, and its

energy (or energy of evaluated agent) reaches zero, it activates the lymphocyte containing the genotype
of inactivated agent.

The set of action designed for lymphocytes is

Tcact = {give, kill} (37)

where:

give is the action of the lymphocyte used to decrease its own energy (performed during every activation),
which in the end causes the lymphocyte to be deactivated (when its energy reaches zero),

kill is the action of removing the computational agent by a lymphocyte (performed when the genotype
of the tested agent matches the pattern contained in the lymphocyte).

The detailed descriptions of decisions and state transition functions for these actions may be found in
[7].

We introduce the function typeseli choosing which type of agents will have possibility of performing
the action:

typeseli : X →M{0, 1} (38)

when 0 is chosen, one of agents will be activated, when 1 – lymphocyte.
The function choosing which agent will be activated agseli is similar like in EMAS (see Section

2.1), but it now depends in some way on the extended state from X defined by (35). Now we introduce
new function that will choose which lymphocyte will be activated:

tcseli : X →M(Tc) (39)
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Similarly as in case of agseli the probability tcseli(x)({gen}) vanishes when the lymphocyte tcgen is
inactive in the state x ∈ X .

The function ω choosing the action for the active agent remains intact, though its domain changes
(because of the new state definition, see (35)).

The function choosing the action for the active lymphocyte is the following:

ϕ : U ×X →M(Tcact) (40)

We will use the family of functions ηgen
α : X →M(X) where gen ∈ U , α ∈ Tcact. Each of them

expresses the probability transition imposed by lymphocyte tcgen that performs the action α ∈ Tcact.
They are given by the general formula:

ηgen
α (x)(A) = γα(gen, x)({0}) · ϑnull(x)(A) + γα(gen, x)({1}) · κgen,n

α (x)(A) (41)

The definitions of the decisions γα and probability transition functions κgen,n
α for each action are given

by Observations 8–9 in [7].

3.4. Parallel execution of local actions in iEMAS

We extend the formalism described in section 2.5 to describe the case of parallel iEMAS. We have
divided the the set of EMAS actions into two disjoint sets local and global ones (see (11)). Because of
the nature of actions performed by lymphocytes, all of them are considered as local.

Following coherency conditions (12), (13) introduced for EMAS we need to extend them for the case
of iEMAS in the following way.

The action α ∈ Act and β ∈ Tcact are local, when:

1. α ∈ Act and β ∈ Tcact do not change anything except the part of the state (l−th layer in ince
matrix and l-th layer of tcince matrix) that describes the location l in which aggen,n is performing
the action α, i.e.:

∀x = (ince, tcince) ∈ X : %gen,n
α (x)(Āl(x)) = 1, ηgen,n

β (x)(Āl(x)) = 1 (42)

where

Āl(x) = {(incenext, tcincenext) ∈ X :
ince(i) = incenext(i), tcince(i) = tcincenext(i) for i 6= l}; (43)

2. α ∈ Act and β ∈ Tcact are not dependent on any other layers of ince and tcince:

∀x1, x2 ∈ X, x1(l) = x2(l)
∀B1 ⊂ Āl(x1), B2 ⊂ Āl(x2), πl(B1) = πl(B2)

%gen,n
α (x1)(B1) = %gen,n

α (x2)(B2),
ηgen,n

β (x1)(B1) = ηgen,n
β (x2)(B2) (44)

where x(l) = ((ince(l), tcince(l)) and tcince(l) denotes the l-th column of tcince. Moreover
πl : [0, 1]s·r·p × [0, 1]s·r → [0, 1]r·p × [0, 1]r denotes the natural projection on the l-th layer, i.e.

πl(ince, tcince) = (ince(l), tcince(l)).
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All other actions are considered global (elements of Actgl).

Corollary 3.1. Any two local actions executed by agents or lymphocytes being present in different lo-
cations commute.

Proof The transition function of the composite of both actions may be also presented by the formulas
similar to (20). Since both actions are local and executed in separate locations the condition analogous to
Proposition 2.1 holds, for the measures defined now on the space X = Λ×Γ (mainly because of the same
nature of sets generating the σ-algebra of Borel measurable sets on X). Hence desired commutativity
holds. ¤

Observation 4. In the specific case of iEMAS the set of local actions is composed of Tcact∪{repr, get}
and set of global actions is {migr}.

Proof Taking into account Observations 11, 13 and 15 from [7], the value of probability transition
function imposed by get, kill and give actions, depend only on the elements of the system state contained
in one location (the layer ince(l) and the column tcince(l)). Both actions may introduce changes only in
the same sets of entries ince(l) and tcince(l). Hence actions get, kill and give satisfy both conditions
(42) and (44).

Observation 1 already shows, that action repr is local with respect to the space of states X = Λ. The
extension of the space of states to X = Λ × Γ does not affect this condition. Similarly, globality of the
action migr shown in the Observation 1 holds for X = Λ× Γ. ¤

Below we present the algorithms of lymphocytes, LAi and MA adapted to the case of iEMAS.
The algorithms for computational agent (see Listing 1) remains intact, however we need to introduce
complementary algorithm for lymphocytes (see Listing 4).

Listing 4. Lymphocyte’s algorithm

whi le ( 1 ) {
r e p l y =0;
α = ϕ(tcgen, x) ;
send (LAi , α ) ;
b r e c e i v e (LAi , r e p ) ;
i f ( r e p && κα(tcgen, x) )
{

xnext = ηgen
α (x)

}
send (LAi ) ;
b r e c e i v e (LAi ) ;

}



R. Schaefer, A. Byrski, M. Smołka / Stochastic Model (. . . ) Parallel Execution of Local Actions 1019

Listing 5. Local agent’s algorithm for iEMAS
whi le ( 1 ) {

l o c a l g e n ={U × {1, . . . , p} 3 (j, k) : ince(i, j, k) > 0}
l o c a l t c ={U 3 j : tcince(i, j) > 0}
g e n a c t =hashmap (U × {1, . . . , p}, Act ) ;
t c a c t =hashmap (U, Act ) ;
a c t =0 ;
r e p l y =0;
i f (# { l o c a l g e n ∪ l o c a l t c } ==0)
{

send (MA ,ϑnull ) ;
b r e c e i v e (MA ) ;
send (MA ,ϑnull ) ;
b r e c e i v e (MA ) ;

}
e l s e
{

f o r ( g ∈ l o c a l g e n )
{

b r e c e i v e ( g , a c t ) ;
g e n a c t [ g ]= a c t ;

}
f o r ( g ∈ l o c a l t c )
{

b r e c e i v e ( g , a c t ) ;
t c a c t [ g ]= a c t ;

}
i f ( typesel(x) )
{

gchosen =tcseli(x) ;
r e p o r t ( t c a c t [ gchosen ] , gchosen ) ;

}
e l s e
{

gchosen = agseli(x) ;
r e p o r t ( g e n a c t [ gchosen ] , gchosen ) ;

}

}
}

void r e p o r t ( a c t , chosen )
{

send (MA , a c t ) ;
b r e c e i v e (MA , r e p l y ) ;
i f ( r e p l y )

send ( chosen , 1 ) ;
e l s e

send ( chosen , 0 ) ;
f o r ( g ∈ { l o c a l g e n ∪ l o c a l t c } \ { chosen} )
{

send ( g , 0 ) ;
}
f o r ( g ∈ { l o c a l g e n ∪ l o c a l t c } )
{

b r e c e i v e ( g ) ;
}
send (MA ) ;
b r e c e i v e (MA ) ;
f o r ( g ∈ { l o c a l g e n ∪ l o c a l t c } )
{

send ( g ) ;
}

}
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Listing 6. Master agent’s algorithm for iEMAS

whi le ( 1 ) {
l o c a l = {i : i ∈ [1, s]} ;
l o c a l l o c =∅ ;
l o c a l g l o b =∅ ;
a c t =0 ;
r e p =0;

f o r ( j ∈ l o c a l )
{

b r e c e i v e ( j , a c t ) ;
i f ( a c t ∈ Actglobal )

l o c a l g l o b = l o c a l g l o b ∪ { j }
e l s e

l o c a l l o c = l o c a l l o c ∪ { j }
}
l c h o s e n = locsel(x) ;
i f ( l c h o s e n ∈ l o c a l g l o b )
{

send ( l c h o s e n , 1 ) ;
f o r ( j in l o c a l \ { l c h o s e n } )
{

send ( j , 0 ) ;
}

}
e l s e
{

f o r ( j ∈ l o c a l l o c )
{

send ( j , 1 ) ;
}
f o r ( j ∈ l o c a l g l o b )
{

send ( j , 0 ) ;
}

}
f o r ( j ∈ l o c a l )
{

b r e c e i v e ( j ) ;
}
f o r ( j ∈ l o c a l )
{

send ( j ) ;
}

}
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This algorithm uses probability distribution function ϕ to choose the lymphocyte which will have
possibility to perform the next action. Then similarly to computational agent function κ is used to
evaluate the decision and η to perform the state transition after getting confirmation from local agent.

Because the lymphocytes were introduced into the system, the algorithm of LAi must be modified
for all i ∈ Loc, in order to make possible choosing lymphocyte for performing the action on the location
(see Listing 5).

We extend the responsibilities of local agent by allowing it to choose the agent either from compu-
tational agents set or lymphocytes. Which one should be chosen in the current step is determined using
typesel function. Then the action chosen by the agent is reported to master agent, which allows for
executing global or local actions using computational agents’ action set alone, because all lymphocytes’
actions are considered local (see Listing 6).

3.5. Parallel iEMAS dynamics

We extend the model of EMAS dynamics in order to model the behavior of iEMAS. The probability that
in the chosen location i ∈ Loc agent or lymphocyte wants to perform local action is as follows:

ξi(x) = typesel(x)({0})
∑

gen∈U

p∑

n=1

(agseli(x)({gen, n}) · ω(gen, x)(Actloc)) + typesel(x)({1})

(45)

The probability, that master agent chose the location with agent intending to perform local action is:

ζ loc(x) =
∑

i∈Loc

locsel(x)({i})ξi(x) (46)

of course the probability of choosing global action by master agent is:

(1− ζ loc(x)) = ζgl(x) (47)

If the global action was chosen, the state transition is of similar shape as (25):

τ gl(x)(A) =
∑

i∈Loc

locsel(x)({i}) ·

 ∑

gen∈U

p∑

n=1

agsel(x)({gen, n})·

 ∑

α∈Actgl

ω(gen, x)({α}) · %gen,n
α (x)(A)





 (48)

Let us state the set of action sequences containing at least one local action:

Act+1loc =

{
(α1, . . . , αs) ∈ (Act ∪ Tcact)s;

s∑

i=1

[αi ∈ (Actloc ∪ Tcact)] > 0

}
(49)

The probability that in i-th location the agent aggeni,ni or the lymphocyte tcg̃eni
chooses the action

αi is given by:

µαi,geni,ni,g̃eni
(x) = typesel(x)({0}) · agseli(x)({geni, ni})ω(geni, x)({αi})+
typesel(x)({1})tcseli(x)({g̃eni})ϕ(g̃eni, x)({αi}) (50)



1022 R. Schaefer, A. Byrski, M. Smołka / Stochastic Model (. . . ) Parallel Execution of Local Actions

Let us redefine the multi-index introduced in formula (28):

ind =
(
α1, . . . , αs; (gen1, n1), . . . , (gens, ns); (g̃en1), . . . , (g̃ens)

)

∈ IND = (Act ∪ Tcact)s × (U × {1, . . . , p})s × U s (51)

the probability that in consecutive locations agents aggeni,ni or lymphocytes tcg̃eni
choose the actions αi

is given by:

µind(x) =
s∏

i=1

µαi,geni,ni,g̃eni
(x). (52)

Transition function for parallel system is following:

τ loc(x)(A) =
∑

(α1,...,αs)∈Act+1loc

∑

ind∈IND

µind(x)(πind
1 (x) ◦ , . . . , ◦πind

s (x))(A) (53)

where πi introduced in formula (31) is redefined as:

πind
i (x) =





%geni,ni
αi (x), αi ∈ Actloc

ηg̃eni
αi (x), αi ∈ Tcact

ϑnull, αi ∈ Actgl

(54)

Let us observe again, that the value of (πind
1 (x) ◦ , . . . , ◦πind

s (x))(A) does not depend on the compo-
sition order, because transition functions associates with local actions commutate pairwise. Finally, we
may derive the following observation.

Observation 5. The probability transition function for parallel iEMAS model is given by the formula

τ(x)(A) = ζgl(x)τ gl(x)(A) + ζ loc(x)τ loc(x)(A) (55)

and the formulas (45) – (54).

Observation 6. The stochastic state transition of iEMAS given by formula (55) satisfies the Markov
condition.

Proof All transition functions and probability distributions given by formulas (45)–(54) depend only on
the current state of the system, what motivates the Markovian features of the transition function τ given
by (55). ¤

4. Conclusions

The paper extends the EMAS and iEMAS architecture defined in [7] to the desirable case in which some
agent’s action can be executed in parallel in the single step of evolution. The additional governing agents
(managing agent and local agents) equipped with the mechanism of blocking communication among
them are introduced. These agents allow for executing single global action or at most one local action
in each location in the single evolution epoch. Again, as in [7] the stationary Markov chain models for
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these systems are defined and verified. The space of states and the definitions of transition operators
associated with all agent’s and T-cell’s actions described in [7] was utilized.

The main tool for obtaining the final formula is the Bayes theorem which allow to derive the proba-
bility transition function as the barycentric combination of elementary stochastic transformations imple-
mented in particular actions. The crucial feature that allow to establish the probability transition function
in case of parallel execution of local actions is commutativity of their transition operators. We formu-
late the abstract conditions of such commutativity which allow for easy classifying of agent’s or T-cell’s
actions as local or global ones.

The obvious advantage of the EMAS and iEMAS architecture proposed in this paper over the pre-
vious versions is their better computational efficiency caused by the relaxed synchronization among
actions.

The parallel iEMAS can be especially dedicated to the cases with costly fitness (see [3, 5]), which
is performed as a long-lasting iterative process increasing the evaluation accuracy. The well-tuned, by
immunological evolution, lymphocytes can early recognize and make the unpromising agents inactive
on the basis of its rough fitness value, sparing a significant part of CPU time. All actions of T-cells are
local ones, so their can be executed in parallel in separate locations.

However the general form of the Markov kernels associated wit the agent’s actions were identified,
we intend to identify their numerical and functional parameters as the probability distributions of mixing
operator MIX , agent selection functions agsel, ω, typesel, tcsel, ϕ and energy thresholds of agents and
lymphocytes.

The Markov model presented in this paper constitute the basis of the asymptotic analysis of EMAS
ans iEMAS systems in order to evaluate their search possibilities and efficiency. It seems to be the way
of verifying their probabilistic guarantee of success (e.g. by checking the ergodicity) and comparing with
the other stochastic algorithms by comparing their limit invariant measures (if they exist).
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