Asymptotic behaviour of optimal solutions
of control problems governed by inclusions

Maciej Smotka *

1 Introduction
In this paper we consider control problems of the form
(CPh> mln{Jh<u7y) : Ah(y) € Bh(u)7 (U,y) e U x Y}v

where some topological spaces U and Y are, respectively, the space of controls
and the space of states. We search for an explicit form of the limit problem
(CPy) for the sequence (CPy), i.e. such control problem that if (up,yp) is a
solution of (CP},) and

(Umyh) - (uomyOO)v

then (oo, Voo) is a solution of (CPs,). Under the assumption of G-convergence
of operators Aj, we are able to find an explicit form of (CPy) in two different
cases.

1. When (Bjy) converges ’K-continuously’ to B, i.e.
up — u = Bp(up) X B(u)

where 'K’ means the sequential convergence in the sense of Kuratowski;

2. By satisfy a weaker convergence condition, but they have the local form

Bh(U) = bh(xa u<x>>
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for some multivalued functions b, and J, are integral functionals
Iwg) = [ fala,y(o), ue))do.
Q

In the first case the limit problem has the same form as (CP,), in the latter,
in general, it is not true — the state inclusion may disappear and the mini-
mization may extend to the whole space U x Y, but then some additional
terms are inserted into the cost functional.

In this paper we generalize the results of G.Buttazzo and L.Freddi con-
tained in [BF] to the case of multivalued input operators Bj. Namely, they
considered control problems with the states of the system described by equa-
tions, i.e.

min {J,(u,y) : An(y) = Br(u), (u,y) € U x Y}

where B, were single-valued. Our cases 1 and 2 correspond, respectively,
to the case of the continuous convergence of By, (see [BF], pp.406-408) and
the case of a weak convergence of nonlinear, local input operators (see [BF],
section 5). On the other hand, the results of section 6 formulated for abstract
operators A, can be considered as a generalization of the results obtained by
G.Buttazzo and E.Cavazzuti in [BC] concerning ordinary differential inclu-
sions

yl € ah(tv y) + Bh<t7 y)bh<t7 U)

where only b, were multimappings.
The main tool used in the paper is the ’auxiliary variable’ method due to
G.Buttazzo (see [B]).

2 ['-convergence, G-convergence and Kura-
towski convergence

This section contains definitions and basic properties of sequential ['-limits
of functionals, Kuratowski limits of sets as well as a definition of the G-
convergence of abstract operators (see [BM], [BF], [M]).

Let X be a topological space and let F), : X — R be a sequence of
functionals. Let us denote by Z(+) and Z(—), respectively, 'sup’ and ’inf’



operators. For x € X we define

I(X%) limsup Fp(z) = Z(a)g,—slimsup Fp(zy),

h—o00 h—o0
F(Xo‘)ligninf Fp(z) = Z()y,—a lign inf F},(xy),
where «a stands for + or —. If these limits are equal, then their common
value is denoted by
I'(xe) hlim Fy(z).

If some I'-limit does not depend on «, we shall drop the sign, e.g. if
I(X*H)limsup Fj, = ['(X ) lim sup Fy,
h—o0 h—o0
then the common value is denoted by
I'(X) lim sup F,.
h—o0

If one of the following conditions is satisfied:

(G1) X satisfies the first axiom of countability;

(G2) X is a Banach space endowed with its weak topology, X* is separable
and I, > ¥ for h € N where ¥ : X — R is such that

lim ¥(z) = 4o0; (1)

[|z||—+o0

then I"(X~)-limits defined above coincide with topological I'-limits introdu-
ced by E.De Giorgi in [GF] (see [M], propositions 8.1 and 8.10). The I'(X)-
convergence is nothing else than the (sequential) continuous convergence, i.e.
such that

xp — = Fp(xp) — F(x).

If (F}) is a constant sequence, i.e. F, = F, ¥ h € N and (G1) or (G2) is
true, then ([M], remark 4.5)

(X)) liminf Fj, = I'(X ™) limsup F), = sc™ F,

h—oo h—o0

where sc™ F' denotes the lower semicontinuous envelope for F', i.e. the grea-
test l.s.c. function bounded from above by F. Moreover, we have
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Proposition 2.1 ([M], proposition 6.11) If one of the conditions (G1),
(G2) holds, then
F(X_)li}?lianh = ['(X7)liminf sc™ Fy,

h—o0
I'(X7)limsup F, = I'(X7)limsup sc™ Fj.
h—o0 h—o0
In particular, (Fy,) is I'(X™)-convergent to F iff (sc™ Fy) I'(X™)-converges
to F.

The next proposition shows the relation between the I'-convergence and
the pointwise one.

Proposition 2.2 ([M], proposition 5.9) Assume that X satisfies the first
aziom of countability and (Fy) is equi l.s.c. at v € X. Then
F(X_)lilfnianh(:E) = lilfnianh(a:),
I'(X7)limsup Fj(x) = limsup Fy(z).

h—o0 h—o0
In particular, if (Fy) is equi l.s.c. on X, then (Fy) is I'(X™)-convergent to

F iff it converges to F' pointwise.

In the optimal control theory it is useful to introduce the notion of double
I'-limats. Let X and Y be topological spaces and let

F,: XxY —R
be a sequence of functionals. For x € X, y € Y we define

L(X*,YP) limsup Fiy(z,y) = Z()u,—2Z(B)y,—y limsup Fy(zs, yn),

h—o00 —00

[’(Xa,Yﬁ) ligninf Fu(z,y) = Z()s,—aZ(B)y,—y ligninf Fn(xn,yn),

where o and 3 stand for + or —. We shall use similar notation conventions
as in the case of simple ['-limits. Moreover, an expression like

F(Xa>Fh('T7 y)

means that the limit is taken with respect to the first variable, while the
other is fixed.

The following proposition shows the role of the I'-convergence in the
optimal control theory.



Proposition 2.3 ([BM]) Let U and Y be topological spaces and let Fy, :
UxY — R be a sequence of functionals. Let (up,yn) be a sequence of
minimal points for Fy, or, more generally, such sequence that

Jim o) = fm |0t 53]

Assume that (up,yp) converges in U XY to some (Uso, Yoo) and that for every
(u,y) € U XY the limit

Flu,y) = (U7, Y7) lim Fy(u, y).

exists. Then

1.
lim {inf Fh} = min F;
h—oo |UXY UxY

2. (Uoo, Yoo) 1S @ minimal point for F.

I’-limits are not, in general, linear operators. The following proposition
allows us to compute [-limit of a sequence of sums of functions.

Proposition 2.4 ([BM]) Let F,,G, : X x Y — R be two sequences of
functions. Assume that the limits

INX",Y) lim Fy(z,y) = a,

h—oo
rNx,y) hlim Gr(z,y) = b,
exist. Then
rNx-,Y") hlim (Fh 4+ Gp)(z,y) = a+b.

Let (E}) be a sequence of subsets of X. We define (sequential) upper and
lower limits of (Ey) in the sense of Kuratowski by:

K—limsup B, — {:1:' € X |3 (hn), hn < By, n € By, @ lim z, = x} ,

h—o00 n—0oo
K—lminf B, = {x € X |3z, € By lim ap = x}



If these limits are equal, then their common value is called the Kuratowski
limit of (E,) and denoted by

K— lim Eh.

h—o0

Let E be a subset of X. By yg we shall denote the indicator function of E,
ie.

(z) = 0 when z€FE,
XV = 400 when z€ X\ E.

Let Y and V' be topological spaces. We say that a sequence of operators
A, Y -V
G-converges to A: Y — V if
PV.Y™) Bm Xqa,@)=0) = X{a@)=0)
i.e. if the following conditions are satisfied:

l.ify, = yinY, v, — vin V and A,(yn) = vy, for infinitely many
h € N, then A(y) = v;

2. if A(y) = v and v, — v in V, then there exists a sequence (yp) co-
nvergent to y in Y and such that A,(y,) = vy, for sufficiently large
h.

Let us denote by Sy (v) the set of solutions of the equation A(y) = v, and
by S(v) — the set of solutions of the equation A(y) = v.

Proposition 2.5 ([DM], proposition 4.4) The above conditions are equi-
valent to the following:

vp, — v = Sp(vp) N S(v)

where 'K " means Kuratowski convergence with respect to the topology of Y .

Remark ([BM]). If for Y we substitute Hj({2) with the weak topology,
for V.— H~(£2) with the norm topology and if operators A; are linear and
uniformly elliptic, then the given definition will coincide with the classical
one introduced by S.Spagnolo ([S]).



3 Fenchel conjugate functions
Let X be a Banach space and let X* be its dual. Let
F:X—>R

be a proper function, i.e. such that is not everywhere equal to 400 and
anywhere to —oo. We define a function

F*: X*— R,
which we shall call the Fenchel conjugate to F', by the formula

F*(2") = sup {(z", z) — F(x)},

zeX

where

() X*"'xX - R

denotes the duality pairing between X* and X. F* is always convex and
l.s.c.; of course we can say the same about the bi-conjugate

F*(x) = sup {{a*,2) — F*(")}.

rreX*

Moreover, F** is the convexr and lower semicontinuous envelope for F'| so if
F'is proper, convex and l.s.c., then F** = F'.
For integral functionals we have the following representation theorem.

Theorem 3.1 ([ET]) Let £2 be an open and bounded subset of R® and let
fi2xR"—> R

be a Borel function bounded from below. Define for w € LP(£2; R"), p €
(1, +00)

P(u) = [ fo,ulz))ds,
Q
Assume that

1. f(z,-) is l.s.c. for almost every x € (2;

2. there exists u € L>®(§2; R") such that F(u) < 400.
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Then

F) = [ Faa @

Fo) = [ 5 ada)ds,
where w € LP(£2; R™), u* € LP (2, R"), 1/p+1/p = 1, and f*, f** are taken
with respect to the second variable.

The next theorem relates ['-convergence of convex functions with -
convergence of their conjugates.

Theorem 3.2 ([A], theorem 3.2.4) Let X be a separable Banach space
and let F, F}, be proper, convexr and l.s.c. functionals on X. Assume that

1.
F(X7) lim F = F;
2.
lim sup Fj, (z) < +o00 = sup ||z;|| < +o0.
h—o0 h
Then

I'w*X*™) lim Fy = F~*,

h—oo

where w*X* denotes the dual to X endowed with its weak™ topology.

4 Abstract model

Let U and Y be two topological spaces called, respectively the space of con-
trols and the space of states. Let

J,:UxY - R

be a sequence of cost functionals. In the sequel we will always assume that
they are uniformly bounded from below. We consider the following sequence
of abstract optimal control problems

min {J,(u,y) : Ap(y) € Br(u), (u,y) €U x Y}, (2)
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where
A, Y=V,
Bh U — P(V),
map Y and U into another topological space V.
Obviously, the problem (2) is equivalent to the following
min {J,(u,y) + X{anweB, )y (,y) : (u,y) € U x Y}

with the minimization over the whole Cartesian product U x Y.

In this paper the method of auziliary variable (see e.g. [BC],[B]) is used.
It is based on the following proposition.

Proposition 4.1 ([BC], proposition 2.3) Let U, V and Y be topological
spaces. Let Fy, : U XY — R be a sequence of functions uniformly bounded
from below and =), : U x Y — P(V) — a sequence of multimappings. Put

| Fu(u,y) when ve Zy(u,y),
(ph(ua v, y) - { +00 otherwise

and assume that

1. for any convergent sequence (up,yp) such that {Fy(up,yn)} is bounded
there exists a sequence vy, € Zp(up,yn) which is relatively compact in

V;
2. for every (u,v,y) € U XV XY the limit

(U xV)",Y) lim &,(u,v,y)

h—o0

exists.

Then
PU™,Y") lim Fy(u,y) = inf{r((U X V)"Y7) Tim @y(u,v,y) v € V}.

Put
Gh(%%’y) = Jh(“vy) + X{vGBh(u)}(u7U)' (3>

In our abstract model the form of the limit problem is given by the following
theorem, corresponding to the Theorem 3.3 of [BF].
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Theorem 4.2 Assume that

1. Ay, is G-convergent to A;

2. if up — u, yn — v, An(yn) € Br(up) and {Jn(up, yn)} is bounded, then
Ap(yn) 1s relatively compact in 'V ;

3. the limit
G(u,v,y) =T(U x V)", Y7) lim Gp(u,v,y)

h—o0

exists.

Then
ruw-,y") }Lll_?folo (Jn + Xganmenrwy) (w,y) = G(u, A(y), y).
Proof. Put

Fiu(u,y) = Jn(,y) + X{anweBaw}
En(uy) = {Au(y)} N Bu(u)
and let @, be the same as in the previous proposition. Notice that
gph (u, v, y) = Jh(“’a y) + X{veBh(u)}(ua U) + X{Ah(y):v}(va y)
= Gh(uu v, y) + X{Ah(y):v}(v7 y)

The assumption 2 makes it possible to use the proposition 4.1. Applying
it as well as the proposition 2.4 and the definition of the G-convergence we
obtain

L=, y7) lim (Jn+ Xanmesion) (@9)

= inf {F((U x V)7, Y") hll_)I{)lO (Gh + X{Ah(y):v}) (u,v,y)}

veV
= 12‘f/ {F((U xV)7Y) hlim Gr(u,v,y) + I'(V, Y_)hlim X{Ah(y)zv}(v,y)}

= 52‘5 {G(u7 v, y) + X{A(y)=v} (U> y)}
= G(u, A(y),y)- D

Due to this theorem our task is now to find the explicit expression for GG and
we shall concentrate on it in the next sections.
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5 The case of ’K-continuous’ convergence of
By,

Let us first assume that operators By, : U — P (V') converge to B : U — P(V)
in the following manner:

up — u = By(uy) = B(u), (4)

where 'K’ denotes Kuratowski convergence with respect to the topology of
V.

Remark The above convergence condition is equivalent to the following (see
proposition 2.5):

ruw,v-) hlggo X{veBn(u)} = X{veB(u)}-

Let us take the hypotheses:

(K1) there exists a function ¥ : U — R such that if (uy) is convergent, then
(¥(up)) is bounded, and a function w : ¥ x Y — R such that for any
yey

limw(y, z) = limw(z,y) =0
z—y z—y

and forue U, y,z€Y, he N

[ Jn(, y) = Jn(u, 2)| < W (u)w(y, 2);

(K2) if up, — u, yp — y, vi, € Bp(up) and {Jy(un, yn)} is bounded, then {vy,}
is relatively compact.

Proposition 5.1 Let G}, be defined by (3). Assume (4), (K1) and that the
following limit

L(U7) lim J,.

h—o0

exists. Then

(U xV)",Y) lim Gy(u,v,y) = F(U’)}}Lrgo Jn(u,y) + Xqwen@) (u, v).

h—o0
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Proof. From (4) we know that if v € B(u), then there exist such v, € By (us)
that v, — v, and if, on the other hand, v ¢ B(u) with v, — wv, then
vy, & Bp(up) for sufficiently large h. Let us take u € U, y € Y. If v € B(u),
then from (4) we obtain

I'(U x V)_,Y_)li}?linth(u,v,y)

= inf inf inf lminf Gp(up, vs, yr)
Up—U Vp—V Yo —Y  h—00

inf inf liminf J,(up, yn)

up—uyYyp—yY h—

inf inf liminf [J, (up, y) — ¥ (up)w(yn, v)]

Up—U Yp—yY h—oo

inf liminf Jj,(up,y)

up—u h—

= I'U") li}{n inf Jp(u, y);

v

on the other hand
(U x V)=, Y ") limsup Gy (u,v,y)

h—o0

= inf inf sup limsup Gp,(up, vs, yn)
UR DUV gy b oo

= inf sup limsup Jy(up, ys)
YU yp—y  h—oo

< inf sup limsup [Jp(un, ) + & (up)w(yn, y)]

Uh—U yp—y  h—oo

= inf limsup Jy(upn,y)

Un—U  h—oo

= I'(U7)limsup Jp(u,y).

h—o0

If v € B(u), then both inequalities become trivial. Joining these facts we
finish the proof. O

Theorem 5.2 Assume (4), (K1), (K2) and
1.4, S A,
2. F(U’)hmh_,oo Jp=J.

Then
L=, Y7) im (Jn+ Xanweswn) = J + Xiaweswy-
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Proof. (K2) makes sure that the assumption 2 of the theorem 4.2 is satis-
fied. Applying that theorem together with the proposition 5.1 we complete
the proof. O

Remark Under the assumptions of the theorem the limit problem has the
form

min {J(u,y) : A(y) € B(u), (u,y) € U x Y}

Remark The hypothesis (K2) holds e.g. when U and V' are reflexive Banach
spaces endowed with their weak topologies, and for some constants a,b > 0,
¢ > 0 we have
Jn(,y) > allully + b sup [[o]ly — c.
vEBy (u)
Remark The theorem 5.2 is a generalization of the theorem 3.6 of [BF] to
the case of state inclusions (see also the introduction).

6 The local case

In this section we shall deal with the case when By, are local operators between
Lebesgue spaces and Jj, are integral functionals. Namely, let (2 be an open
and bounded subset of R?. Let p,q € (1, +00) and let p/, ¢’ be their adjoint
exponents. We take U = LP(£2; R™), V = Li(£2; R*), both endowed with
their weak topologies, but in the dual spaces U* and V* we choose the strong
topologies. As Y we may take any space of measurable functions from (2 into
R" which can be embedded in L*(§2; R") (with the norm topology) for some
s € [1,400]. Let
Bh U — P(V)

be defined by:
By(u) ={v e V| v(z) € bp(z,u(z)) a.e.in 2},

where

by: 2 x R™ — P(R")

are some multivalued Borel mappings, i.e. such that

Grb, = {(z,u,v) € 2x R" x R" | v € by(z,u)}
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are Borel sets. Cost functionals are of the integral type

Iusy) = [ Sl y(o), ) da
for some Borel functions
frn: 2xR"x R" — (—00, +00].
In the sequel we shall take the following hypotheses:
(L1) b have non empty values and the sets
Grby(z,-) = {(u,v) € R™ x R | v € by,(z,u)}
are closed;

(L2) fu(z,y,-) is Ls.c. on R™ for almost every = € (2 and every y € R";

(L3) there exist a,b > 0 and ¢ € L*({2) such that for every (z,y,u) €
OxR"XR", ve R andhe N

fh(xv Y, u) + X{vebh(r,u)}(xa u, U) > a]u|p + b|v‘q - C(l’);

(L4) there exists a function o : 2 x R" x R" — [0, +00) measurable with
respect to the first variable, continuous with respect to the others and

such that )
Ls L
z—Y = 0(7y<)7z()) —0

and for every x € 2, u e R", y,z€ R", he N
fh(fL’,y,U) S fh(xuzau> + O'(I,y, 2)7

(L5) there exist u, € L®(2; R™) and v, € By(up,) N L2(£2; R¥) such that
for every y € Y

. Tu(z,y(x), up(x))de < 4o00.
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Let G, be defined by (3). Notice that
Gu(u.0.9) = [ on(ay(o), o). v(e)da,
Q

where g, : 2 x R" x R™ x R* — R is given by

gh($7 yu 'LL, U) = fh(.]f, y; 'LL) + X{Uebh(ﬂi,u)}(‘r7 ’U,, U)'
Thanks to (L1), (L2) and (L5) we can apply the theorem 3.1 to G}, obtaining

Gy, " y) = / gz, y(z), u* (), v* () dz,

Gy (u,v,y) = / g (x,y(x), u(x),v(z))d,
Q
while the conjugates for g, are taken with respect to last two variables.

Lemma 6.1 If the limat
r(u*xv"7) lim Gy,

h—o0

exists, then

P(U = V)7) Jim G;7 = (D(U” x V*)7) lim G;;)*.

h—oo h—o0

Proof. Notice that thanks to (L3) for y € Y, u € U and v € Bp,(u) we have
Jn(u,y) = allul]” + blJv]|* = co, ()

or, in other words, fory € Y, u € U, v € V we have

Gn(u,v,y) = allul|” + bl|v[|* = co, (6)
where ¢y = min{0, ess inf c}. Thus
G;(u*7v*7y) =
sup {(u*,u) + (v*,v) — Jp(u,y) : u € U,v € By(u)}
sup {[[u|[[[ul] + [[v*[[|[v]] = allul[” = bl|v[|" + co: w € U,v eV (T)

sup {||u*||[[ul] = allull”: w € U} +sup {|[v*[|[[o]| = O[[v][* - v € V} + co
= aof[u’|]” + Bl ]|T + co,

IAIA
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where

Similarly (7) implies

Gy (u,v,y) =
sup {(u*,u) + (v*,v) — G} (u*,v",y) : u* € U, v* € V*}

Vv

alful[” + bl |v][* = co

Fix y €Y. Put X = U* x V* and
Fp(u*,v*) = Gy (u*,v",y).

As Fenchel conjugates F}, are convex and ls.c., thanks to (7) they are also
proper. The assumption 2 of the theorem 3.2 is satisfied due to the inequality
(8) — now our thesis is a consequence of this theorem. a

Proposition 6.2 For any (u*,v*) € U* x V* and y € Y we have

r(u- x V*)_)hlim Gr(u*,v*y) = hlim Gy (u*,v*,y).
Proof. Notice first that U* x V*, as Banach space endowed with the strong
topology satisfies the first axiom of countability. Functionals G} (-,-,y) are
convex, Ls.c. and, thanks to (7), locally uniformly bounded. Hence ([ET],
corollaries 1.2.4, 1.2.5, remark 1.2.1) they are locally equi Lipschitz. Now

from the proposition 2.2 we obtain the equality between the I'-limit and the
pointwise one. O

Proposition 6.3 For every (u,v) € U x V andy € Y we have

I'(UxV)",Y) lim Gp(u,v,y) = <hh—>r£10 G}kl)* (u,v,y).

h—o0
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Proof. Thanks to (L.4) we have
Jh(“’v y) < Jh(“’a Z) + W(y, Z)a

while
limw(y, z) = limw(z,y) =0

zZ—Yy zZ—Yy

and, similarly as in the proof of the proposition 5.1, we can show that

F((Ux V)", Y) lim G, =T((U x V)") lim Gy,

h—o00 h—o00

Because of (L5) from the remark 2.6.5 of [B] we have
SC_(U X V)Gh(a K y) = GZ*<7 K y)

for any fixed y € Y. The inequality (6) allows us to apply the proposition
2.1 to Gy(+,-,y). Thus we obtain

L((U x V)7) lim Gy = D((U x V)7) lim G

The thesis is now a consequence of the lemma 6.1 and the proposition 6.2.
O

Lemma 6.4 There exists a function
w' i L(2; R") x L*(§2; R") — [0, 400)

such that for any y
limw*(y,2z) =0
z—y
and foru* € U*, v* € V*, y,z € L*(2; R")
Gr(u*, v, y) < Gy (u*, 0", 2) + w'(y, 2).

Proof. The definition of the Fenchel conjugate implies that for any ¢ > 0
there exist such u. € U and v, € Bp,(u.) that

GZ(U*vv*,y)S(U*,ue>+<v*,va>—/th(x,y(m)»ue(x))d$+& (9)
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On the other hand
G (u™,v*, 2) > (U ue) + (V™ v.) —/ Jn(z, 2(x), ue(x))d. (10)
Q
Joining (9) with (10) we obtain

Gy (u*, v, y) =G (u*, 0", 2) < / [fn(x, z(2),uc(x)) — fulz, y(2), ue(z))] dete.

(%
Now putting
5 (0:2) = [ otay(o). (o)

and using (L4) we finish the proof. O

Proposition 6.5 ([BF], proposition 5.2) Assume that for any y € R",
u € R™, v* € RF

QZ(U%U*W*) - @('»%U*a“*) (11>
weakly in L'($2). Then fory € Y, u* € U* and v* € V*

lim Gy (u",v", y) = P(u”, v, y),

h—o0

where @ is given by

o' 0"9) = [ (o yla). (@), 0" (2))da,
2
To sum up, we have proved the following theorem.

Corollary 6.6 Assume that (Ap) G-converges to A. If the hypotheses (L1)-
(L5) and (11) hold, then the limit problem has the form

min {/Qgp*(x,y(x),u(x),Ay(x))dx (uyy) € LP(2: R™) x Y} |

Remark This corollary generalizes the results of the section 5 of [BF] (see
also the introduction).
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Examples

. Let U =V be a reflexive Banach space endowed with the weak topo-
logy. Let us take a sequence 7}, of positive numbers such that

Th — T

and define
Bp(u) = B(u, )

(the limit problem will not change if, instead of open balls, we take
closed ones). We will show that

up —— u = B(up, 1) vk B(u,r). (12)
Namely, take u, — u and v, € B(up, ) such that

Vp, — V.

k

Then, of course,
Vpy, — Up, — UV — U.

The norm is weakly ls.c. (as it is strongly continuous and convex),
hence
l|v — u|| < liminf ||vp, — up, || < liminfr, =17
k—o00 k—o0

It means that v € B(u,7), so

K —limsup B(uy,r,) C B(u,r).

h—o00

Now let v € B(u,r). Put
vp = up + (v —u),

where 1
Th

A= —(1—=).

h T( h)

Then ) H ||
vV — U
lon —unl| = Anllo —ul| = (1 = )rp——

h) h . < T (13)
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and
vp = u+ (v —u) =w. (14)

The case r = 0 is simpler, because then it is appropriate to take u, = vy,.
Joining (13) with (14) we obtain

B(u,r) C K—liminf B(up, ),

h—o0

which, together with the obvious inclusion

K —liminf B(up,r,) C K—limsup B(up, 1),

h—oo h—o0
implies (12). If u; — u, then

sup ||up|| < +00
h

and for v, € B(up,r,) we have
ol = [lunl| < |[v = unl| <7,

therefore
ol < [lup|| + 7 < Sll}bplluhll +Sup7y,

In other words, there exists a positive number R such that for all h € N
B(uh, Th) C B(O, R),

and this, thanks to the Banach-Alaoglu Theorem, means that the as-
sumption (K2) is satisfied. Now, having applied the theorem 5.2, we
see that if (Ap) is G-convergent to A, (J) is I'(U~)-convergent to .J
and (K1) is satisfied, then the limit problem for the sequence

min {Jy(w,y) : [|An(y) — un|| < 74, (u,y) € U x Y}
has the form

min {J(u,y) : ||A(y) —u|| <7, (u,y) €U xY}.
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2. Let 2 be an open and bounded subset of R%. Let us take U = V =
L*(2),Y C L*(£2) and

Iey) = [ (1) + ly(o) = (o)) de
where yp is a function from L?(§2). Let By, be given by a multifunction

bn(, u) = [= (@) ul, Bn(2)]ul].
Assume that 3, € L*°({2) are nonnegative and
b — B
B —
weakly™ in L°((2). Then the assumptions (L1)-(L5) can be easily
verified and we have

g,y ut0) = 2 (4 Ba(@) o)) = |y — yo(@) )

e

pla,y,uv) = 2 (ju'] + (@) )* = ly = yo() .
If 8 > 0 almost everywhere, then
2
. v
" (2, y,u,v) = max{u®, @} + |y = yo(x)?

and, thanks to the theorem 6.6, the limit problem for the sequence
min {024y = sl ~ulal < A < il
Q
is

min {/Q Kzﬂ v %(A;,)?) Fly - yﬂ dz: (u,y) € U x Y} |

If, however, 3 = 0, then

0" (2, y,1u,0) = u? + Xm0 (V) + |y — yo(2)[?

and the limit problem has the form

min{/ﬂ[uQ—{— ly — yol?*]dz : Ay) = O}
= min {|ly = yol[* : A(y) = 0,u =0} .
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