
Asymptotic behaviour of optimal solutions
of control problems governed by inclusions

Maciej SmoÃlka ∗

1 Introduction

In this paper we consider control problems of the form

(CPh) min {Jh(u, y) : Ah(y) ∈ Bh(u), (u, y) ∈ U × Y } ,

where some topological spaces U and Y are, respectively, the space of controls
and the space of states. We search for an explicit form of the limit problem
(CP∞) for the sequence (CPh), i.e. such control problem that if (uh, yh) is a
solution of (CPh) and

(uh, yh) → (u∞, y∞),

then (u∞, v∞) is a solution of (CP∞). Under the assumption of G-convergence
of operators Ah we are able to find an explicit form of (CP∞) in two different
cases.

1. When (Bh) converges ’K-continuously’ to B, i.e.

uh → u ⇒ Bh(uh)
K→ B(u)

where ’K’ means the sequential convergence in the sense of Kuratowski;

2. Bh satisfy a weaker convergence condition, but they have the local form

Bh(u) = bh(x, u(x))
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for some multivalued functions bh and Jh are integral functionals

Jh(u, y) =

∫

Ω

fh(x, y(x), u(x))dx.

In the first case the limit problem has the same form as (CPh), in the latter,
in general, it is not true — the state inclusion may disappear and the mini-
mization may extend to the whole space U × Y , but then some additional
terms are inserted into the cost functional.

In this paper we generalize the results of G.Buttazzo and L.Freddi con-
tained in [BF] to the case of multivalued input operators Bh. Namely, they
considered control problems with the states of the system described by equa-
tions, i.e.

min {Jh(u, y) : Ah(y) = Bh(u), (u, y) ∈ U × Y }
where Bh were single-valued. Our cases 1 and 2 correspond, respectively,
to the case of the continuous convergence of Bh (see [BF], pp.406–408) and
the case of a weak convergence of nonlinear, local input operators (see [BF],
section 5). On the other hand, the results of section 6 formulated for abstract
operators Ah can be considered as a generalization of the results obtained by
G.Buttazzo and E.Cavazzuti in [BC] concerning ordinary differential inclu-
sions

y′ ∈ ah(t, y) + Bh(t, y)bh(t, u)

where only bh were multimappings.
The main tool used in the paper is the ’auxiliary variable’ method due to

G.Buttazzo (see [B]).

2 Γ -convergence, G-convergence and Kura-
towski convergence

This section contains definitions and basic properties of sequential Γ -limits
of functionals, Kuratowski limits of sets as well as a definition of the G-
convergence of abstract operators (see [BM], [BF], [M]).

Let X be a topological space and let Fh : X → R be a sequence of
functionals. Let us denote by Z(+) and Z(−), respectively, ’sup’ and ’inf’
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operators. For x ∈ X we define

Γ (Xα) lim sup
h→∞

Fh(x) = Z(α)xh→x lim sup
h→∞

Fh(xh),

Γ (Xα) lim inf
h→∞

Fh(x) = Z(α)xh→x lim inf
h→∞

Fh(xh),

where α stands for + or −. If these limits are equal, then their common
value is denoted by

Γ (Xα) lim
h→∞

Fh(x).

If some Γ -limit does not depend on α, we shall drop the sign, e.g. if

Γ (X+) lim sup
h→∞

Fh = Γ (X−) lim sup
h→∞

Fh,

then the common value is denoted by

Γ (X) lim sup
h→∞

Fh.

If one of the following conditions is satisfied:

(G1) X satisfies the first axiom of countability;

(G2) X is a Banach space endowed with its weak topology, X∗ is separable
and Fh ≥ Ψ for h ∈ N where Ψ : X → R is such that

lim
||x||→+∞

Ψ(x) = +∞; (1)

then Γ (X−)-limits defined above coincide with topological Γ -limits introdu-
ced by E.De Giorgi in [GF] (see [M], propositions 8.1 and 8.10). The Γ (X)-
convergence is nothing else than the (sequential) continuous convergence, i.e.
such that

xh → x ⇒ Fh(xh) → F (x).

If (Fh) is a constant sequence, i.e. Fh = F, ∀ h ∈ N and (G1) or (G2) is
true, then ([M], remark 4.5)

Γ (X−) lim inf
h→∞

Fh = Γ (X−) lim sup
h→∞

Fh = sc−F,

where sc−F denotes the lower semicontinuous envelope for F , i.e. the grea-
test l.s.c. function bounded from above by F . Moreover, we have
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Proposition 2.1 ([M], proposition 6.11) If one of the conditions (G1),
(G2) holds, then

Γ (X−) lim inf
h→∞

Fh = Γ (X−) lim inf
h→∞

sc−Fh,

Γ (X−) lim sup
h→∞

Fh = Γ (X−) lim sup
h→∞

sc−Fh.

In particular, (Fh) is Γ (X−)-convergent to F iff (sc−Fh) Γ (X−)-converges
to F .

The next proposition shows the relation between the Γ -convergence and
the pointwise one.

Proposition 2.2 ([M], proposition 5.9) Assume that X satisfies the first
axiom of countability and (Fh) is equi l.s.c. at x ∈ X. Then

Γ (X−) lim inf
h→∞

Fh(x) = lim inf
h→∞

Fh(x),

Γ (X−) lim sup
h→∞

Fh(x) = lim sup
h→∞

Fh(x).

In particular, if (Fh) is equi l.s.c. on X, then (Fh) is Γ (X−)-convergent to
F iff it converges to F pointwise.

In the optimal control theory it is useful to introduce the notion of double
Γ -limits. Let X and Y be topological spaces and let

Fh : X × Y → R

be a sequence of functionals. For x ∈ X, y ∈ Y we define

Γ (Xα, Y β) lim sup
h→∞

Fh(x, y) = Z(α)xh→xZ(β)yh→y lim sup
h→∞

Fh(xh, yh),

Γ (Xα, Y β) lim inf
h→∞

Fh(x, y) = Z(α)xh→xZ(β)yh→y lim inf
h→∞

Fh(xh, yh),

where α and β stand for + or −. We shall use similar notation conventions
as in the case of simple Γ -limits. Moreover, an expression like

Γ (Xα)Fh(x, y)

means that the limit is taken with respect to the first variable, while the
other is fixed.

The following proposition shows the role of the Γ -convergence in the
optimal control theory.
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Proposition 2.3 ([BM]) Let U and Y be topological spaces and let Fh :
U × Y → R be a sequence of functionals. Let (uh, yh) be a sequence of
minimal points for Fh or, more generally, such sequence that

lim
h→∞

Fh(uh, yh) = lim
h→∞

[
inf

U×Y
Fh

]
.

Assume that (uh, yh) converges in U×Y to some (u∞, y∞) and that for every
(u, y) ∈ U × Y the limit

F (u, y) = Γ (U−, Y −) lim
h→∞

Fh(u, y).

exists. Then

1.

lim
h→∞

[
inf

U×Y
Fh

]
= min

U×Y
F ;

2. (u∞, y∞) is a minimal point for F .

Γ -limits are not, in general, linear operators. The following proposition
allows us to compute Γ -limit of a sequence of sums of functions.

Proposition 2.4 ([BM]) Let Fh, Gh : X × Y → R be two sequences of
functions. Assume that the limits

Γ (X−, Y ) lim
h→∞

Fh(x, y) = a,

Γ (X,Y −) lim
h→∞

Gh(x, y) = b,

exist. Then
Γ (X−, Y −) lim

h→∞
(Fh + Gh)(x, y) = a + b.

Let (Eh) be a sequence of subsets of X. We define (sequential) upper and
lower limits of (Eh) in the sense of Kuratowski by:

K−lim sup
h→∞

Eh =
{

x ∈ X | ∃ (hn), hn < hn+1, xn ∈ Ehn : lim
n→∞

xn = x
}

,

K−lim inf
h→∞

Eh =
{

x ∈ X | ∃ xh ∈ Eh : lim
h→∞

xh = x
}

,
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If these limits are equal, then their common value is called the Kuratowski
limit of (Eh) and denoted by

K− lim
h→∞

Eh.

Let E be a subset of X. By χE we shall denote the indicator function of E,
i.e.

χE(x) =

{
0 when x ∈ E,

+∞ when x ∈ X \ E.

Let Y and V be topological spaces. We say that a sequence of operators

Ah : Y → V

G-converges to A : Y → V if

Γ (V, Y −) lim
h→∞

χ{Ah(y)=v} = χ{A(y)=v},

i.e. if the following conditions are satisfied:

1. if yh → y in Y , vh → v in V and Ah(yh) = vh for infinitely many
h ∈ N , then A(y) = v;

2. if A(y) = v and vh → v in V , then there exists a sequence (yh) co-
nvergent to y in Y and such that Ah(yh) = vh for sufficiently large
h.

Let us denote by Sh(v) the set of solutions of the equation Ah(y) = v, and
by S(v) — the set of solutions of the equation A(y) = v.

Proposition 2.5 ([DM], proposition 4.4) The above conditions are equi-
valent to the following:

vh → v ⇒ Sh(vh)
K→ S(v)

where ’K’ means Kuratowski convergence with respect to the topology of Y .

Remark ([BM]). If for Y we substitute H1
0 (Ω) with the weak topology,

for V — H−1(Ω) with the norm topology and if operators Ah are linear and
uniformly elliptic, then the given definition will coincide with the classical
one introduced by S.Spagnolo ([S]).
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3 Fenchel conjugate functions

Let X be a Banach space and let X∗ be its dual. Let

F : X → R

be a proper function, i.e. such that is not everywhere equal to +∞ and
anywhere to −∞. We define a function

F ∗ : X∗ → R,

which we shall call the Fenchel conjugate to F , by the formula

F ∗(x∗) = sup
x∈X

{〈x∗, x〉 − F (x)} ,

where
〈·, ·〉 : X∗ ×X → R

denotes the duality pairing between X∗ and X. F ∗ is always convex and
l.s.c.; of course we can say the same about the bi-conjugate

F ∗∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − F ∗(x∗)} .

Moreover, F ∗∗ is the convex and lower semicontinuous envelope for F , so if
F is proper, convex and l.s.c., then F ∗∗ = F .

For integral functionals we have the following representation theorem.

Theorem 3.1 ([ET]) Let Ω be an open and bounded subset of Rd and let

f : Ω ×Rn → R

be a Borel function bounded from below. Define for u ∈ Lp(Ω; Rn), p ∈
(1, +∞)

F (u) =

∫

Ω

f(x, u(x))dx.

Assume that

1. f(x, ·) is l.s.c. for almost every x ∈ Ω;

2. there exists u ∈ L∞(Ω; Rn) such that F (u) < +∞.
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Then

F ∗(u∗) =

∫

Ω

f ∗(x, u∗(x))dx,

F ∗∗(u) =

∫

Ω

f ∗∗(x, u(x))dx,

where u ∈ Lp(Ω; Rn), u∗ ∈ Lp′(Ω; Rn), 1/p+1/p′ = 1, and f ∗, f ∗∗ are taken
with respect to the second variable.

The next theorem relates Γ -convergence of convex functions with Γ -
convergence of their conjugates.

Theorem 3.2 ([A], theorem 3.2.4) Let X be a separable Banach space
and let F, Fh be proper, convex and l.s.c. functionals on X. Assume that

1.
Γ (X−) lim

h→∞
Fh = F ;

2.
lim sup

h→∞
F ∗

h (x∗h) < +∞⇒ sup
h
||x∗h|| < +∞.

Then
Γ (w∗X∗−) lim

h→∞
F ∗

h = F ∗,

where w∗X∗ denotes the dual to X endowed with its weak* topology.

4 Abstract model

Let U and Y be two topological spaces called, respectively the space of con-
trols and the space of states. Let

Jh : U × Y → R

be a sequence of cost functionals. In the sequel we will always assume that
they are uniformly bounded from below. We consider the following sequence
of abstract optimal control problems

min {Jh(u, y) : Ah(y) ∈ Bh(u), (u, y) ∈ U × Y } , (2)
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where

Ah : Y → V,

Bh : U → P(V ),

map Y and U into another topological space V .
Obviously, the problem (2) is equivalent to the following

min
{
Jh(u, y) + χ{Ah(y)∈Bh(u)}(u, y) : (u, y) ∈ U × Y

}

with the minimization over the whole Cartesian product U × Y .
In this paper the method of auxiliary variable (see e.g. [BC],[B]) is used.

It is based on the following proposition.

Proposition 4.1 ([BC], proposition 2.3) Let U , V and Y be topological
spaces. Let Fh : U × Y → R be a sequence of functions uniformly bounded
from below and Ξh : U × Y → P(V ) — a sequence of multimappings. Put

Φh(u, v, y) =

{
Fh(u, y) when v ∈ Ξh(u, y),

+∞ otherwise

and assume that

1. for any convergent sequence (uh, yh) such that {Fh(uh, yh)} is bounded
there exists a sequence vh ∈ Ξh(uh, yh) which is relatively compact in
V ;

2. for every (u, v, y) ∈ U × V × Y the limit

Γ ((U × V )−, Y ) lim
h→∞

Φh(u, v, y)

exists.

Then

Γ (U−, Y −) lim
h→∞

Fh(u, y) = inf
{

Γ ((U × V )−, Y −) lim
h→∞

Φh(u, v, y) : v ∈ V
}

.

Put
Gh(u, v, y) = Jh(u, y) + χ{v∈Bh(u)}(u, v). (3)

In our abstract model the form of the limit problem is given by the following
theorem, corresponding to the Theorem 3.3 of [BF].
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Theorem 4.2 Assume that

1. Ah is G-convergent to A;

2. if uh → u, yh → y, Ah(yh) ∈ Bh(uh) and {Jh(uh, yh)} is bounded, then
Ah(yh) is relatively compact in V ;

3. the limit

G(u, v, y) = Γ ((U × V )−, Y −) lim
h→∞

Gh(u, v, y)

exists.

Then

Γ (U−, Y −) lim
h→∞

(
Jh + χ{Ah(y)∈Bh(u)}

)
(u, y) = G(u,A(y), y).

Proof. Put

Fh(u, y) = Jh(u, y) + χ{Ah(y)∈Bh(u)},

Ξh(u, y) = {Ah(y)} ∩ Bh(u)

and let Φh be the same as in the previous proposition. Notice that

Φh(u, v, y) = Jh(u, y) + χ{v∈Bh(u)}(u, v) + χ{Ah(y)=v}(v, y)

= Gh(u, v, y) + χ{Ah(y)=v}(v, y).

The assumption 2 makes it possible to use the proposition 4.1. Applying
it as well as the proposition 2.4 and the definition of the G-convergence we
obtain

Γ (U−, Y −) lim
h→∞

(
Jh + χ{Ah(y)∈Bh(u)}

)
(u, y)

= inf
v∈V

{
Γ ((U × V )−, Y −) lim

h→∞

(
Gh + χ{Ah(y)=v}

)
(u, v, y)

}

= inf
v∈V

{
Γ ((U × V )−, Y ) lim

h→∞
Gh(u, v, y) + Γ (V, Y −) lim

h→∞
χ{Ah(y)=v}(v, y)

}

= inf
v∈V

{
G(u, v, y) + χ{A(y)=v}(v, y)

}

= G(u,A(y), y). 2

Due to this theorem our task is now to find the explicit expression for G and
we shall concentrate on it in the next sections.
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5 The case of ’K-continuous’ convergence of
Bh

Let us first assume that operators Bh : U → P(V ) converge to B : U → P(V )
in the following manner:

uh → u ⇒ Bh(uh)
K→ B(u), (4)

where ’K’ denotes Kuratowski convergence with respect to the topology of
V .
Remark The above convergence condition is equivalent to the following (see
proposition 2.5):

Γ (U, V −) lim
h→∞

χ{v∈Bh(u)} = χ{v∈B(u)}.

Let us take the hypotheses:

(K1) there exists a function Ψ : U → R such that if (uh) is convergent, then
(Ψ(uh)) is bounded, and a function ω : Y × Y → R such that for any
y ∈ Y

lim
z→y

ω(y, z) = lim
z→y

ω(z, y) = 0

and for u ∈ U , y, z ∈ Y , h ∈ N

|Jh(u, y)− Jh(u, z)| ≤ Ψ(u)ω(y, z);

(K2) if uh → u, yh → y, vh ∈ Bh(uh) and {Jh(uh, yh)} is bounded, then {vh}
is relatively compact.

Proposition 5.1 Let Gh be defined by (3). Assume (4), (K1) and that the
following limit

Γ (U−) lim
h→∞

Jh.

exists. Then

Γ ((U × V )−, Y ) lim
h→∞

Gh(u, v, y) = Γ (U−) lim
h→∞

Jh(u, y) + χ{v∈B(u)}(u, v).

11



Proof. From (4) we know that if v ∈ B(u), then there exist such vh ∈ Bh(uh)
that vh → v, and if, on the other hand, v 6∈ B(u) with vh → v, then
vh 6∈ Bh(uh) for sufficiently large h. Let us take u ∈ U , y ∈ Y . If v ∈ B(u),
then from (4) we obtain

Γ ((U × V )−, Y −) lim inf
h→∞

Gh(u, v, y)

= inf
uh→u

inf
vh→v

inf
yh→y

lim inf
h→∞

Gh(uh, vh, yh)

= inf
uh→u

inf
yh→y

lim inf
h→∞

Jh(uh, yh)

≥ inf
uh→u

inf
yh→y

lim inf
h→∞

[Jh(uh, y)− Ψ(uh)ω(yh, y)]

= inf
uh→u

lim inf
h→∞

Jh(uh, y)

= Γ (U−) lim inf
h→∞

Jh(u, y);

on the other hand

Γ ((U × V )−, Y +) lim sup
h→∞

Gh(u, v, y)

= inf
uh→u

inf
vh→v

sup
yh→y

lim sup
h→∞

Gh(uh, vh, yh)

= inf
uh→u

sup
yh→y

lim sup
h→∞

Jh(uh, yh)

≤ inf
uh→u

sup
yh→y

lim sup
h→∞

[Jh(uh, y) + Ψ(uh)ω(yh, y)]

= inf
uh→u

lim sup
h→∞

Jh(uh, y)

= Γ (U−) lim sup
h→∞

Jh(u, y).

If v 6∈ B(u), then both inequalities become trivial. Joining these facts we
finish the proof. 2

Theorem 5.2 Assume (4), (K1), (K2) and

1. Ah
G→ A,

2. Γ (U−) limh→∞ Jh = J .

Then
Γ (U−, Y −) lim

h→∞

(
Jh + χ{Ah(y)∈Bh(u)}

)
= J + χ{A(y)∈B(u)}.
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Proof. (K2) makes sure that the assumption 2 of the theorem 4.2 is satis-
fied. Applying that theorem together with the proposition 5.1 we complete
the proof. 2

Remark Under the assumptions of the theorem the limit problem has the
form

min {J(u, y) : A(y) ∈ B(u), (u, y) ∈ U × Y } .

Remark The hypothesis (K2) holds e.g. when U and V are reflexive Banach
spaces endowed with their weak topologies, and for some constants a, b > 0,
c ≥ 0 we have

Jh(u, y) ≥ a||u||U + b sup
v∈Bh(u)

||v||V − c.

Remark The theorem 5.2 is a generalization of the theorem 3.6 of [BF] to
the case of state inclusions (see also the introduction).

6 The local case

In this section we shall deal with the case when Bh are local operators between
Lebesgue spaces and Jh are integral functionals. Namely, let Ω be an open
and bounded subset of Rd. Let p, q ∈ (1, +∞) and let p′, q′ be their adjoint
exponents. We take U = Lp(Ω; Rm), V = Lq(Ω; Rk), both endowed with
their weak topologies, but in the dual spaces U∗ and V ∗ we choose the strong
topologies. As Y we may take any space of measurable functions from Ω into
Rn which can be embedded in Ls(Ω; Rn) (with the norm topology) for some
s ∈ [1, +∞]. Let

Bh : U → P(V )

be defined by:

Bh(u) = {v ∈ V | v(x) ∈ bh(x, u(x)) a.e. in Ω} ,

where
bh : Ω ×Rm → P(Rk)

are some multivalued Borel mappings, i.e. such that

Gr bh =
{
(x, u, v) ∈ Ω ×Rm ×Rk | v ∈ bh(x, u)

}
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are Borel sets. Cost functionals are of the integral type

Jh(u, y) =

∫

Ω

fh(x, y(x), u(x))dx

for some Borel functions

fh : Ω ×Rn ×Rm → (−∞, +∞].

In the sequel we shall take the following hypotheses:

(L1) bh have non empty values and the sets

Gr bh(x, ·) =
{
(u, v) ∈ Rm ×Rd | v ∈ bh(x, u)

}

are closed;

(L2) fh(x, y, ·) is l.s.c. on Rm for almost every x ∈ Ω and every y ∈ Rn;

(L3) there exist a, b > 0 and c ∈ L∞(Ω) such that for every (x, y, u) ∈
Ω ×Rn ×Rm, v ∈ Rk and h ∈ N

fh(x, y, u) + χ{v∈bh(x,u)}(x, u, v) ≥ a|u|p + b|v|q − c(x);

(L4) there exists a function σ : Ω ×Rn ×Rn → [0, +∞) measurable with
respect to the first variable, continuous with respect to the others and
such that

z
Ls−→ y ⇒ σ(·, y(·), z(·)) L1−→ 0

and for every x ∈ Ω, u ∈ Rm, y, z ∈ Rn, h ∈ N

fh(x, y, u) ≤ fh(x, z, u) + σ(x, y, z);

(L5) there exist uh ∈ L∞(Ω; Rm) and vh ∈ Bh(uh) ∩ L∞(Ω; Rk) such that
for every y ∈ Y ∫

Ω

fh(x, y(x), uh(x))dx < +∞.
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Let Gh be defined by (3). Notice that

Gh(u, v, y) =

∫

Ω

gh(x, y(x), u(x), v(x))dx,

where gh : Ω ×Rn ×Rm ×Rk → R is given by

gh(x, y, u, v) = fh(x, y, u) + χ{v∈bh(x,u)}(x, u, v).

Thanks to (L1), (L2) and (L5) we can apply the theorem 3.1 to Gh obtaining

G∗
h(u

∗, v∗, y) =

∫

Ω

g∗h(x, y(x), u∗(x), v∗(x))dx,

G∗∗
h (u, v, y) =

∫

Ω

g∗∗h (x, y(x), u(x), v(x))dx,

while the conjugates for gh are taken with respect to last two variables.

Lemma 6.1 If the limit

Γ ((U∗ × V ∗)−) lim
h→∞

G∗
h,

exists, then

Γ ((U × V )−) lim
h→∞

G∗∗
h =

(
Γ ((U∗ × V ∗)−) lim

h→∞
G∗

h

)∗
.

Proof. Notice that thanks to (L3) for y ∈ Y , u ∈ U and v ∈ Bh(u) we have

Jh(u, y) ≥ a||u||p + b||v||q − c0, (5)

or, in other words, for y ∈ Y , u ∈ U , v ∈ V we have

Gh(u, v, y) ≥ a||u||p + b||v||q − c0, (6)

where c0 = min{0, ess inf c}. Thus

G∗
h(u

∗, v∗, y) =

= sup {〈u∗, u〉+ 〈v∗, v〉 − Jh(u, y) : u ∈ U, v ∈ Bh(u)}
≤ sup {||u∗||||u||+ ||v∗||||v|| − a||u||p − b||v||q + c0 : u ∈ U, v ∈ V } (7)

≤ sup {||u∗||||u|| − a||u||p : u ∈ U}+ sup {||v∗||||v|| − b||v||q : v ∈ V }+ c0

= α||u∗||p′ + β||v∗||q′ + c0,
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where

α =
1

p′
(ap)

1
1−p ,

β =
1

q′
(bq)

1
1−q .

Similarly (7) implies

G∗∗
h (u, v, y) =

= sup {〈u∗, u〉+ 〈v∗, v〉 −G∗
h(u

∗, v∗, y) : u∗ ∈ U∗, v∗ ∈ V ∗} (8)

≥ sup
{
〈u∗, u〉 − α||u∗||p′ : u∗ ∈ U∗

}
+ sup

{
〈v∗, v〉 − β||v∗||q′ : v∗ ∈ V ∗

}
− c0

= a||u||p + b||v||q − c0

Fix y ∈ Y . Put X = U∗ × V ∗ and

Fh(u
∗, v∗) = G∗

h(u
∗, v∗, y).

As Fenchel conjugates Fh are convex and l.s.c., thanks to (7) they are also
proper. The assumption 2 of the theorem 3.2 is satisfied due to the inequality
(8) — now our thesis is a consequence of this theorem. 2

Proposition 6.2 For any (u∗, v∗) ∈ U∗ × V ∗ and y ∈ Y we have

Γ ((U∗ × V ∗)−) lim
h→∞

G∗
h(u

∗, v∗, y) = lim
h→∞

G∗
h(u

∗, v∗, y).

Proof. Notice first that U∗× V ∗, as Banach space endowed with the strong
topology satisfies the first axiom of countability. Functionals G∗

h(·, ·, y) are
convex, l.s.c. and, thanks to (7), locally uniformly bounded. Hence ([ET],
corollaries I.2.4, I.2.5, remark I.2.1) they are locally equi Lipschitz. Now
from the proposition 2.2 we obtain the equality between the Γ -limit and the
pointwise one. 2

Proposition 6.3 For every (u, v) ∈ U × V and y ∈ Y we have

Γ ((U × V )−, Y ) lim
h→∞

Gh(u, v, y) =
(

lim
h→∞

G∗
h

)∗
(u, v, y).
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Proof. Thanks to (L4) we have

Jh(u, y) ≤ Jh(u, z) + ω(y, z),

while
lim
z→y

ω(y, z) = lim
z→y

ω(z, y) = 0

and, similarly as in the proof of the proposition 5.1, we can show that

Γ ((U × V )−, Y ) lim
h→∞

Gh = Γ ((U × V )−) lim
h→∞

Gh.

Because of (L5) from the remark 2.6.5 of [B] we have

sc−(U × V )Gh(·, ·, y) = G∗∗
h (·, ·, y).

for any fixed y ∈ Y . The inequality (6) allows us to apply the proposition
2.1 to Gh(·, ·, y). Thus we obtain

Γ ((U × V )−) lim
h→∞

Gh = Γ ((U × V )−) lim
h→∞

G∗∗
h .

The thesis is now a consequence of the lemma 6.1 and the proposition 6.2.
2

Lemma 6.4 There exists a function

ω∗ : Ls(Ω; Rn)× Ls(Ω; Rn) → [0, +∞)

such that for any y
lim
z→y

ω∗(y, z) = 0

and for u∗ ∈ U∗, v∗ ∈ V ∗, y, z ∈ Ls(Ω; Rn)

G∗
h(u

∗, v∗, y) ≤ G∗
h(u

∗, v∗, z) + ω∗(y, z).

Proof. The definition of the Fenchel conjugate implies that for any ε > 0
there exist such uε ∈ U and vε ∈ Bh(uε) that

G∗
h(u

∗, v∗, y) ≤ 〈u∗, uε〉+ 〈v∗, vε〉 −
∫

Ω

fh(x, y(x), uε(x))dx + ε. (9)
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On the other hand

G∗
h(u

∗, v∗, z) ≥ 〈u∗, uε〉+ 〈v∗, vε〉 −
∫

Ω

fh(x, z(x), uε(x))dx. (10)

Joining (9) with (10) we obtain

G∗
h(u

∗, v∗, y)−G∗
h(u

∗, v∗, z) ≤
∫

Ω

[fh(x, z(x), uε(x))− fh(x, y(x), uε(x))] dx+ε.

Now putting

ω∗(y, z) =

∫

Ω

σ(x, y(x), z(x))dx,

and using (L4) we finish the proof. 2

Proposition 6.5 ([BF], proposition 5.2) Assume that for any y ∈ Rn,
u∗ ∈ Rm, v∗ ∈ Rk

g∗h(·, y, u∗, v∗) → ϕ(·, y, u∗, v∗) (11)

weakly in L1(Ω). Then for y ∈ Y , u∗ ∈ U∗ and v∗ ∈ V ∗

lim
h→∞

G∗
h(u

∗, v∗, y) = Φ(u∗, v∗, y),

where Φ is given by

Φ(u∗, v∗, y) =

∫

Ω

ϕ(x, y(x), u∗(x), v∗(x))dx.

To sum up, we have proved the following theorem.

Corollary 6.6 Assume that (Ah) G-converges to A. If the hypotheses (L1)–
(L5) and (11) hold, then the limit problem has the form

min

{∫

Ω

ϕ∗(x, y(x), u(x), Ay(x))dx : (u, y) ∈ Lp(Ω; Rm)× Y

}
.

Remark This corollary generalizes the results of the section 5 of [BF] (see
also the introduction).
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7 Examples

1. Let U = V be a reflexive Banach space endowed with the weak topo-
logy. Let us take a sequence rh of positive numbers such that

rh → r

and define
Bh(u) = B(u, rh)

(the limit problem will not change if, instead of open balls, we take
closed ones). We will show that

uh
w−→ u ⇒ B(uh, rh)

w−K−→ B(u, r). (12)

Namely, take uh → u and vh ∈ B(uh, rh) such that

vhk
→ v.

Then, of course,
vhk

− uhk
→ v − u.

The norm is weakly l.s.c. (as it is strongly continuous and convex),
hence

||v − u|| ≤ lim inf
k→∞

||vhk
− uhk

|| ≤ lim inf
k→∞

rhk
= r.

It means that v ∈ B(u, r), so

K−lim sup
h→∞

B(uh, rh) ⊂ B(u, r).

Now let v ∈ B(u, r). Put

vh = uh + λh(v − u),

where

λh =
rh

r
(1− 1

h
).

Then

||vh − uh|| = λh||v − u|| = (1− 1

h
)rh
||v − u||

r
< rh (13)
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and
vh → u + (v − u) = v. (14)

The case r = 0 is simpler, because then it is appropriate to take uh = vh.
Joining (13) with (14) we obtain

B(u, r) ⊂ K−lim inf
h→∞

B(uh, rh),

which, together with the obvious inclusion

K−lim inf
h→∞

B(uh, rh) ⊂ K−lim sup
h→∞

B(uh, rh),

implies (12). If uh
w→ u, then

sup
h
||uh|| < +∞

and for vh ∈ B(uh, rh) we have

||v|| − ||uh|| ≤ ||v − uh|| < rh,

therefore
||v|| < ||uh||+ rh ≤ sup

h
||uh||+ sup

h
rh.

In other words, there exists a positive number R such that for all h ∈ N

B(uh, rh) ⊂ B(0, R),

and this, thanks to the Banach-Alaoglu Theorem, means that the as-
sumption (K2) is satisfied. Now, having applied the theorem 5.2, we
see that if (Ah) is G-convergent to A, (Jh) is Γ (U−)-convergent to J
and (K1) is satisfied, then the limit problem for the sequence

min {Jh(u, y) : ||Ah(y)− uh|| < rh, (u, y) ∈ U × Y }

has the form

min {J(u, y) : ||A(y)− u|| ≤ r, (u, y) ∈ U × Y } .
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2. Let Ω be an open and bounded subset of Rd. Let us take U = V =
L2(Ω), Y ⊂ L2(Ω) and

Jh(u, y) =

∫

Ω

[
u2(x) + |y(x)− y0(x)|2] dx,

where y0 is a function from L2(Ω). Let Bh be given by a multifunction

bh(x, u) = [−βh(x)|u|, βh(x)|u|].
Assume that βh ∈ L∞(Ω) are nonnegative and

βh → β

β2
h → β2

weakly* in L∞(Ω). Then the assumptions (L1)–(L5) can be easily
verified and we have

g∗h(x, y, u∗, v∗) =
1

4
(|u∗|+ βh(x)|v∗|)2 − |y − y0(x)|2

ϕ(x, y, u∗, v∗) =
1

4
(|u∗|+ β(x)|v∗|)2 − |y − y0(x)|2.

If β > 0 almost everywhere, then

ϕ∗(x, y, u, v) = max{u2,
v2

β2
}+ |y − y0(x)|2

and, thanks to the theorem 6.6, the limit problem for the sequence

min

{∫

Ω

[u2 + |y − y0|2]dx : −βh|u| ≤ Ahy ≤ βh|u|
}

is

min

{∫

Ω

[(
u2 ∨ 1

β2
(Ay)2

)
+ |y − y0|2

]
dx : (u, y) ∈ U × Y

}
.

If, however, β = 0, then

ϕ∗(x, y, u, v) = u2 + χ{v=0}(v) + |y − y0(x)|2

and the limit problem has the form

min

{∫

Ω

[u2 + |y − y0|2]dx : A(y) = 0

}

= min
{||y − y0||2 : A(y) = 0, u = 0

}
.
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