Asymptotic behaviour of optimal solutions of control problems governed by inclusions

Maciej Smołka *

1 Introduction

In this paper we consider control problems of the form

$$(CP_h) \min \{J_h(u, y) : A_h(y) \in B_h(u), (u, y) \in U \times Y\},\$$

where some topological spaces U and Y are, respectively, the space of controls and the space of states. We search for an explicit form of the limit problem (CP_{∞}) for the sequence (CP_h) , i.e. such control problem that if (u_h, y_h) is a solution of (CP_h) and

$$(u_h, y_h) \to (u_\infty, y_\infty),$$

then (u_{∞}, v_{∞}) is a solution of (CP_{∞}) . Under the assumption of *G*-convergence of operators A_h we are able to find an explicit form of (CP_{∞}) in two different cases.

1. When (B_h) converges 'K-continuously' to B, i.e.

$$u_h \to u \Rightarrow B_h(u_h) \stackrel{\kappa}{\to} B(u)$$

where 'K' means the sequential convergence in the sense of Kuratowski;

2. B_h satisfy a weaker convergence condition, but they have the local form

$$B_h(u) = b_h(x, u(x))$$

^{*}Jagiellonian University, Institute of Computer Science, 30-072 Kraków, Nawojki 11, e-mail: smolka@ii.uj.edu.pl

for some multivalued functions b_h and J_h are integral functionals

$$J_h(u,y) = \int_{\Omega} f_h(x,y(x),u(x))dx$$

In the first case the limit problem has the same form as (CP_h) , in the latter, in general, it is not true — the state inclusion may disappear and the minimization may extend to the whole space $U \times Y$, but then some additional terms are inserted into the cost functional.

In this paper we generalize the results of G.Buttazzo and L.Freddi contained in [BF] to the case of multivalued input operators B_h . Namely, they considered control problems with the states of the system described by equations, i.e.

$$\min \left\{ J_h(u, y) : A_h(y) = B_h(u), (u, y) \in U \times Y \right\}$$

where B_h were single-valued. Our cases 1 and 2 correspond, respectively, to the case of the continuous convergence of B_h (see [BF], pp.406–408) and the case of a weak convergence of nonlinear, local input operators (see [BF], section 5). On the other hand, the results of section 6 formulated for abstract operators A_h can be considered as a generalization of the results obtained by G.Buttazzo and E.Cavazzuti in [BC] concerning ordinary differential inclusions

$$y' \in a_h(t, y) + B_h(t, y)b_h(t, u)$$

where only b_h were multimappings.

The main tool used in the paper is the 'auxiliary variable' method due to G.Buttazzo (see [B]).

2 Γ-convergence, G-convergence and Kuratowski convergence

This section contains definitions and basic properties of sequential Γ -limits of functionals, Kuratowski limits of sets as well as a definition of the *G*-convergence of abstract operators (see [BM], [BF], [M]).

Let X be a topological space and let $F_h : X \to \overline{\mathbf{R}}$ be a sequence of functionals. Let us denote by Z(+) and Z(-), respectively, 'sup' and 'inf'

operators. For $x \in X$ we define

$$\Gamma(X^{\alpha}) \limsup_{h \to \infty} F_h(x) = Z(\alpha)_{x_h \to x} \limsup_{h \to \infty} F_h(x_h),$$

$$\Gamma(X^{\alpha}) \liminf_{h \to \infty} F_h(x) = Z(\alpha)_{x_h \to x} \liminf_{h \to \infty} F_h(x_h),$$

where α stands for + or -. If these limits are equal, then their common value is denoted by

$$\Gamma(X^{\alpha}) \lim_{h \to \infty} F_h(x).$$

If some Γ -limit does not depend on α , we shall drop the sign, e.g. if

$$\Gamma(X^+) \limsup_{h \to \infty} F_h = \Gamma(X^-) \limsup_{h \to \infty} F_h,$$

then the common value is denoted by

$$\Gamma(X)\limsup_{h\to\infty}F_h$$

If one of the following conditions is satisfied:

- (G1) X satisfies the first axiom of countability;
- (G2) X is a Banach space endowed with its weak topology, X^* is separable and $F_h \ge \Psi$ for $h \in \mathbb{N}$ where $\Psi : X \to \overline{\mathbb{R}}$ is such that

$$\lim_{||x|| \to +\infty} \Psi(x) = +\infty; \tag{1}$$

then $\Gamma(X^-)$ -limits defined above coincide with topological Γ -limits introduced by E.De Giorgi in [GF] (see [M], propositions 8.1 and 8.10). The $\Gamma(X)$ -convergence is nothing else than the (sequential) continuous convergence, i.e. such that

$$x_h \to x \Rightarrow F_h(x_h) \to F(x)$$

If (F_h) is a constant sequence, i.e. $F_h = F$, $\forall h \in \mathbf{N}$ and (G1) or (G2) is true, then ([M], remark 4.5)

$$\Gamma(X^{-}) \liminf_{h \to \infty} F_h = \Gamma(X^{-}) \limsup_{h \to \infty} F_h = \operatorname{sc}^{-} F,$$

where $\operatorname{sc}^{-}F$ denotes the lower semicontinuous envelope for F, i.e. the greatest l.s.c. function bounded from above by F. Moreover, we have

Proposition 2.1 ([M], proposition 6.11) If one of the conditions (G1), (G2) holds, then

$$\Gamma(X^{-}) \liminf_{h \to \infty} F_{h} = \Gamma(X^{-}) \liminf_{h \to \infty} \operatorname{sc}^{-} F_{h},$$

$$\Gamma(X^{-}) \limsup_{h \to \infty} F_{h} = \Gamma(X^{-}) \limsup_{h \to \infty} \operatorname{sc}^{-} F_{h}.$$

In particular, (F_h) is $\Gamma(X^-)$ -convergent to F iff (sc^-F_h) $\Gamma(X^-)$ -converges to F.

The next proposition shows the relation between the Γ -convergence and the pointwise one.

Proposition 2.2 ([M], proposition 5.9) Assume that X satisfies the first axiom of countability and (F_h) is equi l.s.c. at $x \in X$. Then

$$\Gamma(X^{-})\liminf_{h\to\infty}F_{h}(x) = \liminf_{h\to\infty}F_{h}(x),$$

$$\Gamma(X^{-})\limsup_{h\to\infty}F_{h}(x) = \limsup_{h\to\infty}F_{h}(x).$$

In particular, if (F_h) is equi l.s.c. on X, then (F_h) is $\Gamma(X^-)$ -convergent to F iff it converges to F pointwise.

In the optimal control theory it is useful to introduce the notion of *double* Γ -*limits*. Let X and Y be topological spaces and let

$$F_h: X \times Y \to \overline{R}$$

be a sequence of functionals. For $x \in X, y \in Y$ we define

$$\Gamma(X^{\alpha}, Y^{\beta}) \limsup_{h \to \infty} F_h(x, y) = Z(\alpha)_{x_h \to x} Z(\beta)_{y_h \to y} \limsup_{h \to \infty} F_h(x_h, y_h),$$

$$\Gamma(X^{\alpha}, Y^{\beta}) \liminf_{h \to \infty} F_h(x, y) = Z(\alpha)_{x_h \to x} Z(\beta)_{y_h \to y} \liminf_{h \to \infty} F_h(x_h, y_h),$$

where α and β stand for + or -. We shall use similar notation conventions as in the case of simple Γ -limits. Moreover, an expression like

$$\Gamma(X^{\alpha})F_h(x,y)$$

means that the limit is taken with respect to the first variable, while the other is fixed.

The following proposition shows the role of the Γ -convergence in the optimal control theory.

Proposition 2.3 ([BM]) Let U and Y be topological spaces and let F_h : $U \times Y \rightarrow \overline{\mathbf{R}}$ be a sequence of functionals. Let (u_h, y_h) be a sequence of minimal points for F_h or, more generally, such sequence that

$$\lim_{h \to \infty} F_h(u_h, y_h) = \lim_{h \to \infty} \left[\inf_{U \times Y} F_h \right].$$

Assume that (u_h, y_h) converges in $U \times Y$ to some (u_∞, y_∞) and that for every $(u, y) \in U \times Y$ the limit

$$F(u,y) = \Gamma(U^{-},Y^{-}) \lim_{h \to \infty} F_h(u,y).$$

exists. Then

1.

$$\lim_{h \to \infty} \left[\inf_{U \times Y} F_h \right] = \min_{U \times Y} F;$$

2. (u_{∞}, y_{∞}) is a minimal point for F.

 Γ -limits are not, in general, linear operators. The following proposition allows us to compute Γ -limit of a sequence of sums of functions.

Proposition 2.4 ([BM]) Let $F_h, G_h : X \times Y \to \overline{\mathbf{R}}$ be two sequences of functions. Assume that the limits

$$\Gamma(X^{-}, Y) \lim_{h \to \infty} F_h(x, y) = a,$$

$$\Gamma(X, Y^{-}) \lim_{h \to \infty} G_h(x, y) = b,$$

exist. Then

$$\Gamma(X^-, Y^-) \lim_{h \to \infty} (F_h + G_h)(x, y) = a + b$$

Let (E_h) be a sequence of subsets of X. We define *(sequential) upper and* lower limits of (E_h) in the sense of Kuratowski by:

$$K - \limsup_{h \to \infty} E_h = \left\{ x \in X \mid \exists (h_n), h_n < h_{n+1}, x_n \in E_{h_n} : \lim_{n \to \infty} x_n = x \right\},$$

$$K - \liminf_{h \to \infty} E_h = \left\{ x \in X \mid \exists x_h \in E_h : \lim_{h \to \infty} x_h = x \right\},$$

If these limits are equal, then their common value is called *the Kuratowski* limit of (E_h) and denoted by

$$K - \lim_{h \to \infty} E_h.$$

Let E be a subset of X. By χ_E we shall denote the indicator function of E, i.e.

$$\chi_E(x) = \begin{cases} 0 & \text{when } x \in E, \\ +\infty & \text{when } x \in X \setminus E. \end{cases}$$

Let Y and V be topological spaces. We say that a sequence of operators

$$A_h: Y \to V$$

G-converges to $A: Y \to V$ if

$$\Gamma(V, Y^-) \lim_{h \to \infty} \chi_{\{A_h(y)=v\}} = \chi_{\{A(y)=v\}},$$

i.e. if the following conditions are satisfied:

- 1. if $y_h \to y$ in Y, $v_h \to v$ in V and $A_h(y_h) = v_h$ for infinitely many $h \in \mathbf{N}$, then A(y) = v;
- 2. if A(y) = v and $v_h \to v$ in V, then there exists a sequence (y_h) convergent to y in Y and such that $A_h(y_h) = v_h$ for sufficiently large h.

Let us denote by $S_h(v)$ the set of solutions of the equation $A_h(y) = v$, and by S(v) — the set of solutions of the equation A(y) = v.

Proposition 2.5 ([DM], proposition 4.4) The above conditions are equivalent to the following:

$$v_h \to v \Rightarrow S_h(v_h) \xrightarrow{K} S(v)$$

where 'K' means Kuratowski convergence with respect to the topology of Y.

Remark ([BM]). If for Y we substitute $H_0^1(\Omega)$ with the weak topology, for $V - H^{-1}(\Omega)$ with the norm topology and if operators A_h are linear and uniformly elliptic, then the given definition will coincide with the classical one introduced by S.Spagnolo ([S]).

3 Fenchel conjugate functions

Let X be a Banach space and let X^* be its dual. Let

 $F: X \to \overline{\mathbf{R}}$

be a proper function, i.e. such that is not everywhere equal to $+\infty$ and anywhere to $-\infty$. We define a function

$$F^*: X^* \to \overline{\mathbf{R}},$$

which we shall call the Fenchel conjugate to F, by the formula

$$F^*(x^*) = \sup_{x \in X} \left\{ \langle x^*, x \rangle - F(x) \right\},\,$$

where

 $\langle \cdot, \cdot \rangle : X^* \times X \to \mathbf{R}$

denotes the duality pairing between X^* and X. F^* is always convex and l.s.c.; of course we can say the same about the bi-conjugate

$$F^{**}(x) = \sup_{x^* \in X^*} \{ \langle x^*, x \rangle - F^*(x^*) \}$$

Moreover, F^{**} is the convex and lower semicontinuous envelope for F, so if F is proper, convex and l.s.c., then $F^{**} = F$.

For integral functionals we have the following representation theorem.

Theorem 3.1 ([ET]) Let Ω be an open and bounded subset of \mathbf{R}^d and let

$$f: \Omega \times \mathbf{R}^n \to \mathbf{R}$$

be a Borel function bounded from below. Define for $u \in L^p(\Omega; \mathbb{R}^n)$, $p \in (1, +\infty)$

$$F(u) = \int_{\Omega} f(x, u(x)) dx.$$

Assume that

- 1. $f(x, \cdot)$ is l.s.c. for almost every $x \in \Omega$;
- 2. there exists $\overline{u} \in L^{\infty}(\Omega; \mathbf{R}^n)$ such that $F(\overline{u}) < +\infty$.

Then

$$F^{*}(u^{*}) = \int_{\Omega} f^{*}(x, u^{*}(x)) dx,$$

$$F^{**}(u) = \int_{\Omega} f^{**}(x, u(x)) dx,$$

where $u \in L^p(\Omega; \mathbf{R}^n)$, $u^* \in L^{p'}(\Omega; \mathbf{R}^n)$, 1/p + 1/p' = 1, and f^* , f^{**} are taken with respect to the second variable.

The next theorem relates Γ -convergence of convex functions with Γ convergence of their conjugates.

Theorem 3.2 ([A], theorem 3.2.4) Let X be a separable Banach space and let F, F_h be proper, convex and l.s.c. functionals on X. Assume that

1.

$$\Gamma(X^{-})\lim_{h\to\infty}F_h=F;$$

2.

$$\limsup_{h \to \infty} F_h^*(x_h^*) < +\infty \Rightarrow \sup_h ||x_h^*|| < +\infty.$$

Then

$$\Gamma(w^*X^{*-})\lim_{h\to\infty}F_h^*=F^*,$$

where w^*X^* denotes the dual to X endowed with its weak* topology.

4 Abstract model

Let U and Y be two topological spaces called, respectively the space of controls and the space of states. Let

$$J_h: U \times Y \to \overline{R}$$

be a sequence of *cost functionals*. In the sequel we will always assume that they are uniformly bounded from below. We consider the following sequence of abstract optimal control problems

$$\min\{J_h(u, y) : A_h(y) \in B_h(u), \ (u, y) \in U \times Y\},$$
(2)

where

$$A_h : Y \to V, B_h : U \to \mathcal{P}(V),$$

map Y and U into another topological space V.

Obviously, the problem (2) is equivalent to the following

$$\min \left\{ J_h(u, y) + \chi_{\{A_h(y) \in B_h(u)\}}(u, y) : (u, y) \in U \times Y \right\}$$

with the minimization over the whole Cartesian product $U \times Y$.

In this paper the method of *auxiliary variable* (see e.g. [BC],[B]) is used. It is based on the following proposition.

Proposition 4.1 ([BC], proposition 2.3) Let U, V and Y be topological spaces. Let $F_h : U \times Y \to \overline{\mathbf{R}}$ be a sequence of functions uniformly bounded from below and $\Xi_h : U \times Y \to \mathcal{P}(V)$ — a sequence of multimappings. Put

$$\Phi_h(u, v, y) = \begin{cases} F_h(u, y) & when \quad v \in \Xi_h(u, y), \\ +\infty & otherwise \end{cases}$$

and assume that

- 1. for any convergent sequence (u_h, y_h) such that $\{F_h(u_h, y_h)\}$ is bounded there exists a sequence $v_h \in \Xi_h(u_h, y_h)$ which is relatively compact in V;
- 2. for every $(u, v, y) \in U \times V \times Y$ the limit

$$\Gamma((U \times V)^-, Y) \lim_{h \to \infty} \Phi_h(u, v, y)$$

exists.

Then

$$\Gamma(U^-, Y^-) \lim_{h \to \infty} F_h(u, y) = \inf \left\{ \Gamma((U \times V)^-, Y^-) \lim_{h \to \infty} \Phi_h(u, v, y) : v \in V \right\}.$$

Put

$$G_h(u, v, y) = J_h(u, y) + \chi_{\{v \in B_h(u)\}}(u, v).$$
(3)

In our abstract model the form of the limit problem is given by the following theorem, corresponding to the Theorem 3.3 of [BF].

Theorem 4.2 Assume that

- 1. A_h is G-convergent to A;
- 2. if $u_h \to u$, $y_h \to y$, $A_h(y_h) \in B_h(u_h)$ and $\{J_h(u_h, y_h)\}$ is bounded, then $A_h(y_h)$ is relatively compact in V;
- 3. the limit

$$G(u, v, y) = \Gamma((U \times V)^{-}, Y^{-}) \lim_{h \to \infty} G_h(u, v, y)$$

exists.

Then

$$\Gamma(U^{-}, Y^{-}) \lim_{h \to \infty} \left(J_h + \chi_{\{A_h(y) \in B_h(u)\}} \right) (u, y) = G(u, A(y), y).$$

Proof. Put

$$F_{h}(u, y) = J_{h}(u, y) + \chi_{\{A_{h}(y) \in B_{h}(u)\}}$$

$$\Xi_{h}(u, y) = \{A_{h}(y)\} \cap B_{h}(u)$$

and let Φ_h be the same as in the previous proposition. Notice that

$$\Phi_h(u, v, y) = J_h(u, y) + \chi_{\{v \in B_h(u)\}}(u, v) + \chi_{\{A_h(y)=v\}}(v, y) \\
= G_h(u, v, y) + \chi_{\{A_h(y)=v\}}(v, y).$$

The assumption 2 makes it possible to use the proposition 4.1. Applying it as well as the proposition 2.4 and the definition of the G-convergence we obtain

$$\Gamma(U^{-}, Y^{-}) \lim_{h \to \infty} \left(J_{h} + \chi_{\{A_{h}(y) \in B_{h}(u)\}} \right) (u, y)$$

$$= \inf_{v \in V} \left\{ \Gamma((U \times V)^{-}, Y^{-}) \lim_{h \to \infty} \left(G_{h} + \chi_{\{A_{h}(y) = v\}} \right) (u, v, y) \right\}$$

$$= \inf_{v \in V} \left\{ \Gamma((U \times V)^{-}, Y) \lim_{h \to \infty} G_{h}(u, v, y) + \Gamma(V, Y^{-}) \lim_{h \to \infty} \chi_{\{A_{h}(y) = v\}}(v, y) \right\}$$

$$= \inf_{v \in V} \left\{ G(u, v, y) + \chi_{\{A(y) = v\}}(v, y) \right\}$$

$$= G(u, A(y), y).$$

Due to this theorem our task is now to find the explicit expression for G and we shall concentrate on it in the next sections.

5 The case of 'K-continuous' convergence of B_h

Let us first assume that operators $B_h : U \to \mathcal{P}(V)$ converge to $B : U \to \mathcal{P}(V)$ in the following manner:

$$u_h \to u \Rightarrow B_h(u_h) \xrightarrow{K} B(u),$$
 (4)

where 'K' denotes Kuratowski convergence with respect to the topology of V.

Remark The above convergence condition is equivalent to the following (see proposition 2.5):

$$\Gamma(U,V^{-})\lim_{h\to\infty}\chi_{\{v\in B_h(u)\}}=\chi_{\{v\in B(u)\}}.$$

Let us take the hypotheses:

(K1) there exists a function $\Psi : U \to \mathbf{R}$ such that if (u_h) is convergent, then $(\Psi(u_h))$ is bounded, and a function $\omega : Y \times Y \to \mathbf{R}$ such that for any $y \in Y$

$$\lim_{z \to y} \omega(y, z) = \lim_{z \to y} \omega(z, y) = 0$$

and for $u \in U, y, z \in Y, h \in \mathbf{N}$

$$|J_h(u,y) - J_h(u,z)| \le \Psi(u)\omega(y,z);$$

(K2) if $u_h \to u, y_h \to y, v_h \in B_h(u_h)$ and $\{J_h(u_h, y_h)\}$ is bounded, then $\{v_h\}$ is relatively compact.

Proposition 5.1 Let G_h be defined by (3). Assume (4), (K1) and that the following limit

$$\Gamma(U^{-}) \lim_{h \to \infty} J_h.$$

exists. Then

$$\Gamma((U \times V)^-, Y) \lim_{h \to \infty} G_h(u, v, y) = \Gamma(U^-) \lim_{h \to \infty} J_h(u, y) + \chi_{\{v \in B(u)\}}(u, v).$$

Proof. From (4) we know that if $v \in B(u)$, then there exist such $v_h \in B_h(u_h)$ that $v_h \to v$, and if, on the other hand, $v \notin B(u)$ with $v_h \to v$, then $v_h \notin B_h(u_h)$ for sufficiently large h. Let us take $u \in U$, $y \in Y$. If $v \in B(u)$, then from (4) we obtain

$$\Gamma((U \times V)^{-}, Y^{-}) \liminf_{h \to \infty} G_{h}(u, v, y) \\
= \inf_{u_{h} \to u} \inf_{y_{h} \to v} \inf_{y_{h} \to y} \liminf_{h \to \infty} G_{h}(u_{h}, v_{h}, y_{h}) \\
= \inf_{u_{h} \to u} \inf_{y_{h} \to y} \liminf_{h \to \infty} J_{h}(u_{h}, y_{h}) \\
\geq \inf_{u_{h} \to u} \inf_{y_{h} \to y} \liminf_{h \to \infty} [J_{h}(u_{h}, y) - \Psi(u_{h})\omega(y_{h}, y)] \\
= \inf_{u_{h} \to u} \liminf_{h \to \infty} J_{h}(u_{h}, y) \\
= \Gamma(U^{-}) \liminf_{h \to \infty} J_{h}(u, y);$$

on the other hand

$$\Gamma((U \times V)^{-}, Y^{+}) \limsup_{h \to \infty} G_{h}(u, v, y)$$

$$= \inf_{u_{h} \to u} \inf_{v_{h} \to v} \sup_{y_{h} \to y} \limsup_{h \to \infty} G_{h}(u_{h}, v_{h}, y_{h})$$

$$= \inf_{u_{h} \to u} \sup_{y_{h} \to y} \limsup_{h \to \infty} J_{h}(u_{h}, y_{h})$$

$$\leq \inf_{u_{h} \to u} \sup_{y_{h} \to y} \limsup_{h \to \infty} [J_{h}(u_{h}, y) + \Psi(u_{h})\omega(y_{h}, y)]$$

$$= \inf_{u_{h} \to u} \limsup_{h \to \infty} J_{h}(u_{h}, y)$$

$$= \Gamma(U^{-}) \limsup_{h \to \infty} J_{h}(u, y).$$

If $v \notin B(u)$, then both inequalities become trivial. Joining these facts we finish the proof. \Box

Theorem 5.2 Assume (4), (K1), (K2) and

1. $A_h \xrightarrow{G} A_i$ 2. $\Gamma(U^-) \lim_{h \to \infty} J_h = J_i$

Then

$$\Gamma(U^{-}, Y^{-}) \lim_{h \to \infty} \left(J_h + \chi_{\{A_h(y) \in B_h(u)\}} \right) = J + \chi_{\{A(y) \in B(u)\}}.$$

Proof. (K2) makes sure that the assumption 2 of the theorem 4.2 is satisfied. Applying that theorem together with the proposition 5.1 we complete the proof. \Box

Remark Under the assumptions of the theorem the limit problem has the form

$$\min\left\{J(u, y) : A(y) \in B(u), (u, y) \in U \times Y\right\}.$$

Remark The hypothesis (K2) holds e.g. when U and V are reflexive Banach spaces endowed with their weak topologies, and for some constants a, b > 0, $c \ge 0$ we have

$$J_h(u, y) \ge a ||u||_U + b \sup_{v \in B_h(u)} ||v||_V - c.$$

Remark The theorem 5.2 is a generalization of the theorem 3.6 of [BF] to the case of state inclusions (see also the introduction).

6 The local case

In this section we shall deal with the case when B_h are local operators between Lebesgue spaces and J_h are integral functionals. Namely, let Ω be an open and bounded subset of \mathbf{R}^d . Let $p, q \in (1, +\infty)$ and let p', q' be their adjoint exponents. We take $U = L^p(\Omega; \mathbf{R}^m)$, $V = L^q(\Omega; \mathbf{R}^k)$, both endowed with their weak topologies, but in the dual spaces U^* and V^* we choose the strong topologies. As Y we may take any space of measurable functions from Ω into \mathbf{R}^n which can be embedded in $L^s(\Omega; \mathbf{R}^n)$ (with the norm topology) for some $s \in [1, +\infty]$. Let

$$B_h: U \to \mathcal{P}(V)$$

be defined by:

$$B_h(u) = \{ v \in V \mid v(x) \in b_h(x, u(x)) \text{ a.e. in } \Omega \},\$$

where

$$b_h: \Omega \times \mathbf{R}^m \to \mathcal{P}(\mathbf{R}^k)$$

are some multivalued Borel mappings, i.e. such that

Gr
$$b_h = \{(x, u, v) \in \Omega \times \mathbf{R}^m \times \mathbf{R}^k \mid v \in b_h(x, u)\}$$

are Borel sets. Cost functionals are of the integral type

$$J_h(u,y) = \int_{\Omega} f_h(x,y(x),u(x))dx$$

for some Borel functions

$$f_h: \Omega \times \mathbb{R}^n \times \mathbb{R}^m \to (-\infty, +\infty].$$

In the sequel we shall take the following hypotheses:

(L1) b_h have non empty values and the sets

Gr
$$b_h(x, \cdot) = \{(u, v) \in \mathbf{R}^m \times \mathbf{R}^d \mid v \in b_h(x, u)\}$$

are closed;

- (L2) $f_h(x, y, \cdot)$ is l.s.c. on \mathbf{R}^m for almost every $x \in \Omega$ and every $y \in \mathbf{R}^n$;
- (L3) there exist a, b > 0 and $c \in L^{\infty}(\Omega)$ such that for every $(x, y, u) \in \Omega \times \mathbb{R}^n \times \mathbb{R}^m$, $v \in \mathbb{R}^k$ and $h \in \mathbb{N}$

$$f_h(x, y, u) + \chi_{\{v \in b_h(x, u)\}}(x, u, v) \ge a|u|^p + b|v|^q - c(x);$$

(L4) there exists a function $\sigma : \Omega \times \mathbf{R}^n \times \mathbf{R}^n \to [0, +\infty)$ measurable with respect to the first variable, continuous with respect to the others and such that

$$z \xrightarrow{L^{\circ}} y \quad \Rightarrow \quad \sigma(\cdot, y(\cdot), z(\cdot)) \xrightarrow{L^{\circ}} 0$$

and for every $x \in \Omega$, $u \in \mathbb{R}^m$, $y, z \in \mathbb{R}^n$, $h \in \mathbb{N}$

$$f_h(x, y, u) \le f_h(x, z, u) + \sigma(x, y, z);$$

(L5) there exist $u_h \in L^{\infty}(\Omega; \mathbb{R}^m)$ and $v_h \in B_h(u_h) \cap L^{\infty}(\Omega; \mathbb{R}^k)$ such that for every $y \in Y$

$$\int_{\Omega} f_h(x, y(x), u_h(x)) dx < +\infty.$$

Let G_h be defined by (3). Notice that

$$G_h(u, v, y) = \int_{\Omega} g_h(x, y(x), u(x), v(x)) dx,$$

where $g_h: \Omega \times \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^k \to \overline{\mathbf{R}}$ is given by

$$g_h(x, y, u, v) = f_h(x, y, u) + \chi_{\{v \in b_h(x, u)\}}(x, u, v).$$

Thanks to (L1), (L2) and (L5) we can apply the theorem 3.1 to G_h obtaining

$$G_{h}^{*}(u^{*}, v^{*}, y) = \int_{\Omega} g_{h}^{*}(x, y(x), u^{*}(x), v^{*}(x)) dx,$$
$$G_{h}^{**}(u, v, y) = \int_{\Omega} g_{h}^{**}(x, y(x), u(x), v(x)) dx,$$

while the conjugates for g_h are taken with respect to last two variables.

Lemma 6.1 If the limit

$$\Gamma((U^* \times V^*)^-) \lim_{h \to \infty} G_h^*,$$

exists, then

$$\Gamma((U \times V)^{-}) \lim_{h \to \infty} G_h^{**} = \left(\Gamma((U^* \times V^*)^{-}) \lim_{h \to \infty} G_h^* \right)^*.$$

Proof. Notice that thanks to (L3) for $y \in Y$, $u \in U$ and $v \in B_h(u)$ we have

$$J_h(u,y) \ge a||u||^p + b||v||^q - c_0,$$
(5)

or, in other words, for $y \in Y$, $u \in U$, $v \in V$ we have

$$G_h(u, v, y) \ge a||u||^p + b||v||^q - c_0,$$
(6)

where $c_0 = \min\{0, \text{ess inf } c\}$. Thus

$$G_{h}^{*}(u^{*}, v^{*}, y) =$$

$$= \sup \{ \langle u^{*}, u \rangle + \langle v^{*}, v \rangle - J_{h}(u, y) : u \in U, v \in B_{h}(u) \}$$

$$\leq \sup \{ ||u^{*}||||u|| + ||v^{*}||||v|| - a||u||^{p} - b||v||^{q} + c_{0} : u \in U, v \in V \}$$
(7)
$$\leq \sup \{ ||u^{*}||||u|| - a||u||^{p} : u \in U \} + \sup \{ ||v^{*}||||v|| - b||v||^{q} : v \in V \} + c_{0}$$

$$= \alpha ||u^{*}||^{p'} + \beta ||v^{*}||^{q'} + c_{0},$$

where

$$\alpha = \frac{1}{p'} (ap)^{\frac{1}{1-p}},
\beta = \frac{1}{q'} (bq)^{\frac{1}{1-q}}.$$

Similarly (7) implies

$$G_{h}^{**}(u, v, y) = = \sup \{ \langle u^{*}, u \rangle + \langle v^{*}, v \rangle - G_{h}^{*}(u^{*}, v^{*}, y) : u^{*} \in U^{*}, v^{*} \in V^{*} \}$$
(8)
$$\geq \sup \{ \langle u^{*}, u \rangle - \alpha ||u^{*}||^{p'} : u^{*} \in U^{*} \} + \sup \{ \langle v^{*}, v \rangle - \beta ||v^{*}||^{q'} : v^{*} \in V^{*} \} - c_{0}$$
$$= a ||u||^{p} + b ||v||^{q} - c_{0}$$

Fix $y \in Y$. Put $X = U^* \times V^*$ and

$$F_h(u^*, v^*) = G_h^*(u^*, v^*, y)$$

As Fenchel conjugates F_h are convex and l.s.c., thanks to (7) they are also proper. The assumption 2 of the theorem 3.2 is satisfied due to the inequality (8) — now our thesis is a consequence of this theorem. \Box

Proposition 6.2 For any $(u^*, v^*) \in U^* \times V^*$ and $y \in Y$ we have

$$\Gamma((U^* \times V^*)^{-}) \lim_{h \to \infty} G_h^*(u^*, v^*, y) = \lim_{h \to \infty} G_h^*(u^*, v^*, y).$$

Proof. Notice first that $U^* \times V^*$, as Banach space endowed with the strong topology satisfies the first axiom of countability. Functionals $G_h^*(\cdot, \cdot, y)$ are convex, l.s.c. and, thanks to (7), locally uniformly bounded. Hence ([ET], corollaries I.2.4, I.2.5, remark I.2.1) they are locally equi Lipschitz. Now from the proposition 2.2 we obtain the equality between the Γ -limit and the pointwise one.

Proposition 6.3 For every $(u, v) \in U \times V$ and $y \in Y$ we have

$$\Gamma((U \times V)^{-}, Y) \lim_{h \to \infty} G_h(u, v, y) = \left(\lim_{h \to \infty} G_h^*\right)^* (u, v, y).$$

Proof. Thanks to (L4) we have

$$J_h(u, y) \le J_h(u, z) + \omega(y, z),$$

while

$$\lim_{z \to y} \omega(y, z) = \lim_{z \to y} \omega(z, y) = 0$$

and, similarly as in the proof of the proposition 5.1, we can show that

$$\Gamma((U \times V)^{-}, Y) \lim_{h \to \infty} G_h = \Gamma((U \times V)^{-}) \lim_{h \to \infty} G_h.$$

Because of (L5) from the remark 2.6.5 of [B] we have

$$\operatorname{sc}^{-}(U \times V)G_{h}(\cdot, \cdot, y) = G_{h}^{**}(\cdot, \cdot, y).$$

for any fixed $y \in Y$. The inequality (6) allows us to apply the proposition 2.1 to $G_h(\cdot, \cdot, y)$. Thus we obtain

$$\Gamma((U \times V)^{-}) \lim_{h \to \infty} G_h = \Gamma((U \times V)^{-}) \lim_{h \to \infty} G_h^{**}.$$

The thesis is now a consequence of the lemma 6.1 and the proposition 6.2. \square

Lemma 6.4 There exists a function

$$\omega^*: L^s(\Omega; \mathbf{R}^n) \times L^s(\Omega; \mathbf{R}^n) \to [0, +\infty)$$

such that for any y

$$\lim_{z\to y}\omega^*(y,z)=0$$

and for $u^* \in U^*$, $v^* \in V^*$, $y, z \in L^s(\Omega; \mathbb{R}^n)$

$$G_h^*(u^*, v^*, y) \le G_h^*(u^*, v^*, z) + \omega^*(y, z).$$

Proof. The definition of the Fenchel conjugate implies that for any $\varepsilon > 0$ there exist such $u_{\varepsilon} \in U$ and $v_{\varepsilon} \in B_h(u_{\varepsilon})$ that

$$G_h^*(u^*, v^*, y) \le \langle u^*, u_\varepsilon \rangle + \langle v^*, v_\varepsilon \rangle - \int_{\Omega} f_h(x, y(x), u_\varepsilon(x)) dx + \varepsilon.$$
(9)

On the other hand

$$G_h^*(u^*, v^*, z) \ge \langle u^*, u_{\varepsilon} \rangle + \langle v^*, v_{\varepsilon} \rangle - \int_{\Omega} f_h(x, z(x), u_{\varepsilon}(x)) dx.$$
(10)

Joining (9) with (10) we obtain

$$G_h^*(u^*, v^*, y) - G_h^*(u^*, v^*, z) \le \int_{\Omega} \left[f_h(x, z(x), u_{\varepsilon}(x)) - f_h(x, y(x), u_{\varepsilon}(x)) \right] dx + \varepsilon.$$

Now putting

$$\omega^*(y,z) = \int_{\Omega} \sigma(x,y(x),z(x))dx,$$

and using (L4) we finish the proof.

Proposition 6.5 ([BF], proposition 5.2) Assume that for any $y \in \mathbb{R}^n$, $u^* \in \mathbb{R}^m$, $v^* \in \mathbb{R}^k$

$$g_h^*(\cdot, y, u^*, v^*) \to \varphi(\cdot, y, u^*, v^*)$$
(11)

weakly in $L^1(\Omega)$. Then for $y \in Y$, $u^* \in U^*$ and $v^* \in V^*$

$$\lim_{h \to \infty} G_h^*(u^*, v^*, y) = \Phi(u^*, v^*, y),$$

where Φ is given by

$$\Phi(u^*,v^*,y) = \int_{\Omega} \varphi(x,y(x),u^*(x),v^*(x))dx.$$

To sum up, we have proved the following theorem.

Corollary 6.6 Assume that (A_h) G-converges to A. If the hypotheses (L1)–(L5) and (11) hold, then the limit problem has the form

$$\min\left\{\int_{\Omega}\varphi^*(x,y(x),u(x),Ay(x))dx:(u,y)\in L^p(\Omega;\mathbf{R}^m)\times Y\right\}.$$

Remark This corollary generalizes the results of the section 5 of [BF] (see also the introduction).

7 Examples

1. Let U = V be a reflexive Banach space endowed with the weak topology. Let us take a sequence r_h of positive numbers such that

$$r_h \to r$$

and define

$$B_h(u) = B(u, r_h)$$

(the limit problem will not change if, instead of open balls, we take closed ones). We will show that

$$u_h \xrightarrow{w} u \Rightarrow B(u_h, r_h) \xrightarrow{w-K} \overline{B}(u, r).$$
 (12)

Namely, take $u_h \to u$ and $v_h \in B(u_h, r_h)$ such that

$$v_{h_k} \to v$$

Then, of course,

$$v_{h_k} - u_{h_k} \to v - u.$$

The norm is weakly l.s.c. (as it is strongly continuous and convex), hence

$$||v - u|| \le \liminf_{k \to \infty} ||v_{h_k} - u_{h_k}|| \le \liminf_{k \to \infty} r_{h_k} = r.$$

It means that $v \in \overline{B}(u, r)$, so

$$K - \limsup_{h \to \infty} B(u_h, r_h) \subset \overline{B}(u, r).$$

Now let $v \in \overline{B}(u, r)$. Put

$$v_h = u_h + \lambda_h (v - u),$$

where

$$\lambda_h = \frac{r_h}{r} (1 - \frac{1}{h}).$$

Then

$$|v_h - u_h|| = \lambda_h ||v - u|| = (1 - \frac{1}{h})r_h \frac{||v - u||}{r} < r_h$$
(13)

$$v_h \to u + (v - u) = v. \tag{14}$$

The case r = 0 is simpler, because then it is appropriate to take $u_h = v_h$. Joining (13) with (14) we obtain

$$\overline{B}(u,r) \subset K - \liminf_{h \to \infty} B(u_h, r_h),$$

which, together with the obvious inclusion

$$K - \liminf_{h \to \infty} B(u_h, r_h) \subset K - \limsup_{h \to \infty} B(u_h, r_h),$$

implies (12). If $u_h \xrightarrow{w} u$, then

$$\sup_{h} ||u_h|| < +\infty$$

and for $v_h \in B(u_h, r_h)$ we have

$$||v|| - ||u_h|| \le ||v - u_h|| < r_h,$$

therefore

$$||v|| < ||u_h|| + r_h \le \sup_h ||u_h|| + \sup_h r_h$$

In other words, there exists a positive number R such that for all $h \in \mathbf{N}$

$$B(u_h, r_h) \subset B(0, R),$$

and this, thanks to the Banach-Alaoglu Theorem, means that the assumption (K2) is satisfied. Now, having applied the theorem 5.2, we see that if (A_h) is *G*-convergent to A, (J_h) is $\Gamma(U^-)$ -convergent to Jand (K1) is satisfied, then the limit problem for the sequence

$$\min \{ J_h(u, y) : ||A_h(y) - u_h|| < r_h, (u, y) \in U \times Y \}$$

has the form

$$\min \{ J(u, y) : ||A(y) - u|| \le r, (u, y) \in U \times Y \}.$$

and

2. Let Ω be an open and bounded subset of \mathbb{R}^d . Let us take $U = V = L^2(\Omega), Y \subset L^2(\Omega)$ and

$$J_h(u,y) = \int_{\Omega} \left[u^2(x) + |y(x) - y_0(x)|^2 \right] dx,$$

where y_0 is a function from $L^2(\Omega)$. Let B_h be given by a multifunction

$$b_h(x, u) = [-\beta_h(x)|u|, \beta_h(x)|u|].$$

Assume that $\beta_h \in L^{\infty}(\Omega)$ are nonnegative and

$$\begin{array}{rccc} \beta_h & \to & \beta \\ \beta_h^2 & \to & \beta^2 \end{array}$$

weakly* in $L^\infty(\varOmega).$ Then the assumptions (L1)–(L5) can be easily verified and we have

$$g_h^*(x, y, u^*, v^*) = \frac{1}{4} \left(|u^*| + \beta_h(x)|v^*| \right)^2 - |y - y_0(x)|^2$$

$$\varphi(x, y, u^*, v^*) = \frac{1}{4} \left(|u^*| + \beta(x)|v^*| \right)^2 - |y - y_0(x)|^2.$$

If $\beta > 0$ almost everywhere, then

$$\varphi^*(x, y, u, v) = \max\{u^2, \frac{v^2}{\beta^2}\} + |y - y_0(x)|^2$$

and, thanks to the theorem 6.6, the limit problem for the sequence

$$\min\left\{\int_{\Omega} [u^2 + |y - y_0|^2] dx : -\beta_h |u| \le A_h y \le \beta_h |u|\right\}$$

is

$$\min\left\{\int_{\Omega} \left[\left(u^2 \vee \frac{1}{\beta^2} (Ay)^2 \right) + |y - y_0|^2 \right] dx : (u, y) \in U \times Y \right\}.$$

If, however, $\beta = 0$, then

$$\varphi^*(x, y, u, v) = u^2 + \chi_{\{v=0\}}(v) + |y - y_0(x)|^2$$

and the limit problem has the form

$$\min\left\{\int_{\Omega} [u^2 + |y - y_0|^2] dx : A(y) = 0\right\}$$

= min {||y - y_0||^2 : A(y) = 0, u = 0}.

References

- [A] D.Azé, Convergence des variables duales dans des problèmes de transmission à travers des couches minces par des methodes d'épi convergence, Richerche Mat., 35 (1986), 125–159.
- [B] G.Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser. 207, Longman, Harlow, 1989.
- [BC] G.Buttazzo, E.Cavazzuti, *Limit problems in optimal control theory*, Annales de l'Institut H.Poincaré Analyse Non Linéaire 6 (1989), 151–160.
- [BF] G.Buttazzo, L.Freddi, Optimal control problems with weakly converging input operators, Discrete and Continuous Dynamical Systems Vol.1, 3 (1995), 401–420.
- [BM] G.Buttazzo, G.Dal Maso, Γ -convergence and optimal control problems, Journal of Optimization Theory and Applications 38 (1982), 385–407.
- [M] G.Dal Maso, An Introduction to Γ-convergence, Birkhäuser, Boston, 1993.
- [GF] E.De Giorgi, T.Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842–850.
- [DM] Z.Denkowski, S.Mortola, Asymptotic behaviour of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations, Journal of Optimization Theory and Applications Vol.78, 2 (1993).
- [ET] I.Ekeland, R.Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.
- [S] S.Spagnolo, Convergence in energy for elliptic operators, in Numerical Solutions of Partial Differential Equations III, Synspade 1975, Academic Press, New York, 1976, 469–498.