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0 Introduction

The base of this work is the following problem: having a sequence (Gn) of
open subsets of a fixed open and bounded Ω ⊂ RN describe the asymptotic
behaviour (as n →∞) of the sequence of solutions of parabolic equations





u′n + Aun = fn in (0, T )×Gn

un(0) = u0
n in Gn

u = 0 on (0, T )× (Ω \Gn).

(0.1)

In the elliptic case this problem has been thoroughly investigated in many
works, starting from [5], through [10], [11], [6], [2], to [8], [9], [12], [13], [3]
and others. There is also a paper [4] concerning the hyperbolic case. In both
cases, as well as in ours, the limit of (un) (if it exists) in general does not
satisfy the equation of the type (0.1), but instead, under some assumptions,
it appears to be a solution of the equation





u′ + Au + µu = f

u(0) = u0

u = 0 on (0, T )× ∂Ω
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for a suitable measure µ. Such an equation is called the relaxed parabolic
problem.

The present paper contains the basic theory of relaxed parabolic prob-
lems. In particular we show the existence and the uniqueness of solutions of
such problems, along with some regularity properties. The main goal is to
prove the stability of the class of relaxed parabolic problems under the elliptic
γA-convergence and this is achieved in Theorem 2.9. When this paper was
completed, I came across a work by J.-P. Raymond (private communication)
containing similar results and also one by R. Toader (PhD. thesis, SISSA,
Trieste) concerning hyperbolic equations, but using the same evolution triplet
and similar assumptions in the convergence theorem.

In order to achieve our goals, we adapt the techniques contained in the
papers mentioned at the beginning from elliptic and hyperbolic cases.

The results of this work are interesting in themselves and have applica-
tions e.g. in homogenization, but they are in fact thought to be applied in
shape optimization. Therefore this paper can be considered as the first part
of a bigger entirety, [16] being the second part.

The plan of the work is the following. In section 1 we recall some nota-
tions, definitions and basic properties from the elliptic case. For convenience
of the reader we also show there the separability of Vµ(Ω). Section 2 con-
tains the main results of the paper (mentioned above) as well as some useful
facts concerning the relaxed parabolic problems and related notions (e.g. a
characterization of the pivot space Hµ(Ω)).

1 Preliminaries. Relaxed Dirichlet problems

Let Ω be an open and bounded subset of RN , N ≥ 2. We denote by H1(Ω)
and H1

0 (Ω) the usual Sobolev spaces on Ω, and by H−1(Ω) the dual of H1
0 (Ω).

On the latter space we consider the norm

||v||H1
0 (Ω) =

(∫

Ω

|Dv|2dx

)1/2

.

By Lp
µ(Ω), 1 ≤ p ≤ +∞ we denote the usual Lebesgue space with respect

to a measure µ on Ω. If µ is the N -dimensional Lebesgue measure Ω, we
shall use the standard notation Lp(Ω). The Lebesgue measure of a set E we
denote simply by |E|.

For every E ⊂ Ω the (harmonic) capacity of E in Ω is defined in the
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following way

cap(E, Ω) = inf
{
||v||2H1

0 (Ω) : v ∈ H1
0 (Ω),

v ≥ 1 a.e. in the neighbourhood of E
}

.

We say that a property holds quasi-everywhere (q.e.) in a set E if it holds
everywhere in E \ N with cap(N , Ω) = 0. A function v : Ω −→ R is said to
be quasi-continuous if for any ε > 0 there exists E ⊂ Ω with cap(E, Ω) < ε,
such that the restriction of u to Ω \ E is continuous. We say that G ⊂ Ω is
quasi-open if for every ε > 0 there exists an open subset Uε of Ω such that
cap(Uε, Ω) < ε and G ∪ Uε is open.

From [18] we know that for v ∈ H1(Ω) the limit

lim
r→0+

1

|B(x, r)|
∫

B(x,r)

v(y)dy

exists and is finite quasi-everywhere in Ω. So if we adopt the following
convention concerning pointwise values of v

lim inf
r→0+

1

|B(x, r)|
∫

B(x,r)

v(y)dy ≤ v(x) ≤ lim sup
r→0+

1

|B(x, r)|
∫

B(x,r)

v(y)dy,

then we obtain a representative of the equivalence class v defined uniquely
up to a set of capacity 0; moreover this representative is quasi-continuous on
Ω. Also from [18] we know that if a sequence (vn) converges to v in H1(Ω),
then a subsequence of (vn) converges to v pointwise q.e. in Ω.

For a quasi-open subset G of Ω, we denote by H1
0 (G) the space of all

such functions v ∈ H1
0 (Ω) that v = 0 q.e. in Ω \ G, with the Hilbert space

structure inherited from H1
0 (Ω). If G is open, then this definition is equivalent

to the standard one provided we use the convention that every v ∈ H1
0 (G)

is extended by 0 outside G in order to obtain an element of H1
0 (Ω). The

following fact may be found in [8] (Lemma 2.1).

Proposition 1.1. For every quasi-open subset G of Ω there exists an in-
creasing sequence of nonnegative functions of H1

0 (G) converging to 1G point-
wise q.e. in Ω.

We denote by M0(Ω) the set of (nonnegative) Borel measures µ on Ω
such that:

(M1) µ(B) = 0 for every Borel set B ⊂ Ω with cap(B, Ω) = 0;
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(M2) for every Borel set B ⊂ Ω

µ(B) = inf {µ(G) : B ⊂ G,G quasi-open} .

Example 1.2. If µ = ϕLN for a nonnegative function ϕ ∈ L∞(Ω), then
µ ∈ M0(Ω). It can also be shown (compare [18]) that for N − 2 < α ≤ N
the restriction of the α-dimensional Hausdorff measure to a Borel set E with
Hα(E) < +∞ belongs to M0(Ω). In general, any Radon measure which
belongs to H−1(Ω), belongs to M0(Ω) as well.

Example 1.3. Another example of an element of M0(Ω), which will be
useful in the sequel is the measure defined for any quasi-closed subset S of
Ω by the formula

∞S(B) =

{
0 if cap(B ∩ S, Ω) = 0,

+∞ otherwise.

For µ ∈M0(Ω) we consider the space

Vµ(Ω) = H1
0 (Ω) ∩ L2

µ(Ω).

endowed with the scalar product

(u, v)Vµ(Ω) =

∫

Ω

(Du,Dv) dx +

∫

Ω

uvdµ.

From [2, Proposition 2.1] we know that Vµ(Ω) is a Hilbert space.

Example 1.4. If µ = ϕLN for ϕ ∈ L∞(Ω), ϕ ≥ 0, then Vµ(Ω) = H1
0 (Ω)

with the equivalence of the norms.

Example 1.5. If G ⊂ Ω is quasi-open and µ = ∞Ω\G, then Vµ(Ω) = H1
0 (G)

and the respective norms are equal.

By V ′
µ(Ω) we denote the dual of Vµ(Ω) and by 〈·, ·〉µ the duality pairing

between those spaces (when µ is the Lebesgue measure we shall use the
standard notation 〈·, ·〉). We have two natural embeddings

i1 : Vµ(Ω) −→ H1
0 (Ω)

i2 : Vµ(Ω) −→ L2
µ(Ω).

In general neither of them is dense (see below), so the transposed ’embed-
dings’

i∗1 : H−1(Ω) −→ V ′
µ(Ω)

i∗2 : L2
µ(Ω) −→ V ′

µ(Ω)

may not be injective.
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Example 1.6. If µ = ∞Ω, then Vµ(Ω) = V ′
µ(Ω) = {0}, so we have i∗1(f) = 0

for every f ∈ H−1(Ω).

Nevertheless we shall write f instead of i∗1(f) for f ∈ H−1(Ω). Due to
this convention, for such f we have

〈f, v〉µ = 〈f, v〉 ∀v ∈ Vµ(Ω).

For g ∈ L2
µ(Ω) we use the notation µg = i∗2(g), i.e.

〈µg, v〉µ =

∫

Ω

gvdµ ∀v ∈ Vµ(Ω).

Let A : H1
0 (Ω) → H−1(Ω) be a linear symmetric elliptic operator of the

divergence form

Au = −
N∑

i,j=1

Di(aijDju),

where (aij) is a (symmetric) N ×N matrix of functions of L∞(Ω) satisfying,
for a positive constant α, the coercivity condition

N∑
i,j=1

aij(x)ξjξi ≥ α|ξ|2

for almost every x ∈ Ω and all ξ ∈ RN . Let us also introduce the notation

C0 = max
i,j=1,...,N

||aij||L∞(Ω).

Let µ ∈ M0(Ω), f ∈ H−1(Ω). The following problem is called relaxed
Dirichlet problem:

{
Au + µu = f

u ∈ Vµ(Ω).
(1.1)

The above problem, due to the convention concerning the mappings i∗1 and
i∗2 should be understood as follows: find u ∈ Vµ(Ω) such that

〈Au, v〉+

∫

Ω

uvdµ = 〈f, v〉

for every v ∈ Vµ(Ω). A straightforward application of Lax-Milgram Lemma
is the following theorem.
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Theorem 1.7. For every f ∈ H−1(Ω) there exists a unique solution of prob-
lem (1.1).

Remark 1.8. If G is an open subset of Ω and µ = ∞Ω\G, then it is easy to
show that u ∈ H1

0 (Ω) is the solution of problem (1.1) if and only if u = 0 q.e.
in Ω \G and u is a solution of the classical (homogeneous) Dirichlet problem
in G {

Au = f |G
u ∈ H1

0 (G).

Remark 1.9. It is obvious that Theorem 1.7 remains true if as the right-hand
side of equation (1.1) we take f ∈ V ′

µ(Ω).

The following relaxed problem is especially important in the sequel

{
Aw + µw = 1

w ∈ Vµ(Ω).
(1.2)

There is a close connection between a measure µ and the solution of this
problem (see [3], [8], [13], [12] for details). Here we recall only a few basic
properties of w. First of all from the comparison principle ([8, Proposition
2.4]) we know that w ∈ L∞(Ω) and w ≥ 0 q.e. in Ω. Let us define the sets

A(µ) = {x ∈ Ω : w(x) > 0}
S(µ) = Ω \ A(µ) = {x ∈ Ω : w(x) = 0}.

w can be considered quasi-continuous, so A(µ) is quasi-open and S(µ) quasi-
closed (both are defined up to null-capacity sets). A(µ) is called the regular
set of the measure µ and S(µ) the singular set of µ.

Example 1.10. If G is an open subset of Ω and µ = ∞Ω\G, then from the
strong maximum principle it follows that A(µ) = G.

Proposition 1.11. If µ ∈ M0(Ω), then µ(B) = +∞ for any Borel subset
B of Ω such that cap(B ∩ S(µ), Ω) > 0.

Proof. See [8, Lemma 3.2].

A straightforward consequence of this proposition is the following fact.

Corollary 1.12. Vµ(Ω) ⊂ H1
0 (A(µ)).

Moreover it is known that

Lemma 1.13. H1
0 (A(µ)) is the closure of Vµ(Ω) in H1

0 (Ω).
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Proof. See [2, Lemma 2.5].

The following very useful fact has been proved in [13] (Proposition 5.5).

Proposition 1.14. Let w be the solution of problem (1.2) and let β ≥ 1.
Then the set wβC∞

0 (Ω) is dense in Vµ(Ω).

Corollary 1.15. The Hilbert space Vµ(Ω) is separable.

Proof. First of all note that the space C1(Ω) endowed with the norm

||ϕ|| = sup
Ω
|ϕ|+ sup

Ω
|Dϕ| = ||ϕ||W 1,∞(Ω). (1.3)

can be identified by means of the isometry

Λ : C1(Ω) 3 v 7−→ (v, Dv) ∈ C(Ω)× C(Ω;RN),

with a subspace of the separable Banach space C(Ω)×C(Ω;RN), therefore it
is separable. Furthermore the space C∞

0 (Ω) with the norm (1.3) is separable
as a subspace of the separable normed space C1(Ω).

Let {ϕn}∞n=1 be a countable and dense subset of C∞
0 (Ω). Take arbitrary

v ∈ Vµ(Ω) and ε > 0. From Proposition 1.14 we know that there exists such
ϕ ∈ C∞

0 (Ω) that
||v − wϕ||Vµ(Ω) < ε.

Furthermore we can find n ∈ N such that

||ϕ− ϕn|| < ε.

Hence

||v − wϕn||Vµ(Ω) ≤ ||u− wϕ||Vµ(Ω) + ||wϕ− wϕn||Vµ(Ω)

≤ ε + ||D(wϕ)−D(wϕn)||L2(Ω) + ||wϕ− wϕn||L2
µ(Ω)

≤ ε + ||(ϕ− ϕn)Dw||L2(Ω) + ||w(Dϕ−Dϕn)||L2(Ω)

+||w||L2
µ(Ω)||ϕ− ϕn||L∞(Ω)

≤ ε + ||Dw||L2(Ω)||ϕ− ϕn||L∞(Ω)

+||w||L2(Ω)||Dϕ−Dϕn||L∞(Ω) + ||w||L2
µ(Ω)ε

≤
(
1 + ||Dw||L2(Ω) + ||w||L2(Ω) + ||w||L2

µ(Ω)

)
ε.

This means that the set {wϕn} is dense in Vµ(Ω), which concludes the proof.
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Definition 1.16. Let (µn) be a sequence of measures of M0(Ω) and let
µ ∈M0(Ω). We say that (µn) γA-converges to µ if for every f ∈ H−1(Ω) the
sequence of the solutions of problems

{
Aun + µnun = f

un ∈ Vµn(Ω)
(1.4)

converges weakly in H1
0 (Ω) to the solution of problem (1.1).

Remark 1.17. It should be noted that γA-limit depends on the operator A
(for details see e.g. [8, Chapter 6]).

The paper [8] contains the following conditions equivalent to the γA-
convergence.

Theorem 1.18. Let µn, µ ∈M0(Ω). Let w,wn be the solutions of problems,
respectively, (1.2) and

{
Awn + µnwn = 1

wn ∈ Vµn(Ω).
(1.5)

Then the following conditions are equivalent

1. (µn) γA-converges to µ;

2. (wn) converges to w weakly in H1
0 (Ω);

Proof. See [8, Theorem 4.3].

Main properties of the topology of γA-convergence are contained in the
following propositions.

Proposition 1.19. Each sequence of measures of M0(Ω) contains a γA-
convergent subsequence.

Proof. See [8, Theorem 4.5].

Proposition 1.20. Let λ be a nonnegative Radon measure. For every µ ∈
M0(Ω) there exists a sequence (En) of compact subsets of Ω such that the
corresponding sequence of measures ∞En is γA-convergent to µ and λ(En) =
0 for n ∈ N.

Proof. See [3, Proposition 1.10].
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The notion of ’γA-convergence’ was first defined in [11] in terms of Γ-
convergence of energy functionals. In our case there is also a connection
between these two types of convergence. Let us recall that if X is (for simplic-
ity) a Banach space, then we say that a sequence of functionals Fn : X → R
is Γ-convergent to F : X → R if and only if two following conditions hold:

1. if xn → x in X then

F (x) ≤ lim inf
n→∞

Fn(xn);

2. for every x ∈ X there exists a sequence (xn) convergent to x in X such
that

F (x) = lim
n→∞

Fn(xn).

More information about the theory of Γ-convergence can be found in [7].
For µ ∈M0(Ω) we define the energy functional

Fµ : L2(Ω) −→ R

by the formula

Fµ(v) =

{
〈Av, v〉+

∫
Ω

v2dµ if v ∈ H1
0 (Ω),

+∞ otherwise.

Then, analogously to [11], we can show the following fact.

Proposition 1.21. A sequence (µn) of measures of M0(Ω) is γA-convergent
to µ if and only if the corresponding sequence of energy functionals (Fµn) is
Γ-convergent to Fµ.

Let us conclude this section with another property of the topology of
γA-convergence, which can be proved as in [11, Proposition 4.9].

Proposition 1.22. γA-convergence in M0(Ω) is metrizable.

2 Main results

Let us fix 0 < T < +∞ and denote Q = (0, T ) × Ω. The present section
contains the generalization of results of the previous one to the case of first
order evolution equations. For an arbitrary measure µ ∈M0(Ω) we introduce
the following triplet of Hilbert spaces

Vµ(Ω) ⊂ Hµ(Ω) ⊂ V ′
µ(Ω), (2.1)
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where Hµ(Ω) is the closure of Vµ(Ω) in the strong topology of L2(Ω). Thus
it is a separable Hilbert space with the inherited structure, so it can be
identified with its dual by means of the same isometry as L2(Ω).

Proposition 2.1. Both embeddings in (2.1) are continuous, dense and com-
pact.

Proof. Due to the identification of Hµ(Ω) with its dual it will be sufficient to
prove these properties for first embedding. Its density is a straightforward
consequence of the definition of Hµ(Ω), its continuity follows from Poincaré
inequality (see the proof of Corollary 2.4). To prove its compactness let us
take a sequence (vn) bounded in Vµ(Ω). But

||vn||2Vµ(Ω) = ||vn||2H1
0 (Ω) +

∫

Ω

v2
ndµ ≥ ||vn||2H1

0 (Ω),

so (vn) is also bounded in H1
0 (Ω), therefore it contains a subsequence con-

vergent (strongly) in L2(Ω). But since Hµ(Ω) is closed, the limit of this
subsequence must belong to Hµ(Ω).

The next proposition gives some characterization of functions of Hµ(Ω).

Proposition 2.2. In the situation above

Hµ(Ω) =
{
v ∈ L2(Ω) : v = 0 a.e. in S(µ)

}

Proof. Define
Y =

{
v ∈ L2(Ω) : v = 0 a.e. in S(µ)

}
.

Y is a closed subspace of L2(Ω). Hence the inclusion Vµ(Ω) ⊂ Y , which is a
simple consequence of Corollary 1.12, implies that

Hµ(Ω) ⊂ Y.

In order to prove the opposite inclusion let us recall that H1
0 (A(µ)) is the

closure of Vµ(Ω) in H1
0 (Ω) (Lemma 1.13), so it suffices to show that every

function of Y may be approximated in L2(Ω) by elements of H1
0 (A(µ)). Fix

then arbitrary v ∈ Y . Thanks to Proposition 1.1 we know that there exists
an increasing sequence zn ∈ H1

0 (A(µ)) such that

0 ≤ zn ≤ 1 q.e. in A(µ) (2.2)

and zn → 1A(µ) pointwise q.e. in RN . From the dominated convergence
theorem it follows that

||v − vzn||L2(Ω) → 0. (2.3)
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On the other hand it is well known that we can find such ϕn ∈ C∞
0 (Ω) that

ϕn → v in L2(Ω). (2.4)

Note that
znϕn ∈ H1

0 (A(µ)).

Moreover from (2.2), (2.3) and (2.4) we have

||v − znϕn||L2(Ω) ≤ ||v − vzn||L2(Ω) + ||vzn − ϕnzn||L2(Ω)

≤ ||v − vzn||L2(Ω) + ||zn||L∞(Ω)||v − ϕn||L2(Ω)

≤ ||v − vzn||L2(Ω) + ||v − ϕn||L2(Ω) → 0,

which concludes the proof.

We shall use the notation

Wµ(0, T ) =
{
u ∈ L2(0, T ; Vµ(Ω)) : u′ ∈ L2(0, T ; V ′

µ(Ω))
}

where u′ is the derivative in the sense of distributions with values in the
Banach space V ′

µ(Ω). If µ is Lebesgue measure, we shall adopt the standard
notation W (0, T ).

Proposition 2.3. Let V and H be two Hilbert spaces such that V is dense
in H and

||v||H ≤ CV,H ||v||V , ∀v ∈ V.

Then every function u ∈ L2(0, T ; V ) such that u′ ∈ L2(0, T ; V ′) is a.e. in
(0, T ) equal to a function

ũ ∈ C([0, T ]; H),

with

||ũ||2C([0,T ];H) ≤
(

2 +
C2

V,H

T

) (
||u||2L2(0,T ;V ) + ||u′||2L2(0,T ;V ′)

)
. (2.5)

Proof. The existence of ũ is proved e.g. in [1, Proposition 3.2]. The following
equality, holding for s, t ∈ [0, T ], is also shown in the proof of this proposition

||ũ(t)||2H − ||ũ(s)||2H = 2

∫ t

s

〈u′(τ), u(τ)〉V ′dτ. (2.6)
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Fix t ∈ [0, T ]. From the above equality it follows in particular that

||ũ(t)||2H = ||ũ(0)||2H + 2

∫ t

0

〈u′(τ), u(τ)〉V ′dτ

≤ ||ũ(0)||2H + 2

∫ T

0

|〈u′(τ), u(τ)〉V ′|dτ

≤ ||ũ(0)||2H + 2

∫ T

0

||u′(τ)||V ′||u(τ)||V dτ.

Hölder inequality implies that

||ũ(t)||2H ≤ ||ũ(0)||2H + 2||u′||L2(0,T ;V ′)||u||L2(0,T ;V )

≤ ||ũ(0)||2H + ||u′||2L2(0,T ;V ′) + ||u||2L2(0,T ;V ). (2.7)

On the other hand

||ũ(0)||2H = ||ũ(t)||2H − 2

∫ t

0

〈u′(τ), u(τ)〉V ′dτ

≤ ||ũ(t)||2H + 2

∫ t

0

|〈u′(τ), u(τ)〉V ′|dτ

≤ C2
V,H ||ũ(t)||2V + 2

∫ T

0

|〈u′(τ), u(τ)〉V ′|dτ

and, similarly as before, we compute

||ũ(0)||2H ≤ C2
V,H ||ũ(t)||2V + ||u′||2L2(0,T ;V ′) + ||u||2L2(0,T ;V ).

Taking the average over (0, T ) we obtain

||ũ(0)||2H ≤ C2
V,H

T
||ũ||2L2(0,T ;V ) + ||u′||2L2(0,T ;V ′) + ||u||2L2(0,T ;V ). (2.8)

But
ũ(t) = u(t), a.e. in (0, T ),

hence, in particular,

||ũ||L2(0,T ;V ) = ||u||L2(0,T ;V ),

so joining (2.7), (2.8) and this equality we have finally that

||ũ(t)||2H ≤
(

2 +
C2

V,H

T

) (
||u′||2L2(0,T ;V ′) + ||u||2L2(0,T ;V )

)
(2.9)

for every t ∈ [0, T ]. To conclude the proof let us recall that

||ũ||C([0,T ];H) = sup
0≤t≤T

||ũ(t)||H ,

therefore (2.5) is a simple consequence of (2.9).
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Of course ũ is the representative of the class u, thus in the sequel we shall
identify u with this representative. In our situation due to Proposition 2.3
we have the following corollary.

Corollary 2.4. The space Wµ(0, T ) is continuously embedded in
C([0, T ]; Hµ(Ω)) and

||u||C([0,T ];Hµ(Ω)) = ||u||C([0,T ];L2(Ω)) ≤ C(|Ω|, N, T )||u||Wµ(0,T ). (2.10)

Proof. Take arbitrary v ∈ Vµ(Ω). Then we have

||v||Hµ(Ω) = ||v||L2(Ω) ≤ C(|Ω|, N)||v||H1
0 (Ω) ≤ C(|Ω|, N)||v||Vµ(Ω),

where C is the constant from Poincaré inequality. Therefore, using the no-
tation from Proposition 2.3 we may write

CVµ(Ω),Hµ(Ω) = C(|Ω|, N)

and applying Propositions 2.1 and 2.3 we finish the proof.

Let
A : H1

0 (Ω) −→ H−1(Ω)

be an elliptic operator such as in the previous section. We define a new
operator

Aµ : Vµ(Ω) −→ V ′
µ(Ω)

by the formula

〈Aµu, v〉µ = 〈Au, v〉+

∫

Ω

uvdµ

for every u, v ∈ Vµ(Ω). We consider the following first order evolution prob-
lem 




u′(t) + Aµu(t) = f(t)

u(0) = u0

u ∈ L2(0, T ; Vµ(Ω))

for some f ∈ L2(0, T ; V ′
µ(Ω)) and u0 ∈ Hµ(Ω), where the first equality is

the equality of elements of V ′
µ(Ω) for almost every t ∈ (0, T ). Due to our

convention concerning the ’embedding’ i∗2 we may rewrite the above problem
in the following way





u′ + Au + µu = f

u(0) = u0

u ∈ L2(0, T ; Vµ(Ω))

(2.11)
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From the form of the problem it is clear that we should look for solutions
in the class Wµ(0, T ). According to what is written above a function u ∈
Wµ(0, T ), which in particular is continuous function with values in Hµ(Ω) (see
Corollary 2.4 together with the preceding remark), is a solution of (2.11) if
it satisfies the initial condition (a.e. in Ω) and the equation

〈u′(t), v〉µ + 〈Au(t), v〉+

∫

Ω

u(t)vdµ = 〈f(t), v〉µ

for each v ∈ Vµ(Ω) almost everywhere in (0, T ) or, equivalently, the equation

∫ T

0

〈u′(t), vψ(t)〉µdt +

∫ T

0

〈Au(t), vψ(t)〉dt +

∫

Q

u(t, x)v(x)ψ(t)dµ(x)dt

=

∫ T

0

〈f(t), vψ(t)〉µdt

for every v ∈ Vµ(Ω) and ψ ∈ C∞
0 ((0, T )).

From the theory of abstract parabolic problems we can derive the follow-
ing theorem, which assures the existence and the uniqueness of the solution
of (2.11).

Theorem 2.5. Let f ∈ L2(0, T ; V ′
µ(Ω)) and u0 ∈ Hµ(Ω). Then the problem

(2.11) admits a unique solution, which belongs to Wµ(0, T ). Moreover, the
mapping

L2(0, T ; V ′
µ(Ω))×Hµ(Ω) 3 (f, u0) 7−→ u ∈ Wµ(0, T ) (2.12)

is a topological isomorphism.

Proof. See e.g. [14, Vol. I, Chapter 3, Theorem 1.1].

Remark. In fact we can prove the existence and the uniqueness of the solution
for (2.11) in much more general situation, e.g. when A(t) is nonlinear time-
dependent operator satisfying the following conditions:

(A1) for every v1, v2 ∈ H1
0 (Ω) the function 〈A(·)v1, v2〉 is Lebesgue measur-

able on (0, T );

(A2) for a.e. t ∈ (0, T ) operator A(t) is monotone and demicontinuous;

(A3) there exists a positive constant C such that

||A(t)v||H−1(Ω) ≤ C
(
1 + ||v||H1

0 (Ω)

)

for v ∈ H1
0 (Ω);
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(A4) there exist such constants α > 0, ω ∈ R that

〈A(t)v, v〉+ ω||v||2L2(Ω) ≥ α||v||2H1
0 (Ω)

for an arbitrary v ∈ H1
0 (Ω).

In this case we simply need to apply, e.g. [1, Theorem 4.5].

The special form of the operator A enables us to increase the regularity of
the solution of (2.11), which will be important in the sequel.

Proposition 2.6. Let u0 ∈ Vµ(Ω), f ∈ L2(0, T ; Hµ(Ω)) and let u be the
solution of (2.11). Then u′ ∈ L2(0, T ; Hµ(Ω)) and u ∈ C([0, T ]; Vµ(Ω)).
Moreover the following estimates hold:

||u||2L2(0,T ;Vµ(Ω)) + ||u′||2L2(Q) ≤ C1

(
||u0||2Vµ(Ω) + ||f ||2L2(Q)

)

and
||u||2C([0,T ];Vµ(Ω)) ≤ C2

(
||u0||2Vµ(Ω) + ||f ||2L2(Q)

)
,

where the constants C1 and C2 depend only upon α, C0, T , N and |Ω|.
Proof. From [1, Corollary 4.3 and Remark 4.4] we know that in our situation
u′ ∈ L2(0, T ; Hµ(Ω)) and

||u′||2L2(0,T ;Hµ(Ω)) = ||u′||2L2(Q) ≤ C ′
(
||u0||2Vµ(Ω) + ||f ||2L2(Q)

)
. (2.13)

From (2.11), using the inequality (2.6) and the coercivity of A we obtain

||u||2L2(0,T ;Vµ(Ω)) ≤
1

α̃2

(
||u0||2Hµ(Ω) + ||f ||2L2(0,T ;V ′µ(Ω))

)

where α̃ = min{α, 1}, and, furthermore,

||u||2L2(0,T ;Vµ(Ω)) ≤ C ′′
(
||u0||2Vµ(Ω) + ||f ||2L2(0,T ;Hµ(Ω))

)
. (2.14)

Joining (2.13) and (2.14) we obtain the first inequality from the thesis. From
(2.13) and (2.11) it follows that Aµu ∈ L2(0, T ; Hµ(Ω)) and

||Aµu||L2(0,T ;Hµ(Ω)) ≤ ||u′||L2(0,T ;Hµ(Ω)) + ||f ||L2(0,T ;Hµ(Ω)).

It means that u ∈ L2(0, T ; D(Aµ)), where

D(Aµ) = {v ∈ Vµ(Ω) : Av + µv ∈ Hµ(Ω)}
is the domain of the operator Aµ. Therefore the remaining part of our thesis
is a consequence of Theorem 3.1 and Proposition 2.1 from Chapter 1 of [14,
Vol. I].
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We call the problem (2.11) the relaxed parabolic problem, analogously to re-
laxed Dirichlet problems considered in the previous section. Like there, this
terminology is justified by the fact that problems (2.11) can be considered
as a generalization of classical parabolic problems of the type





u′ + Au = f in (0, T )×G

u(0) = u0 in G

u = 0 on (0, T )× ∂G

(2.15)

where G is an open subset of Ω (see remark below), while with some natural
assumptions the limit of a sequence of the solutions of problems (2.15) on
varying domains is the solution of (2.11) (see Theorem 2.9) and, conversely,
the solution of (2.11) can be approximated by the solutions of (2.15).

Remark 2.7. Let G be an open subset of Ω. If µ is the measure from Example
1.3, then u is the solution of (2.15) if and only if ũ is the solution of (2.11),
where ũ(t) is the extension of u(t) by 0 outside G.

Remark 2.8. We can exchange the right-hand side of (2.11) for an arbitrary
f̄ ∈ L2(Q) such that

f(t)|A(µ) = f̄(t)|A(µ)

(i.e. f(t) = 1A(µ)f̄(t)) with no influence on the solution. It is so because both
functions give the same element in L2(0, T ; V ′

µ(Ω)) (this is a consequence of
Proposition 1.13 and the density of H1

0 (A(µ)) in Hµ(Ω)).

We are now able to state the main result of this paper, showing the
stability of the class of relaxed parabolic problems under the γA-convergence.
We consider the following sequence of problems





u′n + Aun + µnun = fn

un(0) = u0
n

un ∈ L2(0, T ; Vµn(Ω)).

(2.16)

Theorem 2.9. Let u, un be the solutions of problems (2.11) and (2.16),
respectively, for some µ, µn ∈ M0(Ω), f, fn ∈ L2(Q), u0 ∈ Vµ(Ω) and u0

n ∈
Vµn(Ω). Take M > 0 and assume that

1. µn
γA−→ µ,

2. fn −→ f weakly in L2(Q),

3. u0
n −→ u0 weakly in H1

0 (Ω) and
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4. ||u0
n||L2

µn(Ω) ≤ M , ∀n ∈ N.

Then
un −→ u weakly in W (0, T ).

Remark 2.10. If µn = ∞Ω\Gn for some open Gn ⊂ Ω, then the condition
u0

n ∈ L2
µn

(Ω) means simply that

u0
n = 0 q.e. in Ω \Gn,

hence, in particular, ∫

Ω

|u0
n|2dµn = 0,

therefore in this case assumption 4 holds automatically.

Proof of Theorem 2.9. From Proposition 2.6 it follows that

un ∈ L2(0, T ; Vµn(Ω)) ⊂ L2(0, T ; H1
0 (Ω))

u′n ∈ L2(0, T ; Hµn(Ω)) ⊂ L2(Q) ⊂ L2(0, T ; H−1(Ω)),

hence un ∈ W (0, T ). The same proposition gives us also the following esti-
mates

||un||2W (0,T ) = ||un||2L2(0,T ;H1
0 (Ω)) + ||u′n||2L2(0,T ;H−1(Ω))

≤ ||un||2L2(0,T ;Vµ(Ω)) + C||u′n||2L2(Q)

≤ C1

(
||u0

n||2Vµn (Ω) + ||fn||2L2(Q)

)

= C1

(
||u0

n||2H1
0 (Ω) + ||u0

n||2L2
µn (Ω) + ||fn||2L2(Q)

)

and

||un||2C([0,T ];Vµn(Ω)) ≤ C2

(
||u0

n||2H1
0 (Ω) + ||u0

n||2L2
µn (Ω) + ||fn||2L2(Q)

)
.

Therefore assumptions 2–4 imply

||un||W (0,T ) ≤ const

||u′n||L2(Q) ≤ const (2.17)

||un||C([0,T ];H1
0 (Ω)) ≤ ||un||C([0,T ];Vµn (Ω)) ≤ const.

The last inequality means in particular that

||un(t)||H1
0 (Ω) ≤ const
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for every t ∈ [0, T ] as well as

||un||L∞(0,T ;H1
0 (Ω)) ≤ const.

The above estimates imply that there exists a sequence of (un) (still denoted
by the same symbol) convergent weakly in W (0, T ) to a function u. We may
also assume (perhaps passing to a further subsequence) that

u′n −→ u′ weakly in L2(Q) (2.18)

and

un −→ u weakly * in L∞(0, T ; H1
0 (Ω)) (2.19)

Moreover, due to (2.18), (2.19) and [15, Corollary 4] we may assume that

un → u strongly (uniformly) in C([0, T ]; L2(Ω)). (2.20)

This implies in particular that for every t ∈ [0, T ]

un(t) −→ u(t) weakly in H1
0 (Ω). (2.21)

Furthermore, assumption 1 is equivalent to the condition

Γ− lim
n→∞

Fµn = Fµ

(see Proposition 1.21), hence from (2.21) it follows that

Fµ(u(t)) ≤ lim inf
n→∞

Fµn(un(t)). (2.22)

But since

α̃||v||2Vµ(Ω) ≤ Fµ(v) = 〈Av, v〉+

∫

Ω

v2dµ ≤ C̃0||v||2Vµ(Ω),

where the constants α̃ and C̃0 depend only on α and C0, so (2.22) and the
last inequality from (2.17) imply that

u ∈ L∞(0, T ; Vµ(Ω)).

Let us consider the problem (2.16) in the integral form with the test function
ψ(t)ϕ(x)wn(x), where ψ ∈ C∞

0 ((0, T )), ϕ ∈ C∞
0 (Ω) and wn ∈ Vµn(Ω) is the

solution of the equation Awn + µnwn = 1:

∫

Q

u′nψϕwndtdx +

∫

Q

N∑
i,j=1

aijDjunDi(ψϕwn)dtdx +

∫

Q

unψϕwndtdµn

=

∫

Q

fnψϕwndtdx. (2.23)
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Since µn
γA−→ µ, from Theorem 1.18 it follows that (wn) converges weakly

in H1
0 (Ω), hence also strongly in L2(Ω), to the solution of relaxed Dirichlet

problem {
Aw + µw = 1

w ∈ Vµ(Ω).

Therefore, from (2.18) and assumption 2 we have

∫

Q

u′nψϕwndtdx −→
∫

Q

u′ψϕwdtdx,

∫

Q

fnψϕwndtdx −→
∫

Q

fψϕwdtdx.

Because ψ does not depend on x, the following equalities hold:

DjunDi(ψϕwn) = ψDjunDi(ϕwn) = ψϕDjunDiwn + ψwnDjunDiϕ

= Dj(ψϕun)Diwn − ψunDjϕDiwn + ψwnDjunDiϕ.

On the other hand, using Fubini Theorem, we obtain

∫

Q

N∑
i,j=1

aijDj(ψϕun)Diwndtdx +

∫

Q

ψϕunwndtdµn =

∫

Q

ψϕundtdx.

Hence

∫

Q

N∑
i,j=1

aijDjunDi(ψϕwn)dtdx +

∫

Q

unψϕwndtdµn =

∫

Q

ψϕundtdx

+

∫

Q

N∑
i,j=1

aijψwnDjunDiϕdtdx−
∫

Q

N∑
i,j=1

aijψunDjϕDiwndtdx. (2.24)

From the weak convergence of (un) in W (0, T ) and from (2.20)) it follows
that

un −→ u strongly in L2(Q) and

Diun −→ Diu weakly in L2(Q),

so the right-hand side of (2.24) converges to

∫

Q

ψϕudtdx +

∫

Q

N∑
i,j=1

aijψwDjuDiϕdtdx−
∫

Q

N∑
i,j=1

aijψuDjϕDiwdtdx.
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Gathering together the above results and using the inequality analogous to
(2.24) for w we draw a conclusion that the sequence of equations (2.23) is
convergent sidewise to

∫

Q

u′ψϕwdtdx +

∫

Q

N∑
i,j=1

aijDjuDi(ψϕw)dtdx +

∫

Q

uψϕwdtdµ

=

∫

Q

fψϕwdtdx.

ψ is arbitrary, so we may write

〈u′(t), wϕ〉µ + 〈Au(t), wϕ〉+

∫

Ω

u(t)wϕdµ =

∫

Ω

f(t)wϕdx,

but this, due to the density of wC∞
0 (Ω) in Vµ(Ω) (Proposition 1.14) means

that
u′ + Au + µu = f.

Furthermore, note that (2.21) implies in particular that

un(0) −→ u(0) weakly in H1
0 (Ω),

hence from assumption 3 it follows that

u(0) = u0.

To conclude the proof let us note that from the uniqueness of the solution of
(2.11) it follows that in fact the whole sequence (un) converges to u.

Remark 2.11. From the proof of Theorem 2.9 we can obtain in fact some
additional convergence conditions:

un −→ u strongly in L2(Q),

un −→ u strongly in C([0, T ]; L2(Ω)),

un −→ u weakly * in L∞(0, T ; H1
0 (Ω)),

u′n −→ u′ weakly in L2(Q),

un(t) −→ u(t) weakly in H1
0 (Ω) for every t ∈ [0, T ].

Moreover for every t ∈ [0, T ] we have

Fµ(u(t)) ≤ lim inf
n→∞

Fµn(un(t)).

As a conclusion, let us state the following corollary, which is a straightforward
consequence of Proposition 1.20 and Theorem 2.9.

Corollary 2.12. For every solution of the relaxed problem (2.11) there exists
a sequence of solutions of problems (2.15) convergent to it weakly in W (0, T ).
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