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IMAGE AND VIDEO PROCESSING TASKS IN COMPUTER 
AIDED MEDICAL INTERVENTIONS ON THE EXAMPLE OF 

TRANSBRONCHIAL BIOPSY 

The paper presents signal processing tasks dedicated to image based computer navigation system 
for positioning of bronchoscope tip during transbronchial needle-aspiration biopsy. The paper has the 
tutorial form with extensive bibliographical review and examples based on authors’ original work. 
The reconstruction, segmentation and visualization of computed-tomography (CT) are discussed. The 
navigation exploits principle of on-line registration of real images coming from endoscope camera 
and virtual ones generated on the base of CT data of the patient. When these images are similar the 
assumption is made that the bronchoscope and virtual camera have approximately the same position 
and view direction. In the paper the following design aspects are described: reconstruction of bron-
chial tree from CT data, correction of bronchoscope camera non-linearities, fast, approximate estima-
tion of endoscope egomotion, and finally 2D, 3D registration of real and virtual images. 

1. INTRODUCTION 

Virtual bronchoscopy [1] CT-guided approach represents a modern solution to the 
difficult problem of bronchoscope tip positioning during medical procedure of trans-
bronchial needle-aspiration biopsy. It makes use of on-line registration of real 2D 
images (coming from the bronchoscope) and virtual ones (obtained from virtual cam-
era looking inside the model of bronchial tree, reconstructed from the CT patient data 
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by means of segmentation). Usually, the registration of these two-source images is 
performed using in-the-loop maximization of their: correlation [2] or mutual informa-
tion [3]. To speed-up search for virtual camera position, egomotion of the broncho-
scope camera can be estimated from video stream using corresponding points and 
epipolar geometry [2], or optical flow methods and perspective geometry [4]. In turn, 
next position of the endoscope camera can be predicted and tracked with Kalman [5] 
or Monte Carlo [6] particle filters. Using shape-from-shading technique it is also pos-
sible to extract 3D model of the airways tract from the endoscopic video and try to 
register it to the 3D model deduced from the CT scans. First such attempt has been 
reported in [7] and further elaborated in [8]. 

 

 
 

Fig.1 Block diagram of the system under development 
 

The architecture of the bronchoscope navigation system that we are currently de-
veloping is presented in fig.1. In the paper image and video processing tasks concern-
ing this system are presented. The paper has the form of tutorial. The following as-
pects are addressed in the next sections: data reconstruction form CT, segmentation of 
anatomic structures, visualization of bronchial tree, correction of camera non-lineari-
ties, fast, approximate estimation of endoscope egomotion and 2D, 3D registration of 
real and virtual images.  

2. COMPUTED TOMOGRAPHY 

The theoretical background of Computed Tomography (CT) has long history with 
the beginning in 1895 when W. Röntgen invented x-rays. The mathematical principles 
of CT were first investigated by J.Radon in 1917 and then extended by Kirillov in 
1961. A clinical CT scanner was first presented in 1972 and its inventors Cormack and 
Hounsfield were awarded the Nobel Prize in medicine in 1979. Nowadays medical 



imaging of CT is the important, noninvasive tool used for diagnostic and surgical 
planning. Tomography literally means 'slice' or cross-sectional imaging. The idea is to 
reconstruct the image from projection data obtained by integration along different 
directions. The detailed analysis of computed tomography is given in [9-12]. Here we 
only present the main concept of data reconstruction. Fig.2a depicts parallel-beam 
projection; the projections are taken at different angles Θ. The line integral PΘ(t) 
represents the total attenuation of x-ray t by the object f(x, y): 
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Fig.2 a) Parallel beam projection b) Fourier Slice Theorem illustration 
 
using a delta function and xcosΘ+ ysinΘ =t, this can be rewritten as  
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The function PΘ(t) is known as the Radon transform of the function f(x, y). The aim of 
computed tomography is to reconstruct the image f(x, y) from projection data PΘ(t) 
obtained along different angles Θ. The inverse Radon transform can be computed with 
the help of Fourier Slice Theorem, which says that [9]: the Fourier transform of a 
parallel projection of an image f(x, y) taken at angle Θ gives a slice of the two-dimen-
sional transform, F(u, v), subtending an angle Θ with the u-axis. In other words, the 
Fourier transform of PΘ(t) gives the values of F(u, v) along line BB in fig.2b. This can 
be written as: 
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According to the above theorem F(u, v) (Fourier transform of f(x, y)) can be recon-
structed from infinite number of projections. Knowing F(u, v), the object function f(x, 
y) can be recovered by using the inverse Fourier transform. The problem arises that in 
practice we only have finite number of projections, what results in sampling frequency 
plane along radial lines as shown in fig.3a. Computing inverse Fourier transform of 
F(u, v) would require interpolation of values on rectangular grid. The algorithm that is 
currently being used in almost all applications of straight ray tomography is called 
filtered backprojection. Looking at fig.3b one can intuitively say that instead of slice 
of the cake he gets only very thin line of one projection. To get the same mass of the 
cake this thin line (each projection) should be weighted (or multiplied) by the function 
with the values increasing with frequency. For K projections over 180˚ at a given fre-
quency w, weighting factor equals 2π|w|/K. The shape of the weighting filter in fre-
quency domain is shown in fig.3c. 
 

 
Fig.3 a) Sampling of frequency plane by projections, b) ideal sampling of frequency plane, c) the fre-

quency shape of weighting filter 
 
Analytical expression for object function f(x, y) can be derived as: 
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The inner integral represents filtering, where the frequency response of the filter is 
given by |w|. After filtration the signal is backprojected, i.e. value of each filtered pro-



jection is added to all points in f(x,y) that lay on the way of the ray. The computer 
implementation issues are detailed in [9]. 

For testing quality of tomography reconstruction the phantom of the head was de-
signed by Shepp and Logan. The phantom shown in fig.4a is built from 10 ellipses. 
Fig.3b,c shows reconstruction for different number of projections. For small number 
of projections star-like distortions are visible in the reconstructed image.  
 

     

a) b) c) 

 
Fig.4 a) Head phantom of Shepp and Logan, size of the picture is 256x256 pixels, b) reconstruction from 

367 rays and 10 projections, c) reconstruction from 367 rays and 91 projections 
 

Medical CT scanners, because of easier hardware realization, use fan-beam projec-
tion. Fig.5a depicts third-generation CT scanner with the x-ray source and detector 
array rotated around the object. Fig.5b shows fourth-generation CT scanner, where 
patient lying on the bed is moved thru rotating x-ray source and detector array. Fourth-
generation CT scanner complicates the image reconstruction and suffers from slightly 
blurred images but enables to scan large regions of the patient in a single breath hold. 
 

 
Fig.5 a) Third - generation x-ray CT scanner with fan beam projection b) Fourth - generation helical 

(spiral) CT scanner 



Medical CT operates under a number of constraints, including the amount of radia-
tion dose per scan. The dose requirement for medical CT leads to limitations on im-
aging performance and spatial resolution. Obtaining better image quality on hard tis-
sue or bone scans requires higher source energy. Alternatively, obtaining greater spa-
tial resolution requires more collimation, smaller detectors, or, for some scan geome-
tries, more data acquisition. All of these circumstances result in more x-ray dose de-
livered to the patient or greater discomfort to the patient (has to sit still longer). It is 
also difficult to keep the patient or organs from moving, while the most disturbing are 
respiratory and heart-beat movements. Some methods of reducing motion artifacts are 
described in [10] including established methods, fast-acquisition methods, respiratory 
gating, electrocardiographic (ECG) gating and signal processing methods.  

Usually reconstruction algorithm is integrated with CT scanner and output data are 
already reconstructed and has form of gray scale images. Results presented in this 
paper were obtained from CT data generated by Siemens Somaton 10 with voxel size 
of 0.6x0.6x1 [mm] (for X, Y, Z axes respectively). Typical examination results in 
about 300 images with size 512x512 and 12-bit resolution. 

3. SEGMENTATION 

Image segmentation is the operation of grouping image pixels into separate objects 
present in the picture. The first step of segmentation algorithm is most often feature 
extraction and then checking if the specific pixel belongs to the object of interest. In 
medical CT, data segmentation is used to isolate biological structures of interest like 
whole organs, e.g. bronchial tree in fig.6, or some interesting, smaller structures like 
lymphatic nodes in fig.7 or tumors. Generally segmentation algorithms can be divided 
into four major groups: pixel-based, region-based, edge-based and model-based meth-
ods.  

Pixel-based methods operate on one pixel at time and thus are the simplest but also 
most sensitive for noise. They usually require intensive preprocessing (e.g. feature 
extraction, filtering, illumination correction etc.). The gray valued picture is compared 
with the threshold and converted to the binary image with 0 for values lower then 
threshold. Thresholding is usually fast enough to operate in real time allowing for 
interactive setting of the threshold. Thresholding with a set of thresholds with different 
values (ranges) is called slicing. For color images thresholds can be applied for each 
different RGB plane or in other color spaces [19]. Appropriate threshold value is cho-
sen on the base of image intensity histogram. If the histogram is bimodal (or multi-
modal), a common strategy is to search for minima. For improved determination of 
minima in histogram following algorithms can be used: removing edges (intermediate 
values) from image, assuming known (e.g. gaussian) distribution for each mode, fil-
tering (lowpass, median etc.). Several analytic approaches to the setting of a lumi-



nance threshold have been proposed [20-23]. If the background of an image is nonuni-
form, it is often necessary to adapt the luminance threshold to the mean luminance 
level. This can be accomplished by subdividing the image into small blocks and de-
termining the best threshold level for each block. Clustering algorithms for image 
segmentation have been also developed [24, 25]. Unfortunately histograms contain no 
information on position, which is of prime importance in segmentation. Pixel-based 
methods are sensitive against uneven illumination. 

Region-based methods search for similarities or consistency in the image. Lowpass 
filtering is an example of sliding neighborhood operation that enhances consistent 
characteristics of a region. Morphological operations are also used in image enhance-
ment stage before segmentation. The pixel is classified as belonging to the object with 
checking connectivity with its neighbors and not only gray scale luminance value. 
Distinguishing textures with similar intensity can be done by several neighborhood-
based operations [14]: the small segment Fourier transform, local variance (or stan-
dard deviation), the Laplacian operator, the range operator (the difference between 
maximum and minimum pixel values in the neighborhood), the Hurst operator (maxi-
mum difference as a function of pixel separation), and the Haralick operator (a meas-
ure of distance moment). The popular region-based methods are: region-growing, spit-
and-merge and watersheds. Region-growing is one of the conceptually simplest ap-
proaches to image segmentation. Neighboring pixels of similar amplitude are grouped 
together to form a segmented region. In practice additional constraints must be placed 
on the growth pattern to achieve acceptable results [26]. Split-and-merge image seg-
mentation techniques [27] are based on a quad tree data representation whereby a 
square image segment is broken (split) into four quadrants if the original image seg-
ment is nonuniform [28, 29] in attribute. If four neighboring squares are found to be 
uniform, they are replaced (merge) by a single square composed of the four adjacent 
squares. Watershed exploits topographic and hydrology concepts in the development 
of region segmentation methods [30-33, 60].  

Edge-based methods search for differences in the image. They are based on the fact 
that the position of the edge is determined by an extreme of first-order derivative or 
zero crossing in the second-order derivative. Region reconstruction from edges re-
quires grouping edges into chains that correspond to the sides of the region. False 
edges and missed edges are two most common problems associated with this ap-
proach. Edge detection can be done with following special filters: Sobel, Prewitt, Log, 
Laplacian, Canny. Next edge relaxation or graph searching method is used for form-
ing chains from detected edges. Edge-based methods are robust against uneven illumi-
nation. Edge-based segmentation methods are sequential and cannot be performed in 
parallel on all pixels simultaneously. Typically image is scanned line by line for 
maxima of the gradient magnitude then tracing algorithm follows the maximum of the 
gradient around the object until it reaches starting point. It is also taken into account 
that an object is characterized by adjacent pixels. If an image is noisy or if its region 
attributes differ by only a small amount between regions, a detected boundary may 



often be broken. The following edge linking techniques can be employed to bridge 
short gaps in such a region boundary: Curve-Fitting Edge Linking [34-36], Heuristic 
Edge-Linking Methods [37-39], Hough-Transform Edge Linking [40]. Snakes Bound-
ary Detection [41, 42] is a method of molding a closed contour to the boundary of an 
object in an image. The snake model is a controlled continuity closed contour that 
deforms under the influence of internal forces, image forces, and external constraint 
forces to fit the edge of the object.  

Model-based methods assume that the shape of the object is known. The simplest 
case is straight lines segmenting in the image with the use of Hough transform. Seg-
mentation of partially corrupted objects is possible with those methods thanks to the 
knowledge of the shape. High computational cost is the main drawback of Hough 
transform methods. 

Especially in medicine there are no general algorithms to solve all kinds of seg-
mentation problems. For each kind of problem a single solution has to be developed or 
existing methods must be adopted. Very often segmentation techniques are so called 
hybrid methods that use several methods from different classes. Robust, automatic 
segmentation of bronchial airway tree is difficult for many reasons: anatomy-related 
(e.g. airway obstructions, heart beat artifacts), image reconstruction artifacts, partial 
volume effect, image noise, necessity of low-dose scans. Lately developed algorithms 
for segmentation of airway tree mainly include region-growing based methods [43-
46], morphology-based methods [47-49], and combinations of the two [50, 51]. Other 
methods include rule-based methods [52, 53], energy function minimization [49], and 
region of interest (ROI) modification-based techniques [54]. In [55] a front-propaga-
tion algorithm for airway tree segmentation is used. Another group of segmentation 
methods is based on fuzzy connectivity [56-58]. 

In our work [59] airway tree was segmented with the following steps: data 
smoothing with 3D gaussian filter, global thresholding and checking 26-connectivity. 
Segmentation results are depicted in fig.6a. Fig.6b shows example of segmentation 
explosion caused by improper threshold selection. From fig.6b it is seen that bronchial 
tree is not homogeneous and thus applying local (adaptive) thresholds can be fruitful. 
The depth of segmentation presented in fig.6a is sufficient for task of navigation as 
bronchofiberscope cannot penetrate smaller tree branches because of its size.  

We also segmented other anatomical structures like lymphatic nodes [60] with the 
concept of transparent visualization of those during biopsy. We proposed modified 3D 
marker-based watershed segmentation algorithm supported by morphological filtering, 
edge detection and histogram equalization. This method reduces problems with 
oversegmentation, which are common in classic watershed algorithm [32]. The princi-
ple of the proposed method can be illustrated by water immersing from the bottom 
(object and background markers) to maximum magnitude of the gradient image value. 
When two neighboring catchment basins (water comes from different marker) meet, a 
dam is created to separate basin from the other. Finally, catchment basins are a result 
of the segmentation process. Object markers become regional maxima after perform-



ing morphological filtering called opening by reconstruction and closing by recon-
struction on the data. Then we clean the edges of the foreground markers using clos-
ing followed by erosion. Binary background is computed by optimal thresholding 
[23]. Next, the background mask is subjected to skeletonization by influence zones 
(SKIZ). Background markers are result from the SKIZ. The proposed technique al-
lows visualization of chosen anatomic structures as shown in fig.7. 
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Fig.6 Results of airway tree segmentation for: a) threshold 200, b) threshold 320 
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Fig.7 Segmented bronchial tree; I – bronchial tree, II – lymphatic nodes, III – Arteria pulmonaris sinstra, 
IV – Vena cava superior 



4. VISUALIZATION OF BRONCHIAL TREE 

Three-dimensional (3D) visualization is widely used in modern medicine, mainly 
due to the rapid growth of computing power. Thanks to the fast evolution of consumer 
graphics accelerators driven by entertainment markets interactive medical data visu-
alization is no longer restricted to expensive workstations and dedicated hardware. 
The 3D computer-based visualization of bronchial tree is used as accessory noninva-
sive method of pulmonary diagnostics, as a tool supporting the real bronchofibe-
roscopic procedures or for training purposes. The basic form of inspecting CT relies 
on examination of two-dimensional images showing consecutive cross-section of the 
body and requires considerable experience and spatial imagination from physicians. 
3D visualization of bronchial tree significantly enhances inspection of CT data, with 
options such as viewing from arbitrary camera positions, transparent views of inter-
esting anatomical structures, imposed images from other examinations and others. 
Relatively limited use of 3D visualization in the past was caused by limited available 
technical resources. Data obtained during CT examination of the chest yielding 360 
scans of resolution 512x512 pixel will take about 200 MB of memory space. Process-
ing of such volume of data in real time would require not only very high bandwidth of 
CPU and memory bus but also extremely fast CPU and graphics accelerator. PC sys-
tems available now are sufficient to deal with such volumes of data. The main 3D 
visualization techniques can by broken into two categories: surface rendering and 
volume rendering. Both can by supported by hardware-base graphics accelerator. 

Surface rendering is an indirect method of obtaining an image from a volume data-
set. This method includes two stages: generation of 3D surface from 3D data and 
proper visualization process relying on the image generation by graphics accelerator 
on the basis of prepared surfaces. There are a number of techniques for implementing 
surface rendering like the Cuberilles algorithm [61], which produces clouds of objects 
(e.g. cubes), Marching Cubes [62] or Marching Tetrahedra [63], which generates tri-
angle mesh. The main disadvantage of this approach is the computationally expensive 
preprocessing. Furthermore, for high resolution data sets the number of generated 
graphical primitives (triangles, points) can be extremely high. To reduce the number 
of triangles the mesh may be decimated [64-66], or the set of primitives can be re-
duced in the mesh generation process, via a feature-sensitive octree method [67] or 
discretized Marching Cubes [68]. Screen-adaptive surface rendering algorithms that 
take advantage from the fact that during viewing many of the primitives may map to a 
single pixel was also developed: Dividing Cubes [69], Trimmed Voxel Lists method 
[70]. 

Volume rendering or direct volume rendering is the process of creating a 2D image 
directly from 3D volumetric data, without creation of intermediate surfaces consisting 
of triangles [71-73]. Volume rendering [71] can be achieved using an object-order, an 
image-order, or a domain-based technique. Hybrid techniques have also been pro-
posed. The high computational complexity of volume rendering has led to a great va-



riety of approaches for its acceleration such as: early ray termination [71], post-ren-
dering warps for magnified viewing [74], the splatting of pre-integrated voxel basis 
functions [75]. The latter two gave rise to independent algorithms, that is, shear-warp 
[74] and splatting [75]. Acceleration techniques generally seek to take advantage of 
properties of the data, such as empty space, occluded space, and entropy, as well as 
properties of the human perceptional system, such as its insensitivity to noise over 
structural artifacts [76]. 

Currently available graphics cards are characterized by immense ability of 3D data 
processing. They are developed and optimized for processing triangle meshes, which 
are used for surface rendering. Volume rendering algorithms usually require much 
more memory than currently available hardware offers. Both techniques can use fully 
programmable graphic pipeline.  

The visualization part of the navigation system was developed with Borland C++ 
Builder and Visualization ToolKit (VTK) cross-platform - an open-source library [77]. 
The Visualization ToolKit uses OpenGL API for 3D graphic card. We use surface 
rendering technique for the sake of good performance and quality of generated virtual 
bronchoscopy images. Surface rendering includes two stages: generation of three-di-
mensional surface representing bronchial tree walls from CT data and visualization 
process via graphics card. The first stage to generate the 3D surface is loading the 
DICOM file with patient’s CT data. The gray scale images from CT are depicted in 
fig.8a. In the next step the CT data are cut back to reduce their size. Then isosurface at 
the level -500HU is generated using marching cubes algorithm [62]. The isosurface on 
this level goes through the data that represent walls of bronchial tree. The result of 
computations is the continuous triangular mesh, as shown in fig.8b, that describes 
surface of patient’s bronchial tree. To improve rendering performance triangle strips 
are also created. For that data a mapper generates OpenGL rendering primitives and 
actor object controls mesh properties. After this data processing virtual bronchoscopy 
image is generated as shown in fig.8c. The generated surface can be saved to file for 
later fast use. 

 

 
 

Fig.8 CT visualization: a) DICOM CT gray scale images, b) triangular mesh, c) rendered bronchoscopy 
image 



To improve the quality of virtual bronchoscopy images and achieve maximum re-
semblance with real bronchoscope camera illumination conditions, the virtual light 
source was set up. This light source moves along with the camera and the position of 
light source is the same as camera position. The light is configured as positional 
(headlight), and the cone angle corresponds to camera cone angle. To prevent overex-
posing of nearest surfaces the irregular light intensity along the cone angle was used. 
Light fading attenuation was used for distance simulation. 

5. ALGORITHMIC CORRECTION OF CAMERA GEOMETRIC DISTORTIONS 

Wide-angle bronchoscope camera is biased by nonlinear geometric (barrel) lenses 
distortion. The correction of those distortions is of primal importance in case when 
picture from bronchoscope camera is used for further analysis like motion estimation 
or image registration. In general, correction methods for barrel distortion rely on com-
puting the distortion center and considering both radial and tangential components [78, 
79]. In our system video bronchoscope Olympus BF-160 was used and we found out 
that tangential components can be neglected [80], what is a common simplification 
[81, 82]. The methodology based on the concepts presented in [81, 82] was used for 
correction of bronchoscope camera distortions. As a test image we chose black dotes 
placed on straight lines. The distorted image obtained from bronchoscope camera is 
presented in fig.9a. The applied correction algorithm was based on mean-square opti-
mization of the criterion that describes the degree of straightness of each line in the 
picture (the sum of distances of the points in the line to the best fitted line). Using the 
model of radial distortions, the following coefficients of the polynomial relating the 
radius in distorted image rc to the radius in undistorted image r were found (in pixels): 

rrrrrrc +⋅+⋅+⋅= −−− 21331048 107892.3105991.1102009.4)(   (6) 
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Fig.9 a) Test image taken with the bronchoscope camera, b) Corrected image 

 



Unlike [81, 82], the center of distortions was calculated upon conducting many op-
timizations in the neighborhood of geometric center of the image, what led to better 
correction results. The image after correction procedure is shown in fig.9b. In fig.9b 
the perspective shortage is seen that was caused by non-perpendicular position of the 
bronchoscope camera to the test image. The slight lack of perpendicular placement of 
test image dose not affect correction algorithm, as horizontal and vertical lines still 
have to remain straight. 

6. AUTOMATIC GENERATION OF NAVIGATION PATH IN VIRTUAL 
BRONCHIAL TREE 

Unlike the case of real camera, the movements of virtual camera are not con-
strained by bronchial wall. The virtual camera is moved along indices of 3D matrix 
with CT data. For keeping virtual camera inside the bronchial tree navigation path 
should be computed. Once having the path, the physician can operate on intuitive di-
rections like: forward, backward, left, right etc. independent of current camera posi-
tion in 3D CT matrix. Thus navigation path is used for virtual bronchoscopy, planning 
transbronchial biopsy and guiding bronchoscope’s tip during biopsy. Algorithms for 
automatic generation of navigation path in bronchial tree are based on one of the fol-
lowing methods [83, 84]: branch following [85-89], skeleton-based techniques [90-
94], thinning algorithms [95-98], front analysis [55,99-103], distance transform [104-
109]. 

 
a)

 

   

b)

 

   

c)

 
Fig.10 a), b) Successive steps of computing navigation path in bronchial tree (at the bottom the values of 
distance transform on the sides of the cube are shown); c) Path computed after first iteration (points con-

nected by the line), starting points for next iterations (points not connected) 
 
In [59] we proposed new algorithm based on the distance transform, acting on the 

segmented bronchial tree, and original iterative method for path searching. The proce-



dure is equipped with additional set of rules that prevent detecting false paths. The 
algorithm for path detection starts with placing the cube at the beginning of the bron-
chial tree, and then the cube is moved according to values of coefficients of distance 
transform on its walls. Figs.10a, 10b show the position of the cube in bronchial tree 
during successive steps and values of distance transform on its sides. The transform 
values on the sides of the cube are used for setting up the next point of the path. 
Fig.10a depicts the beginning of the path, in this case distance transform shows that 
next point of the path should be either in Z or -Z direction. As the direction -Z means 
going back to previously computed point, the direction Z is chosen. In the case de-
picted in Fig.10b, from possible -Z, Y and –Y, the direction Y is used, while the direc-
tion -Y is stored and becomes starting point for next iteration (possible branching 
node) and direction -Z is neglected for the same reason as previously. In fig.10c points 
connected with lines are depicted, which form the path computed after first iteration. 
Consecutive iterations start at points stored as possible branching nodes (points not 
connected in fig.10c). The algorithm ends up after checking all branching nodes (what 
takes 49 iterations in the presented example). Finally, a polynomial of 6-th degree is 
fit to points of the path to achieve smooth trajectory of virtual camera inside bronchial 
tree. 

7. FAST ESTIMATION OF BRONCHOSCOPE EGOMOTION 

Egomotion is a term known from mobile robot applications. In our problem it is an 
attempt to track motion of bronchoscope tip relative to bronchial tree. The commonly 
adopted approach to egomotion estimation relies on a set of a few velocity vectors for 
features in rigid environment [110]. Such features are often corners for in-room or in-
street environment. This approach is generally susceptible to noise in velocity vectors 
and generates ill-conditioned equations. The human airways form hard conditions to 
image processing algorithms. Non-rigidity of lung, lack of stable light source and lim-
ited set of cross-individual repetitive features (like carina) make the task of bronchial 
egomotion estimation significantly more difficult. We start our tutorial description of 
egomotion estimation with geometric relations of 3D motion and apparent 2D motion, 
then describe methods of egomotion estimation from apparent motion, and finally 
switch to the method developed for estimation of camera motion in bronchial tree 
environment.  

Let P(X, Y, Z) denotes point in 3D space. By small rotations of Cartesian coordi-
nate system with angles α(αX, αY, αZ) along its axes and translations with vectors T(tX, 
tY, tZ) point P is approximately (sin(x)≈x, cos(x)≈1) mapped into P' according to equa-
tion [111]: 
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The camera image p(x, y) of the point P(X, Y, Z) is the projection of the P(X, Y, Z) on 
the plane Π towards the center of coordinate system (fig.11). From triangle propor-
tions: 

,fXx y fY
Z Z

= =     (8) 

where f stands for the camera focal length. Thus 2D coordinates are equal to 3D coor-
dinates rescaled with focal length and point depth Z (f/Z =  const). 
 

 
 

Fig.11 Projection of 3D point P(X, Y, Z) onto camera plane Π with focal length f.  
Point p(x, y) is the image of point P 

 
Homogenous coordinate system is obtained by multiplication of coordinates of 2D and 
3D vectors by the constant const (e.g. equal f/Z or 1) and by extending those vectors 
with that constant as additional element. The vectors in homogeneous coordinates will 
be denoted by lower index h (e.g. p1h). Fig.12 depicts epipolar geometry [112-114]. 
The point P in 3D space is observed by two cameras simultaneously, or by one camera 
placed in positions K1 and K2 in consecutive time instants. The images p1 and p2 are 
projections of P onto planes Π1 and Π2. The line passing through points K1 and K2 
intersects planes Π1 and Π2 in epipoles e1 i e2. The plane passing through the optical 
centers K1 and K2 and the scene point P is called an epipolar plane. Intersection of 
epipolar plane and planes Π1 and Π2 determines lines l1 and l2 that connect points p1 
with e1 and p1 with e2. 



 
Fig.12 Epipolar geometry 

 
Points p1h and p2h (in homogeneous local coordinate system, const = 1) satisfy the 
equation:  

2h 1h 0,T =p Ep       (9) 

where E denotes 3x3 essential matrix: 
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Matrix E depends on translations and rotations of camera when moving from K1 to K2, 
see fig.12. The camera motion is the reason of the motion of projections in 2D space 
depicted in fig.13 and called optical flow. Equation (9) states that vectors p1h and p2h 
are orthogonal with respect to matrix E (p2h is orthogonal to E⋅p1h, and p1h to ET⋅p2h). 
Elements of matrix E are not linearly independent. In order to compute 9 elements of 
E at least 5 pairs of corresponding projection points in two images are required [111]. 
For greater number of corresponding pairs least-squares solutions are used that are 
more robust against errors in computed motion vectors of characteristic points. Motion 
vectors are computed with sub-pixel precision. Many algorithms for computing ele-
ments of matrix E (and fundamental matrix F) and then projection parameters (7) are 
described in literature [111]. 

To speed-up egomotion estimation [110] in bronchial environment we use simpli-
fied model of geometric relations based on cylindrical shape accompanied by the fixa-
tion on carina [115, 116], what reduces motion’s degrees of freedom to four (for-
ward/backward move, camera rotation, camera tilt in two directions). That is achieved 
by continuous tracking of a carina (stationary point) illuminated by sensor light, and 
by analyzing bronchial wall radial moves relative to fixed point by correlation in polar 
coordinates. 



 
Fig.13 The effect of camera motion (translations tX, tY, tZ and small rotations αX, αY, αZ around X, Y, Z 

axes) on projection (x0, y0) placement of the point (X0, Y0, Z0) on 2D plane 
 
To reverse perspective projection from images during correlations we make use of 
correspondence between z-axis and r-axis that can be derived from the following 
trigonometric relation (fig. 14b): 
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Let us note that R serves only as a scaling factor of the view. 
 

 
Fig.14 Applied models: a) segment of bronchial tree (upper perspective projection and x-z cross-section), 
b) imaging in cylindrical environment with radius R, camera focal length f, radial image axis r and depth 

from image plane z 
 
In the current research we estimate forward motion, after carina stabilization and cam-
era rotation compensation, as arithmetic mean of directional wall motions. Camera tilt 
is estimated from geometric mean of these directional motions. We assessed algorithm 
accuracy by series of test in virtual cylinders, virtual bronchial trees and on real op-



erational video sequences from transbronchial biopsy. The results of experiments 
show that accuracy of bronchoscope cumulated motion estimation is within 5% of 
distance in virtual environments. In fig.15a the virtual bronchial tree environment with 
estimated wall motions is shown. Fig.15b shows estimation of cumulated for-
ward/backward motion together with imposed forward virtual camera motion. Dis-
turbing factors in this experiment were camera rotation, and x-y plane camera moves. 
Fig.16a shows forward/backward bronchoscope trajectory during real biopsy. This 
trajectory suggest similarity of frames 7 and 65, being distant in time but close in 
space, because of strong backward move followed by forward move. These frames 
shown in fig.16b and fig.16c confirm this similarity and as a consequence confirm 
also satisfactory behavior of our egomotion estimation algorithm. 
 

 
 

Fig. 15 Example of camera position estimation along z-axis in virtual bronchial-tree phantom: a) virtual 
environment with estimated radial wall-move vectors, b) estimated forward/backward camera trajectories 
for imposed motion: 1 - camera motion along the path with target fixed on carina, 2 - camera motion with 

additional camera tilt and rotation and moving target 
 

 
 

Fig.16 Example of camera position estimation along z-axis in real bronchial-tree: a) estimation result with 
two frames that are close in space but distant in time marked with ‘o’, b), c) frames 7, 65 that should be 

similar as inferred from fig.16a 



8. IMAGE REGISTRATION 

8.1. 2D REGISTRATION USING MUTUAL INFORMATION 

The information from egomotion estimation algorithm about bronchoscope for-
ward/backward incremental motions can speed-up navigation process, but is not suffi-
cient to fully determine the location of real bronchoscope tip in relation to virtual 
bronchial tree what is the goal of navigation system. So, before successful navigation 
will be possible, two tasks have to be completed. The first task is to place the virtual 
bronchoscope (the source of virtual images) in a position corresponding to real bron-
choscope. This is achieved by adjusting position of virtual bronchoscope in such a 
way that images generated by it were similar as much as possible to images from real 
bronchoscope. After setting up the virtual camera starting position, the second task - 
calibration of egomotion estimation algorithm is performed. Having two images from 
real camera at positions z0 and z0+d, where z0 is the starting position and d is outcome 
of egomotion estimation algorithm, using appropriate image similarity measure we try 
to find such a displacement of virtual camera position which makes virtual image as 
similar to real one as possible. Given d corresponding displacement calibration is 
done. After this initial steps navigation system works as depicted in fig.1. Outputs 
from egomotion estimation algorithm are used for coarse virtual camera positioning, 
then i m a g e  r e g i s t r a t i o n  algorithm is used for finer adjusting. 

The methods enabling the registration of images from the same or different sources 
were extensively developed through last decades. Numerous papers were published on 
this topic [117]. In our approach in both described above tasks mutual information 
[118, 119] is used as an image similarity measure. It is based on the concept of joint 
entropy as given by Shannon for determination of communication’s channel capacity 
and is defined as follows 

)|()(),( vuHuHvuI −= ,     (12) 

where H(u) denotes the measure of uncertainty about the value of random variable u, 
and H(u|v) denotes the same measure but determined with the assumption that value of 
random variable v is known. In this way I(u,v) expresses how much the uncertainty 
about value of u decreases after getting to know the value v. It is obvious that if the 
value of conditional entropy H(u|v) decreases, the value of mutual information I(u|v) 
increases. Using the Bayesian theorem: P(A,B)=P(A|B)P(B) and the definition of 
Shannon’s entropy 
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the equation expressing mutual information (MI) may be rewritten in the form  

),()()(),( vuHvHuHvuI −+=     (14) 

This equation includes joint entropy H(u,v), which may be determined on the basis of 
joint probability distribution, which in turn can be inferred from the joint histogram 
h(u,v) after appropriate normalization. 

Exemplary images from real and corresponding virtual camera are presented in 
fig.17. This figure also shows values of mutual information as a function of virtual 
camera position. In the experiment the virtual camera was shifted along the computed 
navigation path lying in the central part of the airways. Observed local maxima of the 
mutual information curve are due to bronchial tree vertebras. 

 

 
 

Fig.17 Example of image registration: a) mutual information as a function of virtual camera position, b) 
real image - frame 71, c) virtual image corresponding to the real one found by registration algorithm 

8.2. 3D REGISTRATION 

Automatic navigation and positioning during medical procedure of transbronchial 
biopsy requires matching images from bronchoscope camera with data coming from 
CT examination. Images from bronchoscope camera represent the reflections of light 
from inside of bronchial tree, however, the CT-data comes from the bronchial tissue 
density. Since the data are very different (comes from different types of examination) 
it is very hard correlating it. There is only one common feature of these data - the 
shape of bronchial tissue. The 2D techniques of navigation make use of this feature in 
indirect way, that is, by means of 3D rendering of virtual bronchial tree on the basis of 
CT-data and comparing it with the bronchoscope images. It is possible, however, to 
perform automatic positioning of bronchoscope camera on the basis of direct compari-
son of 3D structures (shape of bronchial tree). The reference structure could be ob-
tained off-line by means of segmentation of 3D CT-data (see chapter 3). The second 
structure comes from video data and could be gathered on-line by using shape-from-
shading [7, 8, 120-124] or structure-from-motion [2, 67, 112-114, 125-130] proce-



dures. Finally, the absolute position of bronchoscope camera in the bronchial tree 
could be determined by correlation of these 3D structures.  

Shape-from-shading method is able to extract structure of the object from its pro-
jection on still image. The method performs very well on the object illuminated by 
spot-light (like bronchoscope illumination system), but it could be easily affected by 
lights reflection and objects texture. Both of these conditions occur in the broncho-
scope pictures. Bronchial tissue are highly reflective and posses distinct texture. As an 
example compare the real image with texture (fig.17b) and the virtual one without 
texture (fig.17c). 

The second method of structure extraction named: structure-from-motion is more 
robust. It makes use of difference between consecutive images from image sequence. 
The algorithm could be described in a following way:  
1) Find the optical-flow [111, 131-136] of the image sequence. This is a set (field) of 

vectors corresponding to the velocity of local texture movement between consecu-
tive images. It can be computed by correlation of pixels blocks or cross power 
spectrum correlation (making use of 2D FFT) or gradient methods (e.g. wavelet 
decomposition). Example of two images and optical-flow between them are de-
picted in fig.18. 

2) Let's make an assumption: two consecutive images are obtained by one camera 
pointed to the object at two camera-positions. On the basis of subset of vectors ob-
tained from optical-flow and epipolar geometry, it is possible to determine matrix 
of rotation R and translation vector T between camera positions. The translation 
vector is known up to the scaling factor, so the direction of camera movement is 
known but the velocity is undetermined. 

3) On the basis of optical-flow, matrices: R, T and epipolar geometry, it is possible to 
reconstruct 3D object located in the picture. Precision of reconstruction depends on 
the amount of vectors obtained from optical-flow. Unfortunately, it is not possible 
to determine dimension of the object. It is known up to the scaling factor. Example 
of 3D object reconstruction from 2D image sequence is presented in the fig.19. 

The procedure could be applied to calculate approximation of bronchoscope camera 
position or even to determine the precise position of the camera. Our experiments 
shown, however, it is difficult to obtain reliable results in such a way. First of all, the 
vectors from optical-flow have to be determined with sub-pixel precision. Further-
more, small amount of wrong estimated vectors provide to errors in matrices R, T and 
shape of reconstructed object. In spite of disadvantages mentioned above, the method 
provides direct comparison of the only one common feature of the analyzed data sets 
and the obtained results are promising. 
 



 
 

Fig.18. Optical flow (c) of two consecutive images (a) and (b) 
 

 
 
Fig.19 a) 2D projection of cylinder - view from inside of the cylinder, b) optical-flow (vectors have been 

lengthened by factor of 5 for better legibility), c) 3D view of the original cylinder, d) 3D view of the 
cylinder reconstruction on the basis of optical-flow 



9. CONCLUSIONS 

CT-based visualization is a popular noninvasive tool for assisting patient's organs 
examination. Most popular applications are virtual bronchoscopy, gastroscopy and 
angioscopy. Additionally these 3D visualization techniques can be applied in com-
puter-assisted navigation systems supporting physician during endoscope intervention 
(e.g bronchoscopy, gastroscopy). Emerging application of such systems is the inspec-
tion of human body by autonomous mobile robots replacing endoscope, what is re-
cently the challenging issue under development. 

In this tutorial paper we have presented the necessary building blocks for broncho-
scope navigation system used during computer-assisted transbronchial biopsy. The 
presented image processing algorithms have to operate on pre-registered huge 
amounts of data from computed-tomography, and in real time during biopsy on video 
stream from bronchoscope camera. Thus, the demand for software and hardware effi-
ciency is very high. The presented complete navigation system, after successfully 
passing the stage of simulation tests, is currently implemented as a real-time system. 

The paper provides extensive references in the field of signal processing applied in 
computer assisted medical intervention. That includes acquisition and reconstruction 
of CT data, segmentation of anatomical structures, 3D rendering, correction of endo-
scope camera distortions, navigation in virtual bronchial tree, estimation of broncho-
scope egomotion, and 2D, 3D image registration. 
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WYBRANE ZAGADNIENIA PRZETWARZANIA OBRAZÓW I SEKWENCJI WIDEO W 
ZASTOSOWANIU DO KOMPUTEROWEGO WSPOMAGANIA ZABIEGÓW 

MEDYCZNYCH NA PRZYKŁADZIE BIOPSJI PRZEZOSKRZELOWEJ 

Artykuł opisuje wybrane zagadnienia z zakresu przetwarzania sygnałów dotyczące projektu systemu na-
wigacji końcówki bronchoskopu w trakcie zabiegu z wykorzystaniem technik dopasowania obrazów. 
Zawarto w nim podstawy teoretyczne omawianych problemów oraz szeroki przegląd literatury, a także 
przykłady zaczerpnięte z oryginalnych prac autorów. Omówiono algorytmy rekonstrukcji, segmentacji i 
wizualizacji danych CT (computed tomography). Podstawą system nawigacji jest ciągłe porównywanie 
obrazów z dwóch źródeł: kamery bronchoskopu i wirtualnego drzewa oskrzelowego wizualizowanego na 
podstawie danych CT. W przypadku, gdy obraz wirtualny jest podobny do obrazu rzeczywistego przyj-
muje się, że kamera bronchoskopu w drzewie oskrzelowym ma tę samą pozycję co kamera wirtualna w 
danych CT. W artykule omówiono następujące aspekty projektowe systemu nawigacji: rekonstrukcję 
drzewa oskrzelowego z danych CT, korekcję zniekształceń kamery bronchoskopu, szybką estymację 
ruchu własnego bronchoskopu oraz dopasowanie obrazów rzeczywistych i wirtualnych w przestrzeni 2D i 
3D. 


