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1  An introduction to natural and artificial neural networks 

1.1. Why is it worth to learn about neural networks?  

1.2. What we have already known about the brain at the time when first artificial neural 

network were build?  

1.3. How were the first neural networks built? 

1.4. Why should neural networks consist of layers?  

1.5. How far from the biological brain was the first artificial neural network?  

1.6. What methods do we currently use in brain research?  

1.7. Do the neural networks can help in studies on the mystery of the human mind?   

1.8. How much artificial neural networks are simplified in comparison to biological ones?  

1.9. What are main advantages of neural networks, who uses them and what are they used 

for? 

1.10. Is neural networks going to displace traditional computers? 

1.11. So maybe it's not worth to occupy oneself with the neural network?  

1.12. Control questions and self-work tasks  

 

2. A neural net structure 

2.1. How is it build? 

2.2. How to make an artificial neuron?  

2.3. Why do not we use an exact model of a biological neuron? 

2.4. How does an artificial neural network work? 

2.5. How does neural network structure affect its capabilities?  

2.6. How to choose a neural network structure wisely? 

2.7. What are optimal sources for 'feeding' neural networks? 

2.8. How to explain a network where does cow come from?  

2.9. How to interpret answer produced through net? 
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2.10. What is better to obtain from the network - number or a decision? 

2.11. Is having one network with multiple outputs better than having multiple networks with 

one output each?  

2.12. What is hiding in hidden layers? 

2.13. How many neurons do you need to get a well-working network? 

2.14. Control questions and self-work tasks 

 

3. Teaching the networks  

3.1 Who is the tutor, who will teach the network?  

3.2. Can the network learn all by itself?  

3.3. Where and how do neural networks gather obtained information?  

3.4. How to organize learning the networks?  

3.5. Why does this sometimes not succeed? 

3.6. What is momentum used for?  

3.7. Where should we start when learning the network? 

3.8. Is learning a network a long process? 

3.9. How to teach hidden layers? 

3.10. How can a network learn by itself?  

3.11. How should we conduct self-learning? 

3.12.  Supervisory questions and problems to solve.  

 

4. Functioning of a simplest network 

4.1. From theory to practice – how to use programs dedicated to the readers of this book?  

4.2. What can be expected from a single neuron? 

4.3.  What is worth of noticing during further experiments?  

4.4.  How to manage with the bigger amount of the inputs of the neuron? 

4.5. What does the simple linear neural network act like? 

4.6. How to construct a simple linear neural network? 
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4.7. How to use the described neural network?  

4.8. Why and what for there is rivalry in the neural networks? 

4.9. What are the further possibilities of an application of the neural network? 

4.10. Control questions and issues to solve.  

 

5. Teaching simple linear one layer neural networks 

5.1. How built teaching data?  

5.2. How can we teach one neuron?  

5.3. Can neuron have inborn abilities?  

5.4. How strongly neuron should be taught?  

5.5 How to teach a simple network? 

5.6. What are the possibilities of using such simple neural networks?  

5.7. Can network be taught signal filtering? 

5.8. Questions and tasks to individual solution 

 

6. Nonlinear networks 

6.1. Why do we need non-linearity?  

6.2. How does nonlinear neuron work? 

6.3. How does work network made from nonlinear neurons?  

6.4. How to present action of nonlinear neurons? 

6.5. What are the capabilities of multilayer network of nonlinear neurons? 

6.6. How the learning of nonlinear neuron proceeds?  

6.7. Which research can be performed during the neuron learning? 

6.8. Questions and tasks to individual solution 

 

7. Backpropagation 

7.1. What is backpropagation? 
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7.2. How to change the “threshold” of nonlinear characteristics of a neuron?  

7.3. What is the most common shape of the nonlinear characteristics of a neuron? 

7.4. How does the multilayer network constructed from nonlinear elements work? 

7.5. How can you teach a multilayer network?  

7.6. What should be observed while teaching a multilayer network? 

7.7. Questions to answer and tasks to be solved individually 

 

8. Forms of neural networks learning  

8.1. How to use a multi-layer neural net for recognition?  

8.2. How I implemented a simple neural net for recognition? 

8.3 How to choose the structure of the net for our experiments? 

8.4. How to prepare recognition tasks for the nets? 

8.5. What forms of learning may we observe in the net? 

8.6. What else can we observe in our net? 

8.7. Questions and exercises 

 

9. Self-learning neural networks 

9.1. What does the self-learning of neural networks rely on? 

9.2. What is the way that long self-learning of a network proceeds? 

9.3. Can the progress of self-learning be considered as growing wise of a network? 

9.4. What is also noteworthy during the self-learning process of network? 

9.5. Dreams and imaginations arising during the self-learning of neural networks. 

9.6. Remembering and forgetting  

9.7. What kind of input data triggers a self-learning process?  

9.8. What do we gain from competition?  
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10. Self-organizing neural networks 

10.1. What is the structure of the neural network, at which you will create mappings, being 

result of self-organizing? 

10.2. What is the self-organization in the network and what it might be helpful for?  

10.3. How to implement a neighborhood in a network? 

10.4. What follows from the fact that some neurons we consider neighbor?  

10.5. What can Kohonen networks do? 

10.6. What will Kohonen Networks do in case of a more difficult data? 

10.7. What happens in a network with excessively wide range of initial weights? 

10.8. Can I change the form of self-organization in the course of a network self-learning? 

10.9. Alright, but what it all might be useful for? 

10.10. How the network can serve as a tool for transformation of an input space dimension? 

10.11. Control questions and self-study tasks 

11. Recurrent networks 

11.1. What is recurrent neural network?  

11.2. What features have network with feedback?  

11.3. Who needs this kind of networks ‘with loops’ ?  

11.4. How Hopfield`s network is constructed?  

11.5. How does the neural network work as an associative memory? 

11.6. How works program for investigating Hopfield network by yourself discovery? 

11.7. A few interesting examples 

11.8. How and why we can use automatic patterns generation Hopfield network?  

11.10. What more it is worth observe in associative memory?  

11.11. Control questions and self-study tasks 
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Preface for English version 
 (Written by Ryszard Tadeusiewicz, rtad@agh.edu.pl)  

The book which I am introducing to you constitutes the third attempt to work out the topic indicated 

in the title. I want to believe that it is the most successful one. 

The first attempt was a series of articles, popularizing neural networks themes on pages of the 

popular computer monthly magazine Enter. This magazine was printed in Poland but it was read 

willingly also in a few neighboring countries, for example in Slovakia. My series of articles were quite 

well accepted by their Readers. It was going this way up to the end of 1994 when the editors of this 

magazine had turned to me with the request. They asked me to try to write an article explaining the 

Readers of this magazine in a maximally popular way what these neural networks are about that they 

were becoming so famous. As a reply instead of one article I wrote the entire cycle of them which 

was appearing in all next numbers of the Enter magazine from January 1995th till March 1996th 

inclusive. They printed these articles in a few internet portals (willingly I gave my assent to this)  and 

they was read until now, what is attested by numerous letters coming from Readers.  

Seeing the success of these articles the editor-in-chief of the Academic Publishing House, Prof. 

Leonard Bolc, suggested to collect these articles and publish them in a book form. Preparing and 

publishing this book lasted for a little while because material for the clenched tome had to be more 

integrated and tidied up than it was necessary while writing from one month to the next   

consecutive fragments of the cycle of these articles. At the end a book was released: 

Tadeusiewicz R.: Elementary introduction into neural networks with demonstration programs, 

Academic Publishing House, Warsaw, 1998 

It is possible to show that book as the immediate predecessor of the current book, handed over at 

that moment to the hands of Polish Readers. The book „Elementary introduction …” has very quickly 

disappeared from bookshops shelves, bought out in a sequence during only one month. Few copies 

of it, available now at many libraries, have been worn out and destroyed while overused through 

many years by very numerous readers. The ones which still stay at libraries are practically on the 

border of physical annihilation. Numerous requests from Readers have become the direct cause of 

making an attempt to prepare the next release of this book. However it has turned out that progress 

in the field of neural networks has been so fast that after a few years from the first publication the 

„Elementary introduction …” book already has become so much outdated. Therefore instead of the 

next edition (corrected and supplemented) of that book I have decided to present Readers the brand 

new book -  the very one which you are holding in your hand. 

What justifies such a decision? 

To explain this more precisely let us examine the motivations which accompanied preparing the first 

articles for the monthly magazine Enter, and the motivations which are accompanying publishing the 

new book on the same topic here and now. 

The articles (and then the book being the result of their compilation) have come into existence at the 

request of right editors (the editors of the monthly magazine Enter and of the Academic Publishing 
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House). These requests were settled in the peculiar context of those years. It is worthwhile here to 

remind in short this context because it has a connection both with the form and with the substantive 

contents of this book. So exactly in the beginning of the 90’s an event took place which even in a 

dynamically changing world of the computer science happens very rarely.  A fashion came (if not to 

say – epidemic!) of applying to everything so-called „Neurocomputers”. This fashion lasts as a matter 

of fact until today and it is probably justifying the fact that you are reading this book. Admittedly a 

little from the 90’s have changed: after a certain time (when the first tide of uncritical enthusiasm 

has already died down),  the futurist  name Neurocomputer had been left and the appropriate 

computer tools have started to be called more sensibly and more calmly, simply as neural nets, but 

the fashion for applying them has lasted still and what's more it has intensified, what is possible to 

trace in the P.1 picture. 

 

Fig. P.1 Profits (in the millions USD) coming from providing the sale software for creating and using 

neural networks. Given for the American market.  

The reason of the described event was simple: specialists of different fields in the 90’s „discovered” 

that neural networks could constitute an unusually effective tool for computer solving their 

problems. I am writing „discovered” in inverted commas, because these „miraculous” properties of 

the new tool had been already well known earlier. But at first they had been familiar to not very 

numerous specialists: to biocyberneticians, and saying more precisely – to neurocyberneticians. Then 

in the nineties the same properties of neural networks had been enthusiastically described and 

discussed in many specialized computer writings. 

In Poland at that time I was a chief specialist in neural networks  as for at least 20 years I had been 

dealing with computer modeling of human brain. Additionally willingly and often I have popularized 

the knowledge about this subject. Moreover, at the beginning of the nineties I wrote the first in 

Poland book about neural networks which until today has been read and quoted. At present this 

book is possible to study all over the world since it has been made available in the sets of the Polish 

Internet Library at the following address: http://www.pbi.edu.pl . It is also available in the sets of the 

Academic Digital Library at the http://abc.agh.edu.pl address. Because this book is often read, there 

is also a direct immediate access to its content, possible through its own Internet address: 

http://winntbg.bg.agh.edu.pl/skrypty/0001 .  

http://www.pbi.edu.pl/
http://winntbg.bg.agh.edu.pl/skrypty/0001
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However the recalled book has been meant for professionals. Whereas in the 90’s there were many 

people who were simply interested  in neural nets, but they did not have  professional preparation in 

this field. There was not any appropriate literature for them. It was exactly me that the recalled 

earlier editors had asked me to write the first Polish popular book on neural networks theme. 

I am not concealing that the fact that it was I who had been asked for explaining to  the wide whole 

of a public what neural networks are – gave me a big satisfaction. Therefore I undertook this work. I 

treated it as a task for one evening at first, because seemingly what could be more simple  than 

popular explaining what one’s knew  well and very much liked. Meanwhile it turned out that issues 

about neural networks that I wanted to tell about – are many more  than I could expect. As a result 

popularizing neural networks has become for me a fascinating but also very time-consuming 

occupation for the next consecutive years. When starting the work alone I didn't realize how many 

fascinating things about these networks could be said (and shown in practice!) to interested in those 

things Readers.  But then the topic was expanding under my pen and was occupying the next issues  

of the monthly magazine. Essentially my articles on this topic had been appearing incessantly for 

more than one year! Then, the same material, but gathered and tidied up,  became the base for 

writing the previous version of the book.  

At first I was going to explain to Readers mainly this that in properties of neural networks which 

fascinate  most people there have been mirrored only some (and very minor)  fragments of this vast 

and extremely interesting neurological knowledge. This knowledge had been accumulated for many 

decades by researchers who were trying to observe and keep up with information transformation 

and learning processes within human and animals brains  (fig. P.2). Through this knowledge they 

were getting into the core information about forming intelligent behaviors within hidden secluded 

parts of the brain. 

 

Fig. P.2. Neural networks constitute the computer imitation of some detected properties while 

examining the brain of people and animals 
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Works of these researchers resulted in the entire series of scientific discoveries. Many researchers of 

the brain have been honored with the most valuable trophy the scholar can get: with the Nobel 

Prize. In the P.1 table I am showing a list of those Nobel Prize winners who contributed to the 

understanding of principles, according to which the biological mastermind is functioning, and by this  

they have created premises for building technical neural nets. 

Table P.1: the Nobel Prizes connected with these examinations of the nervous system, of which 

results were exploited indirectly or directly in neural networks. 

1904  Pavlov I.P.  theory of conditioned reflexes 

1906  Golgi C., examining the structure of the nervous system 

1906  Ramón y Cajal S. discovering that the brain consists of the network of separate 

neurons 

1920  Krogh S. describing regulating functions in the body 

1932 Sherrington Ch. S. examining nervous steering of the work of the muscles 

1936 Distances H., Hallett L.O. discovering chemical transmission of nervous impulses 

1944  Erlanger J., Gasser H. S. processes in the single nerve fiber 

1949  W.R Hess.  discovering the post of the midbrain 

1963  Eccles J.C., A.L Hodgkin.,  

A.F Huxley.  

mechanism of the electric activity of the neuron 

1969 Granit R., Hartline H.K., 

Wald G. 

physiology of the vision 

1970 Katz B., Von Euler U., 

Axelrod J. 

transmission of the humoral information in nerve cells 

1974 Claude A., De Duve Ch., 

Palade G. 

examining of the structural and functional organization the cell. 

1977 Guillemin R., Schally A., 

Yalow R. 

examining of hormones the mastermind 

1981 Sperry R. discoveries concerning the functional specialization of hemispheres 

of the cerebellum 

1981 Hubel D.H., Wiesel T. discovering principles of the processing of information in the visual 

system 

1991 Neher E., Sakmann B. functions of electrovalent channels in nerve cells 

 

As it can be seen from the table, on the beginning of the 90’s biologists already knew quite a lot 

about the brain. Biocyberneticians for years have been building cybernetic models (mathematical, 

simulational and computational ones) of all these mechanisms, which had been detected in the 

brain. By the way it has been found beyond all doubt that the mastermind  collects and processes an 
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information more efficiently and more wisely, than computer systems. The brain is better than 

computers, though the latter ones are surpassing it in terms of an action’s speed and a capacity of 

mass memory.  

After ascertaining that a cybernetic model of the brain is associating an  information better than a 

computer program, is classifying more efficiently, recognizes and searches compound sets of data 

(for example images) more intelligently on the basis of their content and associations occurring 

between them etc. – it was obvious that basing on similar mechanisms the functioning of useful 

computer tools had been only a matter of time. In the 90’s the novelty was mainly this that 

engineers, researchers and practitioners who  had not known them before had learned about these 

possibilities. Scientists dealing with the neurophysiology and cognitive science have been writing  

about them for years. Therefore sensational tone of many news and reports on (significant!) 

successes obtainable thanks to neural networks was accepted by many specialists of biocybernetics 

with a certain dose of a forgiving understanding. However, since this phenomenon took a really mass 

scale and moreover it was notable and was waking a wide interest (among others of readers of the 

recalled monthly magazine Enter) therefore appeared a request for writing something about it - and I 

did it.  

But let us leave this historical motif on a side and let us proceed to discuss the genesis and the 

content of this book which at the moment you are holding in the hand. 

From the perspective of the 21st century first decade’s knowledge it can be stated that the fashion 

for applying neural networks which started growing in the 90’s, lasts until today. It doesn't result only 

from the universally known and constantly observed tendency of computer specialists for being 

fascinated by every next news, brought by progress of technology and the development of 

civilization. The admiration for neural networks also had and still has its additional, concrete and 

important causes. The main reason for these networks huge popularity have been really excellent 

results, obtainable with the help of these new tools while solving many problems, about which for 

ages it had been obvious that they were particularly difficult. Sensational news reports of pioneers, 

who as first tried neural nets out and  described their outstanding properties in their books and 

publications, have  encouraged numerous followers. Throughout the whole decade of the 90’s and 

during the first years of the XXI century very often were appearing reports about this who and for 

what purpose with a success had used these nets. Therefore while writing at that time one of my 

next articles on this topic I had used the humorous expression that at that time the ignorance of 

neural networks in some spheres had started to be treated as a kind of  faux pas. 

So that you don't treat these assurances as baseless generalities, now I will try to show you, where 

and to what neural networks are being applied. This will allow to get the overall view on why they 

have such interesting properties. Look at the P.3 picture. In this picture I depicted (in a quite 

conventional  way) a classification of tasks which could be performed by different computer systems. 

It is probably obvious for you that between them are simpler and more difficult tasks. And so on the 

horizontal axis of the shown graph I have marked some measure of the level of difficulty of a 

problem. Frankly speaking the accurate calibrating of this axis wouldn't be simple because it is not 

entirely obvious, in what way one should measure this difficulty. But certainly it is possible to 

distinguish simple tasks (more close to the left side of the graph) and difficult tasks (on the right-hand 

side). At the moment it is enough for us.  
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Fig. P.3. The characterization of computer tasks of varying difficulty and the location of these tasks, 

for the realization which peculiarly well are sending oneself neural networks. 

A level of difficulty of a problem to be solved is not the only measure of troubles with which a 

computer specialist will have to deal.   A second dimension of a problem that builds up its solution  is 

the availability of a wisdom on which it is possible to rely. For some tasks their rules are exactly 

determined, although the number of these rules or the degree of their complication could cause that 

it would be still difficult to solve them. For example the author of a software which he writes for a 

large bank must work quite hard although the rules there are being known well and they are simple 

enough. When a customer is giving a money to a bank, then the state of his account should be 

increased and when he is taking money from the bank, then it is necessary to decrease the balance. 

But there is a huge number of such customers, and this causes that the program controlling all 

transactions for this bank is complicated and expensive. A physicist figuring out mathematical models 

describing the interior part of the atom has a different type of difficulty. The number of equations 

here is  small but they are very hard to solve. In both quoted examples however the measure of 

complications, what here is an acquaintance of rules - is equal to zero, as the rules are known and 

they could be used to construct the tools solving these two problems.  

We know how to use computers while solving tasks characterized by a full knowledge of rules. On 

the basis of these rules it should be built the algorithm and on the basis of this algorithm one has to 

write the adequate program. I don't claim that writing such a program is always easy and simple but 

at least it is exactly obvious what one should do as well as how one should do it. 

The situation however could be more complicated. We must often solve problems, in which rules 

aren't well-known. If we want to solve them, we can sometimes do this based on the observation 

that processes which they concern are in some way repeatable. In such case we are dealing with the 

situation symbolically located in the central part of the P.3 picture. The acquaintance of rules isn't in 

this case complete and rules that are known aren't to the end certain – but in spite of these gaps we 

can use the comfortable technique of the deduction: We try to produce a general rule (or more often 

a set of general rules) which then we use to solve every concrete detailed problem.  
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Programs built for this class of problems usually take into consideration the fact that our knowledge 

is uncertain and incomplete, therefore in such cases we are willingly using statistical tools (for 

example in economics or agrotechnology) or rely on non-algorithmic knowledge. For example while 

solving such objectives we often rely on a common-sense wisdom of experts. Such a knowledge, 

based on years of experience, can be surprisingly effective. For example it is being used in popular 

expert systems suggesting diagnoses or advising the most appropriate therapy methods in medicine.  

However there may exist an even more complex situation, in which one can't give any rules. In such 

problems the only thing that we have in our disposal is a number of examples of tasks which have 

been solved correctly. These correct answers can come from observations of the behavior of a 

system, whose properties we want to model.. We are building a model of the system, although we 

don't know what its internal structure is and why it is acting, but we can see – how. Textbook 

answers which we will want to imitate are sometimes given by somebody who can do it. Such an 

expert alone often doesn't know how he is achieving the required result but he does, what is 

necessary, and it works well.  

At first perhaps you the Reader think that there are no such situations or that there are few of them. 

You are not right! Our mastermind is solving such tasks non-stop, for example in a connection with 

tasks defined in the psychology as perceptions. Subjectively the matter is very simple: here you are 

walking along a street and you are meeting a friend. You recognize her easily. You can see her face 

and so you do not have any doubts, who it is. But imagine that a computer carries out the same 

activity. For example to let some people into your house, and another not. The beginning is 

encouragingly simple, because at present there are universally available digital and video cameras. 

They are producing an image in the form which can be easily entered into a computer (see the P.4 

fig.). However a question appears, what is next?  

Fig. P.4. The digital image loaded into the memory of the computer can be considered as the two-

dimensional function and easily it is possible to find characteristic elements of the image in the form 

of details of this function. It is hard however to give the algorithm of recognizing the person to the 

function presented in a picture on the basis of this function values only. 
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An image inserted into the computer memory is broken to millions of points (pixels). Brightness or 

color of each of these points are encrypted in a digital form. This causes that the digital image can be 

easily worked on the computer, as after all it is a calculating machine. What's more, it is possible to 

easily become convinced that in these millions of numerical values, corresponding to individual pixels 

there is included an information needed  to recognize the introduced in the picture person. Because 

it is sufficient to show on a screen or print on a printer in order for someone to state beyond all 

doubt that: „This is Lena”.  

Okay, but how to give the algorithm, which these millions of values describing the grayness of 

individual points of the image, will convert to the same claim, but automatically generated by a 

computer? What's more, this algorithm must be able to recognize a familiar face, independently of 

whether it has been photographed ”en face”, whether from a profile, whether is more or less close, 

whether is lighter or darker etc. It is necessary to have a method, so that changeable elements of 

facial expressions (for example the presence or the lack of a smile), changeable headgear, a different 

background etc. - would not disturb us in effective recognizing a given person, (see – P.5 ). For our 

mastermind these matters constitute no problem but when we want to program this our ability in a 

form of a general algorithm for a computer, it appears that we aren't able to do this! 

Fig. P.5. The same face can differently look in a picture depending on the illumination (a), depending 

on the location (b) and depending on the facial expression (c). It is making it difficult very much to set 

automatic recognizing! 

In similar problems, while handing over a certain ability to other people we demonstrate many 

examples. For example we are showing a child pictures and we are saying: This  is a letter a, that 

letter is also A, though is smaller. And here you also have the letter A, which looks a little bit 

differently because is printed with different font - but it is being read the same. Acting this way we 

count on this (and in general rightly) that the taught recipient of our message from these many 
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detailed demonstrations  is able to produce for himself some synthetic way of thinking. This taught 

way of thinking will let it effectively recognize all shown model forms of considered images. What's 

more the child will be  also able to recognize different models of the same letter. It concerns also 

recognizing a familiar person or some other object. While teaching people or training animals we are 

obtaining very good results in their abilities to generalize the knowledge, which they have received 

from the presentations of concrete examples. The taught child or the trained dog are also able to 

solve problems which earlier have not been shown them directly – with the condition that they 

would be enough similar to examples demonstrated to them during the learning process.  

The required in this case attempt to solve a problem is called the inductive method.  It uses the fact 

that unlike the earlier discussed deduction, in this case we do not know any general rule, on the 

basis of which we could solve concrete detailed problems. Instead of it, however, we have a handful 

of examples of concrete tasks, for which the correct answers are known. The mind of a human being 

is endowed with the talent which allows to analyze such concrete examples, to draw conclusions 

from them, and then this way to generalize these conclusions. The brain of the trained animal, for 

example a rat in a maze, also is able to learn rules of finding the appropriate way. In the end the rat is 

managing to solve not only the problems which have been earlier demonstrated to it as examples, 

but also different ones. We are saying that after the learning process the rat is more clever. A human 

being also. What about a computer? 

As I recalled, specialists dealing with neurocybernetics have known already earlier the possibilities of 

providing the knowledge by teaching. This huge potential has always lied in the acquainted by 

biologists abilities of the brain (people’s and animals’) to learn and in neural methods of information 

processing. However the majority of remaining scientists and practitioners, especially the ones who 

for years have been using a computer, thought that the acquaintance of the precise functioning of an 

algorithm is the necessary condition of automatic solving every problem. When it wasn't, they were 

seeking at least a strong enough deductive rule. They thought that it was the essential condition of 

getting an effective solution  for every theoretical or applicative problem. When it has turned out 

that neural networks are able to solve different problems without programming, using only a method 

of inferential reasoning by analogy, this fact has been greeted with a great interest. When then 

additionally it had been found out that they by themselves could discover the unknown earlier rules 

of proceedings and could solve tasks, for which nobody would be able to give the way of solving 

them – a great enthusiasm took control.  

Academic news reports were soaring up as fireworks and conclusions formulated in them have often 

pointed out on uncritical fascination of their authors with this new tool. This wave of effective and 

striking successes of neural networks have again aroused a hope  that a new „philosopher’s stone” 

had been discovered, sought without success by alchemists and astrologers by many centuries. Of 

course it is necessary to treat this last sentence as the metaphor, because they have never been 

expecting neural networks to be the tool that would exchange lead into gold, but equally naively they 

thought that with the help of this new technique it would be possible to solve everything and always. 

Neurocyberneticians have already known earlier the abilities to learn and to generalize knowledge 

that are characteristic for systems modeling the structure and functioning of the human brain , but 

they have also been conscious that the possibilities which are enclosed in this new technique are 

limited. Therefore they have been referring to these academic reports avidly because human 
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ingeniousness in applying neural networks has turned out to be incredibly big, but also with a peace, 

because it has been obvious that after a tide of enthusiasm must also come a time of 

disappointment. However the „neophytes in neurocomputing” and outside commentators of their 

achievements, i.e. professional historians of science and journalists writing comments about a 

scientific development, have not known the moderation and while describing successive 

achievements they have been expressing  astonishment connected with admiration. This admiration 

and surprise last until today, so I wrote this book in order to help you to share this admiration with 

others. You will be able to admire neural nets performing experiments on your home computer and 

you will not need to be … surprised when I show you exactly, how and why that all is acting. 

If you are still hesitating whether to read this book, then I will tell you something more. I don't know 

in what field of knowledge you are studying or in which you would like to study, but I guarantee you 

that easily you will find it interesting to apply neural networks in this your field. I can solemnly assure 

you about it, because for many such observers of behaviors of neural networks absolutely amazing is 

how this technique has turned out to be very much universal. Equally enthusiastically admire the 

possibilities and advantages of neural networks engineers applying them for example for steering of 

robots, as well as bank officials, who are using them for chasing embezzlers. Neural networks have 

found their applications in astrophysics at modeling the beginning of the Universe and within a food 

industry at cooking cookies branch to check when they are already well done. In a short time it has 

been found out that it would be possible to use neural nets almost for everything and in almost every 

field they turn out to be more effective than traditional computer methods that have been applied in 

these fields for years. For many traditional researchers it has been shocking.  

In the history of the development of neural networks there are a lot of registered surprises. If a 

neural network was able  to aid in estimations of new farming methods of plants more effectively 

than practiced for years statistical calculations, then it was a surprise to agrotechnicians. If a neural 

network was able to control a chemical reaction more precisely than a computer model based on a 

balance of energy and mass, then it was amazing for technologists. If the forecast given by a neural 

network turned out to be more accurate than obtained using other methods of predicting future 

action prices  or currency rates, then it was incomprehensible to experts using traditional methods of 

econometrics. If a neurocomputer guaranteed a better control over the automated process, than 

classical signal processors and the newest digital drivers, then this fact was raising an anxiety of 

control science engineers. It would be possible to endlessly list these specialists, for whom neural 

nets have opened brand new possibilities, but they also became the source of brand new challenges, 

because their current knowledge suddenly has turned out to be outdated. Don't let the progress in 

the field of neural networks to surprise you, but get to know it most quickly and most precisely – and 

this book will help you very much in it! 

The task I have taken while writing this book has not been simple. Admittedly, when I was already 

setting about writing articles and the first version of the book I did have behind me close to 20 years 

of the research work at creating and constant improving of successive neural nets. But books written 
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by specialists, which I wrote earlier on this topic (essentially above 50 books) weren't appropriate to 

explain the phenomenon of neural networks in a simple and transparent way for not a specialist. My 

numerous scientific papers on this topic, which I published, also weren't fitting for it, because all 

without an exception they were addressed to specialists-biocyberneticians. All these publications 

assumed that a reader had a considerable knowledge about problems discussed in the articles. 

Whereas now on the same topic I was supposed to write the popular, i.e. legible and intelligible to 

everyone work in dust. It has seemed almost unfeasible.  

Because how I was supposed to expect from a doctor fearing mathematics that he would get to know 

strongly mathematical and objectively rather difficult (even for computer specialists) the theory of 

neural networks, before he starts using them while diagnosing illnesses or while making plans for the 

therapy for his patients? Or could I persuade a bank manager, who would like to use the neural 

adviser while giving credits, to penetrate different subtleties of neuroanatomical and 

neurophysiological nature, constituting the notional and conceptual base for forming networks and 

for using them (especially teaching)? So while writing this book I have made an attempt to explain 

what neural networks are without using any mathematics, and in this entire book there is not a single 

mathematical formula. I had to also explain to persons who about biology have heard a little and a 

very long time ago, in what scope and in what sense neural networks could be treated as models of 

the real neural structures (particularly fragments of the human brain). As well I had to do this 

without carrying out the too complex and too extensive lecture from the scope of anatomy and 

physiology of the nervous system. I could not in addition go deep into details of the knowledge about 

the technique of neural networks, because they are (as all details of every field of knowledge) 

difficult and complicated, but at the same time I wanted that after studying my articles you would 

really know how neural nets work and why they are so very useful. So I decided that I would give you 

the possibility of independent discovering the properties of neural networks. You will do this with 

the help of more and more universally available computers, which certainly you are using - if not at 

home, then at least at school or at work. So I have written series of programs, constituting the 

integral part of this book, which will let you by yourself examine and discover, what neural nets are 

and how they work. 

The effort of writing these programs was considerable, but necessary. Perhaps I have surprised you 

with this statement, because you know well about it, how many cool programs on different topics 

are in the Internet, so instead of writing the own ones – maybe it would be better to look for them in 

the Web. 

Of course I know and I value web resources about neural networks that have been gathered and 

made available there. Therefore in one of the articles of the created in the Enter magazine cycle I 

gave a long list of familiar to me computer programs, enabling to structure and simulate simple 

neural nets on the PC class computers. I gave also a list of sources from where these programs could 

be obtained. Unfortunately, it was not a good solution. These programs have usually required more 

knowledge from users to possess than I have been able to provide to my Readers through written 

popular articles. Moreover, they generally were made available according to such a rule that for 

getting their full functionality it was necessary to buy their license (secondary school children and 

different hobbyists could not afford this), whereas free versions of these programs were very limited 

(e.g. demo types).  Essentially applying these programs, which were available, was far from this what 
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I had wanted to provide to my Readers – namely a joy of independent experimenting with neural 

networks built by oneself. 

In this situation it was necessary to write programs with which the Reader could play by himself, 

obtaining besides the theoretical knowledge also a practical experience connected with neural 

network issues. I made this and I attached these programs to the previous book (titled Basic leading 

into neural networks with demonstration programs) in a form of the floppy disk. At present these 

programs are universally available from the Web page 

 http://www.agh.edu.pl/dydaktyka/sieci_neuronowe/basic  

 and many persons are still using them. 

Unfortunately programs in that version were written in the BASIC language. More precisely speaking 

– in its dialect used by the QBASIC interpreter. However this interpreter had passed away together 

with the MS-DOS operating system, and that was already quite a long time ago.  

Looking from a time perspective it is possible to admit that it was a good solution. Above all, 

programs written in „old, but good BASIC” have it to themselves, that – like in a case of every 

interpreted language – a program is simply a text file, which you can examine (and modify!) in any 

word processor. Unfortunately, there is no rose without spikes. For running such a program the 

recalled interpreter is required - the QBASIC program. Yes, yes – if so far you have been not 

conscious of the fact that saying the truth a computer cannot simply run a text file, even if it contains 

the text of the program written in whichever sophisticated programming language – then you have 

been moved out of the error.  Nowadays MS Windows or Linux systems don't have the in-built 

QBASIC interpreter (what at one time was a norm), so you must install it by yourself. It is also 

obtainable together with its textbook (as files named QBASIC.EXE and QBASIC.HLP) from the 

mentioned earlier Web page: 

http://www.agh.edu.pl/dydaktyka/sieci_neuronowe/basic/ 

However QBASIC is unfortunately a primitive programming language and its possibilities are firmly 

limited. Today, when offering by programs colorful, user-friendly Windows interface has become a 

norm, using both the QBASIC environment and the programs written in, could be irritating. 

The programs that are intended to make reading this book easier and more pleasant are written in 

the completely different technology. They are written in the C# language, which is a compiled 

language. It means that you will get ready programs which you can install on your computer and run 

by clicking at them – the same as you do with the majority of other programs. Since they have been 

written (by co-authors of this book, Tomasz Gaciarz, Barbara Borowik and Bartosz Leper) specially 

with the thought about the Windows system, they have a user-friendly and transparent interface. 

We will play the ones you can download for yourself (legally and for free!) from my Web page: 

http://www.agh.edu.pl/tad 

The more accurate information on this topic, as how to download these programs and when to use 

them, will be given in chapter 4. 
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There appears however a rationalized question: Why have we made up our mind to use this new 

technology? After all in the BASIC it was possible to see the text of programs „without lens” and to 

understand by oneself what they are doing and how, whereas the compiled programs written 

originally in C# aren't too adequate for „reading”! 

Above all because the new programs are more simple in use. What's more, using them is adapted to 

habits and likings of modern computer users, accustomed to using programs with the help and other 

conveniences delivered to them by the Windows system. You like comfortable and fast pull-down 

menu selections , different inventive indicator lights, various colorful icons sensitive for clicking on by 

a mouse, etc. – and not diligent inputting data from a keyboard, what was the only form of a 

communication with programs in BASIC! 

This that these modern and improved programs are compiled (so they are illegible), should not 

constitute any bigger problem. Anyway, the majority of Readers will simply want to run and 

experiment with  these demonstration programs and will not want not to examine how they are 

built. Of these few fans, who want to look inside those programs,”, will be perforce less. However 

even they in this book won't be omitted! On the mentioned before Web page  

http://www.agh.edu.pl/tad 

there also is an unabridged source code of all the programs written by us as well as a kit of tools 

allowing to look inside these codes and to analyze them. For braver and more experienced there are 

also tools allowing to modify the source codes of our programs, to compile and to run them on one's 

own. For this purpose can be used provided by the Microsoft company the free programming 

environment called the Visual Studio Express 2005. We are encouraging to install this free 

environment on one's own computer also those who only want to view the source code of our 

programs. Thanks to this using the programs that demonstrate selected problems which are 

described in the book - will be far simpler! 

So as you see, the book and the resources placed on the indicated to you earlier Web page, you can 

use in three ways: 

 If you are interested in neural networks only from the theoretical side and you don't feel like 
playing with any programs – then it will be enough that you read the content of the book.  

 If you like to check by yourself, how this and that works, then you can download ready programs 
which will allow you to build neural networks and examine them on your computer. In this way 
you will link the theory (read in the book) with practice (resulting from having fun with our 
programs) and by this you will gain the twofold ability connected with the theory of neural 
networks and with methods of applying them.  

 But if additionally you are an amateur and a fan of programming - then you will be able to 
examine exactly, how these our programs have been built and you will be able to correct them, 
to change and to improve them as much as you wish. We have nothing here to conceal! 

Thanks to the fact that you take on yourself the difficulty of reading the text of our programs (and 

maybe also of working them through), then you will be able to understand how they function, and 

you will also be able to change something here and there. If you are willing to modify the source 
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code of our programs and you will try to check „what if …”, then you will enter the elite circle of 

neural networks authors, which is much more honorable than the group of only users alone of these 

networks.  

So I am inviting everyone desiring to do this to willingly go deep into next chapters of this book and 

through them (as well as by using associated with the book programs) to become acquainted with 

the fascinating world of neural networks. You will get to know these networks mainly as artificial 

intelligence tools, which have had and still have a lot of computer science applications. But you will 

also get to know them as interesting models of fragments of your own mastermind. Perhaps neural 

networks will help you to understand the secretive world of your own intelligence and a complicated 

psyche of different people.  
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1.  An introduction to natural and artificial  

neural networks 

1.1. Why is it worth to learn about neural networks? 

 (translation by Paweł Olaszek; pawelolaszek@tlen.pl)  

This book is for you, dear reader, to learn in a nice and easy way what neural networks are, how and 

why they work and how and where to use them. If you hold this book in your hands, I believe that its 

what you want to find out. This book is thick so it needs a lot effort to read it. You can ask yourself a 

question: Is it worth it? If yes, then why ? Maybe it is better to put it away and play some computer 

games? 

The simplest answer is: Yes, It is worth to study neural networks because they currently are in 

interest of many researchers and practitioners. With their help, people made many interesting 

discoveries and for sure they will lead to further achievements. 

If those reasons still did not convince you need to spend some time studying neural networks then 

you can recognize them worth knowing, because can you hear a lot about them and we are 

observing a trend for them? 

However are those reasons enough to convince you?  

After all, we  are observing various trends in computer science for years and tied with their “comes 

and goes” of interest in specific problems influencing work of scientists, shaping  computer market 

and focusing effort of software developers on specific tasks. A lifetime of a trend varies form couple 

months to few years. Usually trend ends when something new comes up and takes over all 

passionate   of the previous one. We can recall many big trends but some are really worth reminding: 

recently we went thru massive internet fascination (we still witness faze of intelligent web browsers). 

Now, very popular are grid computing. We still witness wave of popularity for cellular automaton and 

agent technique. Also fractals and chaos have their faithful fans. From time to time comes back (like 

a Bubonic plague) fascination of genetic algorithms and a theory of fuzzy sets. 

We can say that in computer science changeability of trends is very trendy. 

From the beginning of 90’s neural networks started becoming popular and they are still today. A little 

more about this boom I wrote in preface therefore if you haven’t read it yet(I know some people 

whose principle is to omit prefaces) I advise you to step back a few pages and read this one. It 

contains many interesting and important information that I am not going to repeat further in this 

book. You will find them useful if you are planning to become interested in neural networks and  

even use them as a useful tool in your work. 

Now I am going to tell you something important about this chapter. 
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Well if you are not interested in biological basics of neural networks then you can skip this chapter. 

Really!  

In chapters ached I am going to show you how to build artificial neural networks and how you can 

use them. Those chapters you must read one after the other because if you omit something you will 

have problems understanding further solutions presented in this book. 

But this one is different. t says the story how mankind discovered neural networks examining its own 

brain. Those examinations were carried out for years to find out secrets of human intelligence when 

suddenly research findings turned out to be useful in computer science. This chapter will tell how 

those borrowed from biologists artificial neural networks helps today discover another secrets of 

human brain. I find this incredibly interesting therefore I wrote so much on this subject. If you are 

eager to explore secrets of neural networks as fast as it is possible you really can skip this whole 

chapter. I hope that when you see how cool do they work you will come back here to learn their 

genesis but remember you do not have to do it. 

If you are still reading this means that you are truly interest how did it happen to discover neural 

networks and I will try to satisfy your curiosity. As you already know, neural networks are simplified 

(therefore easier to understand and use in computer software) but surprisingly complex and 

interesting model of biological nervous system. Shortly we could say that neural networks are 

simplified model of some functions of our own brain (Fig. 1). 

 

 

Fig. 1.1. Human brain – source of inspiration for neural networks researchers 

 

1.2. What we have already known about the brain at the time when 

first artificial neural network were build? 

 (Translation by Stefan Turalski, stefan.turalski@gmail.com) 

The brain internals have always fascinated people. However, despite of many years of intensive 

research, until now, we have failed to completely explain and understand a mystery of brain working. 
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Only during last few years we have seen essential progress in this area (we will elaborate more on 

this subject in the next subchapter). Whereas in the 90ties of 20th century, when the rapid 

development of the basis of neural networks took place, there was relatively less information on this 

(brain) subject. At that time we have already known where the most important centres responsible 

for the crucial motor, perception and intellectual functions are located (fig 1.2).  

 

 

Fig. 1.2 Localization of particular functions in a brain (source of the image: 

http://avm.ucsf.edu/patient_info/WhatIsAnAVM/images/image015.gif ) 

However knowledge about particular brain elements working was rather vague. It was quite clear, 

how brain parts responsible for movement controlling or essential sensations (somatosensory) work 

(fig 1.3), because numerous diseases, injuries or war wounds let to determine, which movement 

(paralysis) or sensation defects are associated with injury of particular brain parts. 

  

http://avm.ucsf.edu/patient_info/WhatIsAnAVM/images/image015.gif
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Fig. 1.3. Main localizations of brain functions (source: http://www.neurevolution.net/wp-

content/uploads/primarycortex1_big.jpg ) 

The question about the nature and localization of more advanced psychological activities inevitably 

leaded, on this still quite primitive stage of knowledge. Main observation was that there seems to 

exist fairly well-defined specialization of individual cerebral hemispheres (fig 1.4). Main reason for 

that situation was a fact that ethical considerations did not allow to carry out experimental tests on 

human brain. The afore mentioned practice of industrious gathering and analyzing of all information 

regarding the relationship between functional, psychological and morphological changes that are 

observed in feelings and behavior of people with particular brain injury, caused in natural reason (not 

related to the research itself) was accepted. However a purposeful manipulation of electrode or 

scalpel in a tissue of healthy brain in order to gather information about the particular part functions 

was an entirely different matter. 

http://www.neurevolution.net/wp-content/uploads/primarycortex1_big.jpg
http://www.neurevolution.net/wp-content/uploads/primarycortex1_big.jpg
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Fig. 1.4. Generalized differences between main parts of a brain (source: 

http://www.ucmasnepal.com/uploaded/images/ucmas_brain.jpg ) 

Of course, it was possible to curry out experiments on animals, and it was done very often. However, 

killing innocent animals in the name of our curiosity has always been rather morally ambiguous 

status, even if dictated by noble interest of a scientist. In addition to that, it was not possible to draw 

conclusions about human brain behaviors and properties directly from the animal tests, mainly 

because in this research area the distance between us and animals is rather more significant than in 

case of muscle, heart or blood researches. 

What means did the pioneering neural network creators have to equip their constructions in as many 

features and properties modeled on the real and natural brain working as possible? 

First of all, they knew that brain consists of separate cells (neurons), which are playing a role of 

natural processors. The first to describe human brain as a network of connected, however rather 

autonomous elements, was the Spanish histologist Ramón y Cajal (Nobel laureate in 1906 – see table 

in foreword). It was also he who introduced the concept of neurons, specialized cells that process 

information, receive and analyze sensations, and generate and send control signals to all these 

human body parts that are managed by the brain (i.e. muscles steering body movement, glands and 

all other internal organs). We will learn more about a structure of a neuron in the 2th chapter, 

because its artificial equivalent is the main component of neural network structures that are 

considered in that chapter. On the figure1.5, we can see how, the individual neuron was isolated 

from continuous web of neurons that form cerebral cortex. As it was mentioned before, this 

autonomous cell is a complex biological processor responsible for all functions and actions of our 

http://www.ucmasnepal.com/uploaded/images/ucmas_brain.jpg
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nervous system (in fact, not only the brain, but also e.g. elements of sympathetic and 

parasympathetic nervous system that manages the activity of all internal organs). 

 

Fig. 1.5. Part of a brain cortex treated as neural network with selected neuron presentation 

At the moment when first neural networks were build, the knowledge about neurons was quite 

distinctive, thanks to some animal species (for example Loligio squid). These are big enough to allow 

clever researchers (Hodgkin and Huxley – Noble price in 1963) to find out biochemical and 

bioelectrical changes that happens during distribution and processing of nervous information carrier 

signals. However, the crucial statement was that the description of real neuron (in substance, quite 

complex) could be simplified significantly, by a reduction of observed information processing rules to 

several simple relations (these are described in the 2th chapter). Such an extremely simplified 

neuron (presented diagrammatically on the figure 6), still allows to create networks that have 

interesting and useful properties, which are at the same time very cheap to build. 
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Fig. 1.6. Simplified scheme of artificial neuron 

Elements recorded on the figure 1.6 (especially mysterious ‘weights; marked inside the block 

symbolizing neuron) will be discussed in detail in the following chapters, therefore please ignore 

these for now. However, please note that a natural neuron has extremely reach and diverse 

construction (compare to the figure1.7). Its technical equivalent, presented on the figure 1.6 has 

substantially cut down structure and is even more greatly simplified in the area of activities that it is 

capable of. Despite all of that, we can, with the help of artificial neural networks), obtain such 

complex and interesting behaviors, as these that you will find described in further chapters of this 

book. It is amazing, how rich and varied are the abilities of the original, biologic network that 

assembles our brain! 

 

Fig. 1.7. A artistic view of biological neural cell (source: http://www.web-

books.com/eLibrary/Medicine/Physiology/Nervous/neuron.jpg ) 

The neuron presented on the figure 1.7 is a product of a graphic fantasy, whereas on the figure 1.8 

you can see an example of a real neural cell dissected free from a rat brain – human neurons look 

almost identically. Such a biological neuron has really complex structure, hasn’t it? 

 

http://www.web-books.com/eLibrary/Medicine/Physiology/Nervous/neuron.jpg
http://www.web-books.com/eLibrary/Medicine/Physiology/Nervous/neuron.jpg
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Fig. 1.8. Real view of the biological neurons (from the brain of rat) (source: 

http://flutuante.files.wordpress.com/2009/08/rat-neuron.png ) 

Because of the fact that artificial neurons are so simplified, it is possible to realize them technically in 

an easy and cheap form of uncomplicated electronic system (first neural networks were built as 

specialized electronic machines called perceptrons). It is also fairy easy to model these in a form of 

algorithm that simulates an activity of such a cell using standard PC system (or other computer type). 

In currently utilized systems the simulation realization is chosen practically as a rule. It constitutes a 

convenient and cheap tool, which allows simulation of single neurons, as well as all networks of 

these.  

1.3. How were the first neural networks built? 

 (translation by Agata Krawcewicz, hogcia@gmail.com) 

Let’s get back to computing the biological information, on which the creators of the first neural 

networks based on, to show what neurocybernetics did with these biological information in order to 

make the obtained networks cheap and comfortably used. They already had considerable knowledge 

about what actions can the biological neuron do. It is enough to look into table P.1 in the preface, to 

see how many Nobel prizes had been awarded throughout the whole XX century for discoveries, 

which  - indirectly or directly - concerned the very problem of neural cell and it’s functioning. The 

most important information, which the biologists managed to find, was related to places, in which 

one neuron passes a signal to another neuron (Fig. 1.9). It was astonishing and fascinating. They 

http://flutuante.files.wordpress.com/2009/08/rat-neuron.png
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found out that during processing information in the brain, the large an complicated cell bodies or the 

long bushy neural fibers (axons and dendrites), which are used for communication between neurons, 

are not the most important thing. What was significant, were the systems that mediate in the 

process of passing the information between neurons, called synapses. They are very small, in fact so 

small, that the resolving power of the optical microscopes, typically used in biology, was too small to 

find those structures and describe them. You can also barely see them on picture 1.9. 

 
       Body of neural cell - 
Dendrite collecting signals form    aggregate input signals and 
From other neurons or receptors   calculate (produce) the output signal  

 

 

Axon – transmit the output signal    Synapse - transmit signal form 

to the receivers of information (neuron o muscles)  neuron to neuron (with weight!) 

 

     Myelin sheath for axon isolation  

Fig. 1.9. The smallest functional part of neural system: two connected and cooperating neurons. In 

this structure most important part is synapse connecting such two neurons. 

After the electron microscopes discovery we could show how complex and interesting shapes do the 

synapses really have (Fig. 1.10), and a series of brilliant experiments of a British neurophysiologist, 

John Eccles proved, that when a neural signal goes through a synapse, a special chemical substances 

are engaged - the so called neuromediators, which are released at the end of the axon from the 

neuron that transmits the information, and travel to a so called postsynaptic membrane, which is 

contained in the neuron that receives the information (see the greatly simplified schema of a synapse 

structure, which is shown on picture 1.11). In the greatest simplification we could say, that teaching a 

neuron (and the whole brain) depends on the fact, that the same signal sent through an axon from 

the cell that transmits the information can release a greater or smaller quantity of the 

neuromediator to the synapse that receives the signal. If – in the process of learning – the brain finds 

out that the signal is important – then the quantity of the neuromediator is increased. If it’s settled 

that the signal is not important, the quantity of the neuromediator is decreased. That is how the 

mystery of teaching and memory looks like, though I want to stress it once more – the mechanism 
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sketched in the previous instant is extremely simplified in relation to the complex biological 

processes, which in reality take place in a synapse. The very best proof for how important and 

difficult process do we have here, is the fact that for discovering how the synapses transmit 

information from a neuron to neuron, and also for disclosing the mechanism of the changes that take 

place in synapses, when a brain is learning and acquiring new information, John Eccles was awarded 

a Nobel prize in the year 1963 (see the table contained in the preface). 

 

Fig. 1.10. View of the synapse. Reconstructed on the basis of hundred observations performed by 

means of electronic microscope. (source: http://www.lionden.com/graphics/AP/synapse.jpg) 

 

Terminal part of the axon belonging    Variable amount of neuro- 

to the neuron pushing information    mediator („synaptic weight”) 

 

 

Cell body of the neuron      postsynaptic membrane 

receiving information      producing electrical signals 

Fig. 1.11. Very simplified scheme of the synapse structure and its main elements 

The neural networks specialists readily used the information and thanks to that the systems built by 

them have profited by one of their most important attributes: a capability to learn. Of course again 

the biological rule of learning, which is objectively rather quite complicated and appeals to very 

http://www.lionden.com/graphics/AP/synapse.jpg
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complex biochemical processes (Fig. 1.12) had to be greatly simplified, so that it would be possible to 

obtain a tool, which could be efficiently used as a system for resolving practical computer science 

problems. Furthermore, it was decided, that the subject of learning in neural networks would be 

solely the kind of knowledge, which is classified by psychology as the procedural memory, which 

though, as we know, is not the only type of memory that a human being has (Fig. 1.13).  

 

Fig. 1.12. Biochemical mechanisms of learning and memory (source: http://ars.els-

cdn.com/content/image/1-s2.0-S0149763408001838-gr3.jpg) 

http://ars.els-cdn.com/content/image/1-s2.0-S0149763408001838-gr3.jpg
http://ars.els-cdn.com/content/image/1-s2.0-S0149763408001838-gr3.jpg
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Fig. 1.13. Different types of memory in human cognitive processes 

The third source of information, on which the concept of neural networks was based in the 90ties, 

was that the inner structure of brain was identified at that time. Persistent work of many generations 

of histologists, analyzing thousands of microscopic specimens and hundreds of less or more 

successful attempts to reconstruct the three-dimensional structure of the connections between 

neural elements bearded such a fruit, that schemas were  available at that time, such as the one 

exemplary presented in figure 1.14. 



34 
 

 

Fig. 1.14. Three-dimensional internal structure of the connections in the brain (source: 

http://www.trbimg.com/img-504f806f/turbine/la-he-brainresearch18-154.jpg-20120910/600) 

1.4. Why should neural networks consist of layers?  

(translation by Krzysztof Królczyk, scoorviel@go2.pl) 

Similarly to earlier mentioned simplification of biological information (about other real brain 

properties), this also applies to space layout of neurons, and connections they create – the whole 

science complexity, neuroanatomic and cytological knowledge were reduced to absolute minimum. 

Neural net designers focused heavily on implementing working model - practical, tough extremely 

truncated. It appears, we could observe regular pattern, which neurons tend to create in several 

brain areas. Below, we can see few examples of such layer-like structure (Fig. 1.15). 

http://www.trbimg.com/img-504f806f/turbine/la-he-brainresearch18-154.jpg-20120910/600
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Fig. 1.15. Layered structure of the human brain cortex (source: 

http://hirnforschung.kyb.mpg.de/uploads/pics/EN_M2_clip_image002_01.jpg) 

Retina is another example of such structure (Fig. 1.16); as for embryologists – being transformed part 

of  cerebral cortex. 

http://hirnforschung.kyb.mpg.de/uploads/pics/EN_M2_clip_image002_01.jpg
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Fig. 1.16. Retina (part of the eye) is also organized as layered structure (source: 

http://www.theness.com/images/blogimages/retina.jpeg) 

It’s safe to imply, that neural networks, designed as a multilayer structure are quite convenient  - 

technically it’s the easiest way; however, neural nets are biologically “crippled” models of actual 

tissue, nevertheless functional enough to assume that results obtained are fairly correct – at last in 

context of  neurophysiology. According to words of one green ogre “Ogres have layers. Like onions.”. 

Neural networks have layers also. 

Typical neural network, therefore, has structure shown in Fig. 1.17.  

http://www.theness.com/images/blogimages/retina.jpeg
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Fig. 1.17. Typical neural network structure 

What are main advantages of such (layer) approach? It’s very simple to create a model, and simulate 

it‘s behavior using various computer programs. That’s why researchers adopted such structure and 

use it from there on, in every neural net. Let’s say it again – it’s very inaccurate if considered as a 

biological model, however main idea is preserved. There were, of course, remarks, how much better 

would have networks operate if model closer resembled its origin, real tissue, or how could it be 

adjusted to perform specific tasks, but as for now, none worries about it. 

Another problem is with connecting layers. For example, in real brain, schematic of neural 

connections is quite complicated, and differs depending on which brain area is considered. 

Therefore, in XIX century, first topological brain map was created, dividing it in view of identical 

neural connections templates. (Fig. 1.18).  
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Fig. 1.18. Map of regions with different cell connections in the brain (by K. Brodmann) (source: 

http://thebrain.mcgill.ca/flash/capsules/images/outil_jaune05_img02.jpg) 

Here, with same color, are marked fragments with microscopically examined similar connections, 

whereas different colors corresponds to substantial differences. This map, with rather historical 

meaning, was called Brodmann’s areas. Brodmann divided the cortex into 52 regions. Currently we 

treat brain much more subtle; however – this is a good example of problem we’re facing when 

analyzing “how are neurons connected into net”, the answer varies with different brain part. 

If we were thinking about the sole purpose of building artificial neural networks – one may think it’s 

essential to adapt its connection structure to single problem we’re dealing with. That’s true, it’s been 

proven that well chosen structure can greatly increase speed of net’s learning. The problem is 

situated, unfortunately, elsewhere. In most problems we are trying to solve – we can’t really tell 

what is best way to work the problem out.  If we can’t even guess which algorithm is suitable, and 

which one is network going to employ after learning process, the less could we be capable of 

selecting (a priori), network elements which are necessary, from useless. 

Therefore – the decision about connecting layers, and single elements in networks are arbitrary, and 

usually it’s full connection – each element is connected to all other. Once again – such idea of 

homogeneous, full connection schematic – reduces effort required to define network, however 

increases computing complexity, i.e. higher memory usage, or chip complexity, needed to recreate all 

connections between elements. It’s worth noting, that without such simplification, network 

definition would require thousands parameters, surely causing employment such structure, to be a 

programmer’s worst nightmare. Whereas using fully connected elements, again, is basic thoughtless 

designer’s will. It’s almost a practice; also, causes no real harm, since learning process eliminates 

unnecessary connections from whole bunch. 

 

http://thebrain.mcgill.ca/flash/capsules/images/outil_jaune05_img02.jpg
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1.5. How far from the biological brain was the first artificial neural 

network? 

 (Translation by Arek Janeczko, ajaneczko1@gmail.com) 

Summing up, it is necessary to state that Artificial Neural Networks, which came into existence in the 

90ties of the 20th century, had strong foundations in anatomical, physiological and biochemical 

knowledge about the human brain, which at that time was available. However, authors of neural 

networks did not attempt to make an exact copy of this knowledge and rather treated it as an 

inspiration. Therefore, the construction and principles governing  artificial neural networks applied in 

practice are not the exact reflection of the biological knowledge, even that outdated one, from the 

past a dozen or so years. Basically, we can say that the workshop of the inventor of modern neural 

network consists to a certain degree of  biological knowledge elements, which could be easily 

discovered in the background and are rather the source of inspiration than the precise pattern on 

which his actions are based. Nevertheless the matter which is shaped by neuro-cybernetic scientist is 

totally from the field of Computer Science, because neural networks are created, learn, are the 

objects of research and are applied in typical present computers. A graphical metaphor of this 

process could be assembled by the AGH students the image presenting the author of this book as the 

explorer of neural networks (fig. 1.19).  

 

Fig. 1.19. The knowledge about biological neurons “soaking” into the structure of presently used 

computers (the picture of the author of the book made by the AGH students) 

Therefore in all further considerations we will remember (and we will be taking into account) that 

during forming neural networks all biological knowledge that we have at first has been deeply 

thoroughly looked through and simplified and then it has been used as the basis for constructing 

artificial neurocybernetic systems. This fact fundamentally influences the properties of examined 

neural networks which in a consequence are neural more from its name than because of the real 
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similarity to the actual brain. Contrary to appearances this fact positively decides about the 

properties and the possibilities of neural networks – which are considered also as tools assisting in 

the process of biological understanding of our own brain. We will address this issue in the next 

subsection of the book. 

While preparing the next edition of the book which would appear in print over ten years after its first 

edition, I could not ignore the fact that during this decade the research over the brain has 

considerably gone forward, and the concepts on the subject when and for what purpose neural 

networks should be applied for, also have undergone a certain evolution. Because of this in the next 

subsection, which was not present in the earlier edition, we will talk about concurrent problems 

connected with human nervous system research and I will try to show you what role neural networks 

might play in these researches. 

1.6. What methods do we currently use in brain research? 

(Translation by Krzysztof Królczyk, scoorviel@go2.pl) 

Modern wide variety of „tools” available for human mind researchers in XXI century, is simply 
incomparable, with those used by pioneers who gave us base knowledge about structure and 
functionality of nervous system. Their work underlined creation of first neural network in 90-ties of 
last century. To begin with, let’s name several, which led us to improved representation of human 
brain, and it’s internal structures. Without computer tomography (CT) and nuclear magnetic 
resonance (NMR), skull’s shell, or precisely cranium, was impassable for more primitive observation 
techniques (including x-raying), enviously hiding secrets of healthy(and living!) human brain. We 
were able to see into it only after patient’s – and concurrent – brain’s death. What, of course 
couldn’t give us any insight of its activities. Anatomists, happily cutting brain into pieces, staining and 
watching it under microscope, tried to work out core structures processing information, and it’s 
connectivities – more or less with same luck, as if someone were cutting computer to pieces, trying 
to find out how were wires connected, and what happens inside integrated circuits, thinking he’s 
learning informatics by doing so... Internal brain structures of living man can be shown, and analyzed 
today with an extraordinary precision – take a look at Fig. 1.20. 

 

Fig. 1.20. Internal brain structures of living man can be analyzed today with astounding precision... 

(source: http://www.ucl.ac.uk/news/news-articles/1012/s4_cropped.jpg) 

http://www.ucl.ac.uk/news/news-articles/1012/s4_cropped.jpg
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Diagnostics allow us to detect and locate certain places, showing high brain activity at current 
moment – have a look at Fig. 1.21. Linking such sections, with type of activity a person is performing 
at the moment, we could presume, that certain brain structures are respondent for certain tasks. 
Thus led us to better understanding of functional aspects of neural compounds. Let’s have a look at 
example below. 

 

Fig. 1.21. Method showing brain activity, during performance of certain tasks by research subject 

(source: http://faculty.vassar.edu/abbaird/resources/brain_science/images/pet_image.jpg)  

Look closely at Fig. 1.22. It shows an image (consisting of four profiles at different height, obtained by 
PET - Positron Emission Tomography) of human brain viewed from inside. It’s owner is awake, 
however not focused on anything particular, given no task to accomplish. We can see, that however 
most of his brain is inactive (shown as blue or green areas), there are places where neurons work 
(shown as yellow, and red areas) Why’s that? We should remember - that our object, although 
relaxed, thinks! He’s still moving, even if unnoticeable, feels cold or heat etc. This activity is rather 
scattered and weak. 

http://faculty.vassar.edu/abbaird/resources/brain_science/images/pet_image.jpg
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Fig. 1.22. A still image of human brain, whose owner isn’t focused on anything particular. 

Of course, if patient focuses, i.e. on solving difficult mathematical problem, parts responsible for 
abstractive thinking immediately increase their activity, resulting in red areas at Fig. 1.23. 
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Fig. 1.23. An image of human brain, whose owner focused heavily on mathematical equation. 

Intensive red marks frontal lobe, activated by this exercise 

This method can be used not only to study aware exhausting efforts. If some picture suddenly draw 
attention of our research object, in his rear brain parts millions of neurons used to analysis, 
responsible for perception and recognition of visual signals (as shown at Fig. 1.24) 
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Fig. 1.24. Man’s brain activity during watching something interesting. We can see red spots marking 

activity in rear lobes (arrow) responsible for acquisition and identification of visual signals 

Accordingly during listening and speech comprehension – hives responsible for analysis and 
remembering sounds, are activated in temporal lobes, what shows Fig. 1.25. 
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Fig. 1.25. A man listening to a conversation activates mostly temporal lobes since they are 
responsible for signal analysis. It’s worth noticing, that hence speech comprehension areas are 

located only in one side of brain; if an object were listening to music – both image sides would be 
red. 

Methods, which were shortly described here, allow us to record not only temporary states, or 
explaining how is brain organized; in fact – developed combined techniques of imaging internal 
structures, capturing it’s partial activities, gave us insight about correlation between certain brain 
areas and patient’s corresponding actions (Fig. 1.26). 
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Fig. 1.26. Tracking changes connected with performing specific tasks. (source: 

http://www.martinos.org/neurorecovery/images/fMRI_labeled.png)  

These changes can be recorded dynamically (creating something like a movie, or computer 
animation) what is enormous advantage over static pictures, or any other research results. I’m sure 
You’ve seen pictures of a runner, and his motion divided into sections, or concurrent snapshots of 
animated movie. At Fig. 1.27, and subsequent, we have example - animation of such brain 
(anatomical) structures. Presenting such still images one after another in timely fashion, gives us 
illusion of fluent movement so important to freely track which structures activate, it’s order, during 
analysis of particular action. 

http://www.martinos.org/neurorecovery/images/fMRI_labeled.png
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Fig. 1.27. Presentation of dynamic processes happening inside brain. (source: 

http://www.bic.mni.mcgill.ca/uploads/ResearchLabsNeuroSPEED/restingstatedemo.gif ) 

1.7. Do the neural networks can help in studies on the mystery of the 

human mind? 

(translation by Natalia Kubera, natalia.kubera@googlemail.com) 

 The examples presented above were obtained by modern methods of brain examination. They 
seems to show that after the 1990s,  which were called „the decade of brain”, because of the 
intensity of  research,  we know so much about the human brain, that it is no longer a mystery. 

This belief is misleading. Currently, the brain structure is quite well explored. We have also some 
knowledge about its functionality. However, a common problem for studies on highly complex 
objects appeared: the reconstruction of a whole on the basis of waste amount of separate, 
distributed, particular information. One of the very efficient methods used in modern science, is the 
method of decomposition – in other words – the method of division into parts. Do you have a 
problem with description of a huge system? Divide it into hundred pieces and investigate each of 
them! You cannot understand a complex process? Let's find several dozen of simple sub-processes 
that go into making of this complicated one and investigate each of them separately. This method is 
very effective. If separated subsystems or sub-processes are still resistant towards your scientific 
methods, you can always divide them into smaller and simpler parts. However, it causes one, 
characteristic difficulty: Who, when and how will compile the results of those numerous researches 
of all the fragments?  

While analysis of really complex systems,  the synthesis of particular results is not easy, especially if 
those results were obtained  by various scientific techniques, which are characteristic for  each, 
applied science discipline. It is hard to find a person, who would be able to integrate, for example: 
based mainly on drawings anatomic information with based on case descriptions physiological data 
and results of biochemical marks obtained by analytical apparatus. Computer modeling can work as a 

http://www.bic.mni.mcgill.ca/uploads/ResearchLabsNeuroSPEED/restingstatedemo.gif
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kid of a „common denominator„ for the all, obtained from various sources information, so if it is only 
possible, it is worth to use it. It was experimentally proved that computer model describing anatomy 
can be joined with computer record of physiological processes and computer description of 
biochemical reactions. The current approach attempts to rebuild our entire knowledge on various, 
investigated separately by different scientists biological systems. 

With reference to neural system and in particular to human brain, various computer models may be 
used in order to  combine results of many different researches, which can give a chance to 
understand an integrated functionality of this extraordinarily complex system. Some of those models 
will be mentioned further in the text. Whereas in this preliminary chapter, I would like to state that 
the easiest approach is to attempt to describe our knowledge about brain in reference to considered 
in this book, artificial neural networks. Obviously, the human brain is very complex and much larger 
than very simplified neural networks. However, it is common in science that by usage of simplified 
models we discover rules which also  come true in greater scale. For example, if a chemist carries out 
a reaction in a small sample, we are entitled to presume, that the some reaction takes place in a vast 
ocean or inside a distant star – and usually it is true. Moreover , it is much easier to handle a small 
sample that a vast ocean and all the more a distant star. While looking for a scientific truth, the 
simplification is often a key to success.   

That is the reason why, despite of  neural networks simples (which is close to primitiveness!), more 
and more frequently, we hear about researches, which use artificial neural networks for modeling 
human brain processes in order to obtain a basis for its deeper comprehension. In order to realize 
how much we can rely on this tool, let's try to compare the complexity of our artificial neural 
networks with animal and human neural systems. 

1.8. How much artificial neural networks are simplified in comparison 

to biological ones?  

(Translation by Ryszard Tadeusiewicz; rtad@agh.edu.pl ) 

Neural networks are of f course very simplified in comparison to real neural systems of most living 
creatures. It can be observed on Fig. 1.28, where region occupied by typical neural networks (realized 
as usually as programs for general purpose computers) marked as yellow square in coordinates 
showing on abscissa structural complexity of the considered neuroinformatic system and on ordinate 
speed of the system functioning. Both dimension on this plot are represented in logarithmic scale  
because of huge distance between smallest and biggest presented values. For example structural 
complexity measured by number of synapses in considered neuroinformatic system can vary from 
102 for typical artificial neural network used for technological purposes up to 1012 for the human 
brain. This dimension for artificial neural networks is limited by value about 105 – 106 because of 
computer memory limitations, where appropriate values for not very complicated “brains” of fly or 
bee can be characterized by numbers of synapses 108 – 109 respectively.  

In comparison with these neural systems brains of mammals are really huge with 1011 synapses for 
rat and 1012 synapses for human central nervous system.  

Let consider almost linear relation between structural complexity of such (taken into account) 
biological neural systems and speed of the their functioning (Fig. 1.28). In fact it is general rule, 
caused by massively parallel method of biological neural systems functioning. For this type 
functioning when system consists of more elements (more neuron and more synapses) and all these 
elements working together (simultaneously) – speed of data processing increases proportionally to 
the system structural dimension.   

mailto:rtad@agh.edu.pl
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Fig. 1.28. Localization of artificial neural networks and selected real neural systems on diagram 
showing relation between Structural complexity of the system (number of synapses)  and speed of 

the system functioning 

For artificial neural networks speed of system functioning depend on the form of network realization. 
When neural network is realized as a program simulating neural activity, learning, problem solving 
etc. on general purpose computers (including laptops, tablets and palmtop devices) – the functioning 
speed is limited by performance of used processor. It is evident, that is impossible to speed up 
processing time over hardware limitations using any type of programs, therefore artificial neural 
networks realized as a programs on general purpose computers are rather slow.  

Is possible achieve very fast functioning of artificial neural networks when there are realized in 
hardware form (see blue ellipse on Fig. 1.28). In bibliography or in internet you can find many 
examples of neural networks realized as specialized electronic chips – recently often in FPGA 
technology. Are known also optoelectronics solutions, chips fabricated using partially analog 
technologies (most systems are of course digital taking into account input , output and general 
control of the system , but sometimes smart analog devices inside can be incredible fast). Known are 
also neurochips made from both electronic silicon part and biological part – living neural call or 
neural tissue piece treated as a device component.  

All such methods of hardware realization of artificial neural networks can be very fast (see Fig. 1.28) 
but the structural complexity of such systems is always very limited and elasticity of system 
application is also not satisfactory for most users. Therefore in practice almost all users of artificial 
neural network prefer software solutions accepting their limitations.  

Looking on Fig. 1.28 we can see, that some of biological neural systems can be located within 
artificial neural networks range. For example “brain” of the shrimp can be compared with artificial 
neural network and have no superiority nor in the complexity domain, nor in sense of speed of 
information processing. Therefore red dot symbolizing shrimps neural system parameters is located 
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inside yellow area symbolizing artificial neural networks parameters. But for most biological species 
complexity of their neural systems and speed of data processing are much greater than best 
parameters achieved by artificial neural networks. In case of human brain its complexity is billion 
times greater, than parameters observed in artificial neural networks. Therefore thinking about 
natural and artificial neural networks we should be very humbly!  

1.9. What are main advantages of neural networks, who uses them and 

what are they used for? 

(Translation by Ryszard Tadeusiewicz; rtad@agh.edu.pl ) 

TRANSLATION WILL BE ADDED SOON! 

1.10. Is neural networks going to displace traditional computers?  

(Translation by Daniel Bohusz  daniel.bohusz@gmail.com ) 

As one could find out from the specification given in the last subsection - there are many good ways 

of using the neural networks. But does it really mean that one should give up "classical," well known 

computers and solve all the computational problems by the use of the network?  

Despite the fact that the network is fashionable and useful device it has lots of important limitations. 

All those limitations are going to be distinguished in the following chapters in which one can find out 

about some other structures of the network, methods of learning it and ways of using it with specific 

tasks. Still, it is possible to provide a few characteristic features of the tasks, which cannot be solved 

by the use of the neural network.  

The first category of such tasks, with which one should give up the neural network, are tasks 

connected with symbol manipulation. Any form of information processing in the form of symbols is 

extremely difficult to deal with by the use of the neural network, therefore if there is the element 

based on symbol processing such element should be a sign that one should not use the neural 

network. To sum up it is possible to stress that it does not make any sense to create text editor or 

algebraic expression processor which would work then based on the neural network.  

The next "classical" areas, in which one should resign from the neural network are problems 

connected with the issue of calculations that require high precision of numerical results. The network 

always works in qualitative way, which means that the results given by the network are always 

approximate. The precision of such approximation is quite satisfactory in many applications, like for 

example: signal processing, picture analysis, speech recognition, prognosis the value of quotation, 

robots controlling, approximation of the value of compound function etc. However, it is absolutely 

impossible to do approximate calculations characteristic to the bank account service or in the case of 

precise engineering calculations.  

The last case, in which one should not expect proper results when using the neural network, is 

connected with tasks that require many stages of reasoning like, for example the stages of deciding 

about authenticity or falseness of some sequences of logical statements. The network usually solves 

mailto:rtad@agh.edu.pl
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the problem using one way - if it makes to so solve the problem, the result is shown immediately and 

becomes a great practical success. If, on the other hand, it is necessary to carry out a kind of 

argumentation and what is more if it is necessary to provide the documentations of the conclusions 

(for example expert system) - the network becomes useless and any attempts of using it leads to 

frustrating failures.  

1.11. So maybe it's not worth to occupy oneself with the neural 

network? 

(Translation by Daniel Bohusz  daniel.bohusz@gmail.com ) 

From the above-mentioned statement one should not jump to conclusions: as a matter of fact, the 

network cannot make symbolic calculations by itself, but it can support the systems which operate 

on symbols on the basis of functions with which the systems cannot deal by themselves. A good 

example of such networks are Teuvo Kohonena networks or the classical network NetTalk Terence 

Sejnowski that is used to change the orthographic text into the phonematic symbol sequence that is 

served to controlling speech synthesizers. Similarly, from the statement that the net is useless when 

used with the terminals in banks one should not conclude that the net is completely useless to banks 

themselves, as the net turned out to be exceptionally useful when dealing with credibility of debtors 

or establishing conditions of negotiating contracts. There are much more similar reservations but the 

most important is the final conclusion: The neural network is useful with many applications, it is, 

however, not as universal as the classical computer. 

Therefore, the enthusiasts can easily indicate the tasks, which when solved by the use of the neural 

network turned out to be much better that those solved by the use of classical computers. 

Malcontents, on the other hand, can easily indicate that the tasks solved by the use of the network 

turned out to be incorrect. Both what the enthusiasts and malcontents say can be truth, and 

therefore we shall try to find the truth in the following chapters by describing the technique of the 

neural network, ways of learning it and also by describing simple programs, which are attached to 

the book and which I prepared as to enable everyone to check how much this all is worth. 

In this chapter I explained the genesis and good points of the neural networks. Both the genesis and 

good points can turn out to be the reason for you to know something more about that device. There 

are people to whom a favorable stock market prognosis is more important than any other advantage 

of the network, and maybe you are just like them. Let me stay however by my fascinations and, when 

writing about the neural networks that are treated as a device used to more or less useful practical 

goals, I shall show you how interesting they are, as they are based on the structure and functioning 

of the live brain. I shall describe other significant success achieved by the engineers, economists, 

geologists and doctors using the network to improve their tasks, I shall show you how useful the 

network was to them when they were dealing with problems. I shall also pay your attention to 

consequences of the studies leading to understanding our own mind. You will find out how many 

conclusions you can make when dealing with the network working as a self educating system.  By the 

access to my programs on the Internet (the address is given in the preface) you will be not only a 

witness but also an active participant of the surprising experiments which will allow you to know the 

neural network much better and by that to know even better your own brain; mysterious and 
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abounding in various capabilities, and about which Shakespeare wrote that it is …a fragile house of 

soul …. 

Then: do you know now why it is worth to occupy yourself with the neural networks? 

If yes and if you still want to know them this book will help you to fulfill your purpose. I invite you to 

reading further chapters! The text of this book is current and exhaustive, which means that I did my 

best to present in it all those what is the most important and the most recent in the neural networks. 

It is, however, deprived (on purpose) of those numerous, small but onerous details in which each 

branch of calculation technology abounds and which details can be usually expressed by the use of 

mathematical formulae. I decided to treat seriously the principle written on the cover of the book by 

Stephen W. Hawking “The Short History of Time” which says that each equation included in the text 

diminish half the number of readers. It is important to me that this book is read by many people, 

among which there surely are those who when reading it may find the neural networks fantastic and 

useful device. Therefore, I am not going to include in the main text of this book not even one 

equation, because if there was at least one reader who could become discouraged by that I would 

consider that heavy loss. In each chapter, on the other hand, the most important theoretical 

information are given in separate frames, and therefore you can use them if you want to necessarily 

know the less colorful but more important, highly mathematical technique of the neural networks. 

 1.12. Control questions and self-work tasks 

(Translation by Daniel Bohusz  daniel.bohusz@gmail.com ) 

1. Enumerate a few exemplary problematic areas, except for the neural networks, which are 

fashionable and willingly used in contemporary informatics.  

2. Which functions of the brain were known as first and how was that knowledge acquired?  

3. Who was the first to prove that the brain is made of enormous, combined networks, and, on 

the other hand, anatomically and physiologically separate neurons?  

4. What animal was used to acquire the basic information concerning electrochemical functions 

of the brain, thanks to which Hodgkin and Huxley worked out the detailed model of those 

functions and were awarded the Prize of Nobel?  

5. Enumerate the basic parts of natural (biological) neuron. 

6.  Why are synapses so important in the description of the functioning of the neural networks 

(biological and natural)?  

7. What are neurotransmitters? Can you provide some of their names and characteristics of 

those useful compounds?  

8. Why the artificial neural networks are usually made of layers? 
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9. How are the neurons of individual layers of the networks combined and why are they 

combined that way?  

10. What are the modern methods of researches that are used with acquiring the knowledge 

about the structure and functions of the brain and other biological neural structures?  

11. Enumerate a few exemplary areas with the use of the neural networks.  

12. What are the advantages of the neural networks over the typical computers and what are 

their disadvantages?  
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2. A neural net structure 

2.1. How is it build? 

(Translation by Agata Barabasz agata.barabasz@op.pl) 

Who of us have not started to get to know the world by taking the alarm clock into pieces or crushing 

the tape recorder – just to find out what was inside? 

However, before I tell you how a network works and how to use it – I will try to a certain extent 

precisely and simply describe it to You how it is built. 

As you already know from the previous chapter – a neural network is a system, which makes specific 

calculations, based on simultaneous activities of many connected with each other elements called 

neurons. 

Such a structure has been at first observed in a biological nervous system ( for example in human’s 

cerebellum, a part of which I have schematically presented in Fig.  2.1). 

 

Fig.  2.1. Scheme of cerebellar cortex shows, that biological nervous system is build of many 

connected neurons. The same pattern is applied in case of artificial neural nets. 
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Neural networks are also built from a lot of neurons, but these are artificial, i.e.  much  more 

simplified than the original ones, and also connected in a less complicated (more primitive) way.  - 

The artificial neural network  model   of the real  nervous system structure would seem to be rather 

unclear and difficult to be controlled.  Fig.  2.2 shows how it would look like the artificial neural net 

based on the identical structure schemes as those appearing in the real nervous system. 

 

Fig.  2.2. The artificial neural net with structure founded on the 3D brain map would not be 

comfortable to use in practice. (source: http://www.kurzweilai.net/images/3D-nanoelectronic-

neural-tissue.jpg)  

As you notice such a structure does not seem to be friendly to experiment with. On the contrary - it is 

easy to be lost like in a forest. 

So artificial neural nets we built in such a way that their structure could be easy traced and cheap in 

an implementation. In a result they should be flat (not three-dimensional) and should have given are 

a regular structure, with layers of neurons which all have well defined objectives and are linked 

according to simple, however a wasteful rule of connecting “everyone with everyone” (see Fig.  2.3). 

http://www.kurzweilai.net/images/3D-nanoelectronic-neural-tissue.jpg
http://www.kurzweilai.net/images/3D-nanoelectronic-neural-tissue.jpg
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Fig.  2.3. Scheme of practically used neural net ( GRNN type) shows, that it’s structure is strongly 

rationalized and simplified in comparison to the biological one. 

The following three factors decide about neural networks properties and possibilities:  

a) from which elements a network is built (i.e. how artificial neurons look like and how they 

work); 

b) how these elements are connected with each other;  

c) the way of establishing the parameters of a  network by its  learning  process. 

We will be successively consider these factors.  

2.2. How to make an artificial neuron? 

(Translation by Agata Barabasz agata.barabasz@op.pl) 

 

The basic “building materials” that we use to create a neural network are artificial neurons. 

Now we will try to learn about them more precisely. In the previous chapter you have seen some 

pictures illustrating the shape of a biological neuron, but it will not harm to recall one more picture, 

so see in Fig. 2.4, how an exemplary neuron (simplified) looks like.  
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Fig. 2.4. Structure of a biological nerve cell (a neuron). (Source: http://cdn.thetechjournal.com/wp-

content/uploads/HLIC/8905aee6a649af86842510c9cb0fc5bd.jpg)  

So that you do not think that all real neurons look exactly like that, in picture 2.5 I am showing you 

one more illustration of a real biological neuron, dissected free of a rat’s cerebral cortex. 

 

Fig. 2.5 Microscopic views of real neurons (source: http://newswire.rockefeller.edu/wp-

content/uploads/2011/12/110206mcewen.1162500780.jpg ) 

http://cdn.thetechjournal.com/wp-content/uploads/HLIC/8905aee6a649af86842510c9cb0fc5bd.jpg
http://cdn.thetechjournal.com/wp-content/uploads/HLIC/8905aee6a649af86842510c9cb0fc5bd.jpg
http://newswire.rockefeller.edu/wp-content/uploads/2011/12/110206mcewen.1162500780.jpg
http://newswire.rockefeller.edu/wp-content/uploads/2011/12/110206mcewen.1162500780.jpg
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It is hard in this picture to guess, which of the many visible on it fibers is an axon, which is always 

single and as the only one delivers signals from the given neuron to all the others, and which are 

performing the role of dendrites.   

Nevertheless, this is also a real biological neuron, thus also such a cell as this one our artificial neuron 

has to map well, and of which we will take care now more precisely. 

Artificial building neurons used in the networks technique are of course very simplified models of 

nerve cells, that occur in nature. 

A structure of an artificial neuron best illustrates the scheme presented in Fig. 2.6. Comparing this 

illustration with figures 2.4 or 2.5 you will realize, how far neural networks’ researchers simplify 

biological reality. 

Fig. 2.6 General scheme of an artificial neuron shows the degree of its simplification 

However, in spite of this simplifications artificial neurons keep all these features, which are valid 

from the point of view of tasks we want to entrust them within built networks, being  the computer 

science tools, rather than  biology models. 

 Firstly, they are characterized by having many inputs and one output. The input signals xi (i = 

1,2,…,n) and the output signal y may take on only numerical values, generally of the range 

from 0 to 1 ( sometimes also from –1 to + 1), whereas the fact that within the tasks being 

solved by networks they represent some information (e.g. as the output of a decision, who 

has been recognized by the neural network, which has been analyzing someone’s photo), is 

the result of a specific agreement. Generally particular meanings are ascribed to network’s 

input and output signals in such a way that the most crucial is this, on which input or output 

a given signal has occurred (each input and output is associated  with a specific meaning of a 

signal), additionally signals scaling is used, so selected  that signal values that would be 

circulating in a network, would not be out of an agreed range – e.g. from 0 to 1. 

 Secondly – artificial neurons perform specific activities on signals, which they receive on 

inputs, as a consequence they produce signals (only one by each single neuron), which are 

present on their outputs and are sent forward (to other neurons, or onto this network’s 

output, as the solution of a raised problem). Network’s assignment, reduced to the 

functioning of its basic element, which is a neuron, is based on this  that it transforms an 

input data xi into a result y applying rules resulting from that how it has been built, and what 

has been taught. Considered up to this point neuron’s properties have been illustrated on 

figure 2.7. 
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Fig. 2.7 Basic signals occurring in a neuron 

 Thirdly – neurons may learn. This purpose serve wi  coefficients called synaptic weights. As 

you certainly remember from the previous chapter – these reflect rather complicated 

biochemical and bioelectric processes, which take place in real biological neuron’s 

synapses. From further considerations point of view the most significant is that synaptic 

weights can be modified (i.e. their values can be changed), 

 

Fig. 2.8 Adding to a neuron’s structure adjustable weight’s coefficients makes it a learnable unit 

 

what constitutes a basis for teaching networks. A scheme of a neuron capable of learning has been 

shown on figure 2.8. 

Summing up this discourse it could be ascertained that artificial neurons can be treated as 

elementary processors with the following features: 

 each neuron receives many input signals xi and on their basis determines its own  “answer” 

y, that is produces one output signal; 

 with each separated neuron’s input is connected a parameter called weight wi . This name 

means that it expresses a degree of significance of an information arriving to this neuron 

through just this input; 

 a signal, coming in through a particular input is first modified with the use of the weight of 

that given input. Most often a modification is based on this that a signal is simply multiplied 
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through the weight of a given input, so in consequence  in further calculations it is already 

participating  in the modified form: strengthened ( if the weight is greater than 1) or 

restrained (if the weight’s value is less than 1). A signal from a particular input may occur 

even in the form opposite in relation to signals from the other inputs, if it’s weight has a 

negative value. Inputs with negative weights are among neural networks users defined as 

so called inhibitory inputs, whereas these with positive weights are called excitatory 

inputs.  

 input signals (modified by adequate weights) are aggregated in a neuron (see figure 2.9). 

Once again considering networks in general, many ways of input signals aggregation may be 

given, nevertheless most often it is based on this that  signals are simply summed up giving 

as the result some helpful internal signal, called a cumulative neuron stimulation or a 

postsynaptic stimulation. This signal may be also defined as a net value.  

Fig. 2.9. An aggregation of input data as the first of neuron’s internal functions 

 to so created sum of signals the neuron adds sometimes (not in all networks’ types, but 

generally often) some extra component independent of input signals, called a BIAS.  

A bias, if it is taken into account, also undergoes a learning process, that is why sometimes one can 

imagine, that a BIAS is an extra synaptic weight associated with the input, on which it is provided an 

internal signal of constant value equal to 1. A BIAS role lies in this that thanks to its presence during a 

learning process a neuron’s properties may be formed in a much more free way (without having it 

the aggregation function characteristics always must pass through the beginning of the coordinate 

system, what sometimes is a burdensome “ anchor”). A scheme of a neuron, in which a BIAS has 

been taken into account, is shown in figure 2.10; 

 

Fig. 2.10. The application of the additional parameter, which is BIAS 
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 A sum of internal signals multiplied by weights plus (possibly) a bias may be sometimes sent 

directly to its axon and treated as a neuron’s output signal. In many types of networks that is 

enough. In this way work so called linear networks (for example a net named ADALINE = 

ADaptive LINEar). However, in networks with richer abilities (for example in very popular 

networks called MLP from the words Multi–Layer perceptron) a neuron’s output signal is 

calculated by means of some nonlinear function. This function in the whole book we will be 

designating with the symbol ƒ( ) or φ ( ). A scheme of a neuron including both an input 

signals’ aggregation and an output signal’s generation is presented in figure 2.11; 

 

Fig. 2.11. The full complete of neuron’s internal functions 

 a function  φ ( ) is called a characteristic of a neuron (a transfer function). There are known 

many different neuron’s characteristics, what illustrates figure 2.12  Some of them are 

chosen in a such way that artificial neuron’s behavior would be the most similar to a real 

biological neuron’s behavior (a sigmoid function), but they also could be selected in such 

manner, which would assure the maximum efficiency of computations carried on by a neural 

network (a Gauss function). In all the cases function φ ( ) constitutes an important element 

going between a joint stimulation of a neuron and its output signal; 

 

Fig. 2.12. Some of the more often used neuron’s characteristics 
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 a knowledge of the input signals, weights’ coefficients, inputs aggregation method and 

neuron’s characteristic, allow to unequivocally define at any time it’s output signal, with 

usual assuming that (in contrast to what takes place in real neurons) this process occurs 

immediately. Thanks to this in artificial neural networks changes of input signals are 

practically immediately appearing on output. Of course this is a clearly theoretical 

assumption, because after input signals change even in electronic realization some time 

would be needed for establishing the right value of an output signal by an adequate  

integrated circuit.. . Much more time would be necessary to achieve the same effect in a net 

working as a simulation model, because a computer imitating network activities must then 

calculate all values of all signals on all neurons outputs of this network, what even on very 

fast computers could take a lot of time. While speaking about a prompt neuron’s action I 

mean that considering network’s functioning we will not pay attention to a factor, which is a 

time of neuron’s reaction, because this will be insignificant for us. A complete structure of a 

single neuron is presented in figure 2.13. 

 

 

Fig. 2.13. Structure of a neuron as a processor, which is the basis for building neural networks 

A neuron presented in this picture is the most typical “material”, which is used for creating a 

network. More precisely – such typical “material” is a neuron of a network defined as MLP (Multi–

Layer Perceptron), the most crucial elements of which I have collected and presented in figure 2.14. 

It is visible in this picture that neuron MLP is characterized by the aggregation function consisting of 

simple summing up the input signals multiplied by weights, and uses a nonlinear transfer function 

with a distinctive sigmoid shape.  

 

Fig.  2.14. The most popular component of neural networks – the MLP type neuron 
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However sometimes in neural networks for special purposes there are used so called radial neurons. 

They have an atypical method of input data aggregation, and they also use an untypical characteristic 

(a Gauss’s one) and are taught in an unusual way. At this moment I do not intend to elaborate on a 

subject of this specific neurons, which are used mainly to create special networks called RBF (Radial 

Basis Functions), but in figure 2.15 I present a scheme of such a radial neuron, to enable you to make 

a comparison with discussed earlier a typical neuron shown in figure 2.14. 

Fig. 2.15. A structure and peculiar properties of a radial neuron, denoted also as RBF 

2.3. Why do not we use an exact model of a biological neuron? 
(Translation by Agata Barabasz agata.barabasz@op.pl) 

All artificial neurons, sigmoid and radial, described in this chapter, as well as used in further  parts of 

this book, are simplified models of real biological neurons. This statement has already appeared, 

however now I want to show you, how far simplified artificial neurons are. To achieve this purpose I 

will use the example of researches conducted by de Schutter.  For many years this researcher dealt 

with that, to  maximally faithfully and maximally exactly reconstruct in the computer model, all that 

we know about the structure and working (in the smallest details) of the only one  neuron - 

specifically so called Purkinji cell. His model referred to electric systems, which according to 

Hodgkin’s and Huxley’s (the Nobel Prize in 1963) researches  model a bioelectrical activity of 

individual fibers (dendrites and axon) and a cell membrane of  neuron’s soma.  In the researches with 

the extraordinary accuracy a shape of the real Purkinji cell was reconstructed and  Neher’s & 

Sakamann’s researches (the Nobel Prize in 1991)  about functioning of so called  ion channels were 
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taken into consideration. A structure of the modeled cell and replacement circuit diagram, used in de 

Schutter model are shown in a figure 2.16. 

 

Fig. 2.16 The Model of the neuron maximally faithful to a biological original, used in de Schutter’s 
researches (source: http://homepages.feis.herts.ac.uk/~comqvs/images/purkinje_padraig.png ) 

The model built by de Schutter, turned out to be extremely complicated and costly in calculations. It 

is enough to say, that for building the model were used: 

 1600 so-called compartments (fragments of the cell treated as homogeneous parts 
containing determined substances in determined concentrations), 

 8021 models of ion channels, 
 10 types of different complicated mathematical descriptions of ion channels dependent 

on voltage,  

http://homepages.feis.herts.ac.uk/~comqvs/images/purkinje_padraig.png
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 32000 differential equations (!) 
 19200 parameters necessary to estimate at tuning the model up, 
 a precise description of the morphology of a cell reconstructed on the basis of precise 

microscopic images 

 

Fig. 2.17. Example result obtained in de Schutter researches. 

(http://www.tnb.ua.ac.be/models/images/purkinje.gif)  

Nothing strange, that for simulating several seconds of  "life" of such a nerve cell was necessary to 

use a large supercomputer , yet it required many hours of his continuous work. 

It has to be admitted, that results of this modeling are very impressive. One of them is presented in 

figure 2.17. 

However results of this experiments are unambiguous: The attempt of faithful modeling the 

structure and action of a real biological neuron turned out to be successful but it is too expensive 

way in order to try to create practically useful neural networks this way. Therefore, from now on we 

will be using only simplified models, and we will be expecting, that in spite of these applied 

simplifications the neural network will be able to not only effectively solve different tasks, but 

additionally it will also be able to the fact, that it’s  behavior can bring us interesting conclusions 

about the behavior of human ( for example your!) brain. Soon you will convince yourself about it! 

  

http://www.tnb.ua.ac.be/models/images/purkinje.gif
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2.4.  How does an artificial neural network work? 
 (Translation by Leszek Pstras  lpstras@hotmail.com) 

From the earlier description of neural networks it follows that each neuron possesses certain internal 

memory (represented by the values of current weights and bias) as well as certain abilities of 

converting input signals into the output signal. Although these abilities are rather limited (this is why 

a neuron is a relatively low cost processor and one can build a system consisting of hundreds or 

thousands of such elements), they turn out to be sufficient for building systems performing very 

complex data processing tasks. 

As a result of a limited amount of information gathered by a single neuron (having usually not many 

adjustable weights) as well as of very poor computing capabilities of a single neuron (only 

aggregating signals in order to calculate the output signal), a neural network usually needs to consist 

of several neurons and can act only as a whole. Therefore, all capabilities and properties of neural 

networks discussed earlier result from collective performance of many connected elements (the 

whole network as opposed to a single neuron) what justifies the name used sometimes for this part 

of computer science – MPP (Massive Parallel Processing). 

 

Fig. 2.18.   The neural network starts working when the signals carrying a new task appear at the 

network input ports (red dots). 
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Let us now look in more details into operation of the whole neural network. As one can see from the 

above remarks, both the network program and the information constituting the knowledge 

database, as well as the data being calculated and the calculation process itself are all completely 

distributed. It is not possible to point the area in which such and such information is stored, even 

though neural networks are being used as memory, especially as so called associative memory and as 

such perform very well. It is also impossible to relate certain area of the network to the selected part 

of the algorithm being used, for instance to indicate which network elements are responsible for 

initial processing and analysis of input data and which elements produce final network results. 

We will now analyze how a neural network works and what roles do the single elements play in the 

whole network operation. In our analyses we assume that all network weights are already 

determined, which means that the teaching process has been accomplished. Teaching the network, 

which is very important but also relatively difficult to understand, will be dealt with in the following 

chapters. We will start the analysis from the point where a new task is presented to the network. The 

task is represented by a number of input signals appearing at all network input ports. In fig. 2.18 

these signals are represented by red dots. 

The input signals reach the neurons in the input layer, which usually do not process the signals but 

only distribute them, in other words - send them to the neurons in the hidden layer (fig. 2.19). By the 

way, it is worth mentioning that the distinct nature of the neurons in the input layer, which only 

distribute the signals rather than process them, is very often presented on the neural network 

schemes by different type of graphic symbols representing those neurons (for instance a triangle 

instead of a square, as shown in the figures here). 
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Fig. 2.19. The input signals (unprocessed by the input layer) are sent out to all neurons in the hidden 

layer 

Next stage involves activation of the neurons in the hidden layer. These neurons, using their weights 

(hence utilizing the data stored in them), firstly modify the input signals, secondly aggregate them 

and then, accordingly to their characteristics (in fig. 2.20 shown as sigmoid functions), calculate the 

output signals which are subsequently directed to the neurons in the output layer. This stage of data 

processing is crucial for neural networks. Even though the hidden layer is ‘invisible’ outside the 

network (its signals cannot be registered neither at the input ports nor at the output ports of the 

network – hence the name), it is there where most of the task solving is being performed. The most 

of the network connections and their weights are located just between the input and the hidden 

layers, thus one can say that the most of the data gathered in the teaching process is located exactly 

in this layer. The signals produced by the hidden layer neurons do not have any direct interpretation 

unlike input or output signals of which every single one has a meaning in terms of the task being 

solved. However, using the manufacturing process analogy, one can say that the hidden layer 

neurons produce semi-products, that is signals characterizing the task in such a way that it is 

relatively easy to use them afterwards in order to ‘assemble the final product’, that is to find the final 

solution by the output layer neurons (fig 2.20).  
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Fig. 2.20. After processing the signals, the neurons from the hidden layer produce intermediate 

signals and direct them to the neurons in the output layer 

Following more precisely the performance of the network at the final stage of task solving, it can be 

noticed that the output layer neurons take advantage of their abilities to aggregate signals as well as 

of their characteristics in order to build the final solution given at the network output ports (fig 2.21).  
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Fig. 2.21. The neurons from the output layer use the information given by the neurons from the 

hidden layer and calculate the final results of the task being solved 

To repeat: the network always works as a whole and all its elements contribute to performing all the 

tasks within the network – just like it is done with the hologram reproduction where from each piece 

of a broken photographic plate one can reproduce the whole picture of the photographed 

(hologrammed?) object. 

One of the consequences of such a network performance is its unbelievable ability to work properly 

even after a failure of a significant part of its elements. There was a neural network researcher (Frank 

Rosenblatt) who used to teach his own networks certain abilities (for instance letters recognition) 

and then test them while damaging more and more of its elements (the networks were realized as 

special electronic circuits). It turned out that he could damage a significant part of the network and it 

would still perform properly (fig 2.22). Failure of a higher number of neurons and connections would 

though deteriorate the quality of the network performance but only in that the damaged part of the 

network would make more mistakes (say, it would recognize the letter O as D) – but it would not 

refuse to work.  
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Compare this behavior to the known fact that in most electronic equipment (computers, TVs) a 

failure of only one element can cause the system to stop working, while in human’s brain thousands 

of neurons die every day (from different reasons) and still our brains work as a whole unfailingly for 

many years. 

 

Fig. 2.22. Neural networks have an astonishing feature: they can work properly even if some of its 

elements are damaged! 

Details about this fascinating and rarely discovered property of neural networks are described in 

paper: Tadeusiewicz R., Figura I.: Phenomenon of Tolerance to Damage in Artificial Neural Networks, 

Computer Methods in Material Science, vol. 11, Nr. 4, 2011, pp. 501-513 

2.5. How does neural network structure affect its capabilities? 
(Translation by Łukasz Brodziak; lukasz.brodziak@gmail.com) 

Let's consider now the relationship between the structure of a neural network and the tasks which it 

is able to perform. As you already know neurons described in previous chapters are used to create 

the network. The structure of such network is created by connecting outputs of neurons with inputs 

of the following ones(according to chosen scheme) this creates a system capable of parallel and fully 

concurrent processing of various information. For previously mentioned reasons we usually choose 

layer-structured network and connections between the layers are made according to „each to each” 

rule. Obviously specific topology of the network, meaning mainly the amount of chosen neurons in 

individual layers, should be derived from kind of the task we want the network to perform. In theory 

the rule is quite simple: the more complicated is the task, the more neurons in the network are 

needed to solve it, as the network with more neurons is simply more intelligent. In practice, 

however, it is not as unequivocal as it would seem. 

In vast literature considering neural network one can find numerous works which prove that, as a 

matter of fact, the decisions regarding network's structure affect its behavior considerably weaker 

than expected. This paradoxical statement derives from the fact that behavior of the network is 

determined in fundamental way by the process of network teaching and not by the structure or 

number of elements used in its construction. This means that the network which has decidedly worse 

structure is able to solve tasks more efficiently (if it was well taught) than the network with optimal 

structure yet badly trained. There are known experiments in which network's structure was created 
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randomly (deciding in the course of drawing which elements to connect and in what way) and 

despite that the network was capable of solving complex tasks. 

Let's have a closer look on the consequences of this last sentence as they are quite interesting and 

important. If the network was able to achieve correct results although its structure was designed 

randomly, this means that teaching process could each time adjust network's parameters to required 

operations, being a consequence of realization of chosen algorithm, so that solving process ran 

correctly despite fully randomized network's structure. These experiments were performed for the 

first time by above mentioned Frank Rosenblatt in early seventies ('70s) were very effective – the 

researcher rolled a dice or drew lots and, depending on the results, connected certain elements of 

the network together or not. Structure created in such way was completely chaotic (see figure 2.23) 

yet still the network was able to solve tasks reasonably. 

 

Fig. 2.23. Connection structure of the network which elements were connected to each other using 

the randomization rules. It is surprising that such network (after teaching process) is capable of 

maintaining purposeful and efficient tasks. 
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Results of these experiments reported by Rosenblatt in his publications were so astonishing that at 

first scientists did not believe that such thing is possible at all. However the experiments were 

repeated later (among others Russian Academy Member Glushkov constructed a neural network 

specially for this experiment and called it Alpha) and they proved that network with random 

connections can learn correct solving of the tasks, although of course the teaching process of such 

network is harder and takes more time than teaching the network which structure relates reasonably 

to the task that has to be solved. 

Interesting thing is that philosophers were also interested in results reported by Rosenblatt, they 

claimed that this was a proof of certain theory proclaimed by Aristotle and later extended by Locke. 

It is a certain concept in philosophy called tabula rasa – a concept of a mind being born as a blank 

page which is filled in process of learning and gathering experiences. Rosenblatt proved that this 

concept is technically possible – at least in form of a neural network. Separate issue is the attempt to 

answer the question if it works with a mind of a particular man? Are, as Locke claimed, inborn 

abilities indeed nothing, and gained knowledge – everything? 

 We do not know this for certain, but it may not be this way really. But we certainly know that 

neural networks can gain all their knowledge only during learning and do not need to have created in 

advance, adjusted to the task structure. Of course network's structure has to be complex enough to 

enable „crystallization” of the needed connections and structures. Too small network will never learn 

anything as its „intellectual potential” does not allow that – yet the issue is not the structure itself 

but the number of elements. For example nobody teaches the rat the Relativity Theory although it 

can be trained to find the way inside complicated labyrinth. Similarly no-one is born already 

„programmed” to be a genius surgeon or only a bridge builder (this is decided by the choice of the 

studies) although some people's intellect can handle only loading sand on a truck with shovel yet still 

being supervised. It is just the way world is and no wise words about equality will not change it. 

Some individuals have enough intellectual resources others - do not, it is the same like with people 

being slender and well built and those looking as though they were spending too much time working 

on a computer. 

 In case of network situation is similar – one cannot make network having already inborn 

abilities, yet it is very easy to create a cybernetic moron which will never learn anything as he has too 

small abilities. Network's structure can be therefore of whatever kind as long as it is big enough. 

Soon we will learn that it also cannot be too large – as it is also unfortunate, but this we will discuss 

in a while. 

2.6. How to choose a neural network structure wisely? 
(Translation by Rafał Opiał, rafal.opial@op.pl) 

Irrespectively of brought forward remarks showing that one can reach a goal even by teaching a non 

optimally chosen neural network to solve a problem, one have to formalize some neural network 

structure. And what's more, it is easy to reveal that choosing a reasonable structure that fits a 

problem requirements at the beginning, can significantly shorten learning time and improve its 

results. That is why I want to present you some remarks although I know that it will not be a solution 

for all kind of neural network construction problems. I feel indebted to give you few advices because 

we all know how difficult it is sometimes to chose whichever solution without clues. Placing a neural 
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network constructor in situation where he can freely adopt any structure he wants is similar to 

dilemma of abecedarian computer engineers that stare confused at system message: 

Press any key... 

Yeah, but which is the any key that I shall press?! 

You may laugh about it but for me often similar is the question I hear from my students and Doctoral 

students: okay, but what is this any structure of neural network? 

I'll say now few words about common neural network structures. One important thing is to 

remember that what comes below is not everything about possibilities and more – every researcher 

shall be a kind of Demiurge, a creator of new beings because neural networks with different 

structures are not completely understood and thus in this work we need every pair of... cerebral 

hemispheres. 

I will start here with classification of commonly used neural network structures into two major 

classes: neural networks without feedback and with it. Neural networks belonging to first mentioned 

class are often called feedforward while the other in which signals can circuit for unlimited time are 

called recurrent. 

 

 

 

Fig. 2.24. Example structure of feedforward type neural network. Neurons represented by yellow 

circles are connected such way, which make possible transmission signals only from input to output. 

 The feedforward networks are structures in which there is strictly determined direction of 

signal propagation. Signals go from defined input, where data about problem to solve is 

passed into neural network, to output where a network produces result (Fig. 2.24). This kind 

of networks is the most commonly used and the most useful. I will talk about them later in 

this chapter and in few that follow. 

 The recurrent networks characterize occurrence of feedbacks (Fig. 2.25). In such networks 

signals can circuit between neurons for a very long time before it reach a fixed state, but 

there are also cases that this kind of neural network does not produce any fixed state. 
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Fig. 2.25. Example structure of recurrent type neural network. Connections presented as red arrows 

are feedbacks, causing network to be recurrent one. 

 Study of recurrent networks properties and abilities is more complex that it comes with 

feedforward networks, but on the other hand their computational potentials are 

astonishingly different than of other types of neural networks. For instance they can solve 

optimization problems – that is searching for the best possible solution, this is almost 

impossible to do for feedforward networks. 

 Among all recurrent networks a special place belongs to these named after John Hopfield. In 

Hopfield networks the one and only kind of connection between neurons is feedback (Fig. 

2.26). 

Fig. 2.26. Hopfield neural network, in which all connections are of feedback type. 
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Some time ago a true sensation was that a Hopfield network has solved a famous travelling salesman 

problem. That circumstance opened a way for Hopfield networks to manage important NP-complete 

class of computational problems, but this is something I am going to tell you later on. Despite this 

sensational breakthrough Hopfield networks did not become as popular as other types of neural 

networks so we will tell more about them just later, in chapter 11 of this book. 

Since building a neural network with feedbacks is much more difficult than feedforward net and also 

controlling a network in which there is a lot of simultaneous dynamic processes is also much more 

difficult than controlling a network where signals politely and calm go from input to output, we start 

with one directional signal flow networks and then will slowly pass to recurrent nets. If you heard 

before about the most famous recurrent neural network, a Hopfield network, and want to know it 

better, you may pass over these chapters and start lecture of chapter 11, or you may (what I 

definitely recommend) arm yourself with patience and successively read one chapter after another. 

If we focus on feedforward networks, we may state that the best and commonly used way to 

characterize their structure is a layer model. In this model we assume that neurons are clustered in 

sets called layers. Major interlinks exist between neurons belonging to adjacent layers. This kind of 

structure was already discussed in this chapter but it is worth to take a look at it again (Fig. 2.27). 

 

Fig. 2.27. Layered structure of the simplest neural network 

I mentioned this in previous chapter, but it is worth to say again that links between neurons from 

adjacent layers may be constructed in many different manners (as it wish a constructor), although 

the most commonly used is all to all linkage, because we can count on, that learning process will lead 

to automatic cut off unneeded connections by setting their coefficients (weights) to zero. 

2.7. What are optimal sources for 'feeding' neural networks? 
 (Translation by Krzysztof Królczyk; scoorviel@go2.pl) 

Among all layers building/composing neural net we should begin with „input layer”. It’s purpose is, to 

collect data outside the network – this way we give an input – tasks needed to be worked on, 

problems to solve. Projecting this one, is likely to be easier than rest of the job – number of elements 

on this layer is strictly determined by amount of incoming data, which are being analyzed during this 

particular problem. However, sometimes even decision – which, how many, and what data should 

we feed to neural net is quite a dilemma. For example – we’d like to predict how will stock indexes 
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behave; it’s well known that some researchers achieve encouraging results, what surely benefits in 

increased income for some, willing to take a risk, selling or buying on stock market according to 

output produced by neural net. But yet, publications explaining which data were put as an input, are 

rare and undefined...that is, of course quite self-explanatory. Mainly, it’s easy to discover – neural 

net have been applied, learned (often we’ve access to learning routines), frequently – we’re given 

outcome, cute-looking graphs showing how well had net predicted stock changes...it’s always 

surprisingly slipping authors minds to write something more than, “network was given earlier 

achieved stock records, and financials analysis...”. Obviously, whole preparation that’s been made 

before feeding network, and their actual usage is interesting, yet unwilling to be discovered, secret.  

Another thing, that’s important is subtle. Numeric input, and output usually is limited. Most 

implementations assumption, all neurons input to be digits from 0 to 1 (or – what’s more adequate - 

from -1 to 1), so if we require results from a different section – we’ll need scaling (Fig. 2.28). 

 

Fig. 2.28. Scaling of original input signal for proper representation in neural network 

Problem with scaling inputs is actually less important, than dealing with our results (which we will 

see in next sub chapter), since they could be forced to take any signal, with any value. However, 

outcome is defined by neuron’s characteristic, since it can’t produce different signal than its 

„programming”. To preserve unitary interpretation of all signals in neural network, and according 

importance weights, we usually scale output data, moreover it benefits in normalization input 

variables.  

It might sound too difficult, when in fact it is, to guarantee network equivalency of her input signals. 

It’s main problem is, that value of some of variables, being important to solution, are “naturally” very 

small, whereas others, not necessarily more important – produce high value. I.e. neural net used by 

doctor, helping, or at least trying to help him diagnose patient well, could be given amount of 

erythrocytes(due to blood analysis), and as another input – our object’s heat. Both are equally 

important, and whether doctor’s be right or wrong, could be influenced by one variable once, and 

another – some other time. However human’s body temperature is generally low number (as You 

surely know 36,6 degrees Celsius for a healthy man), and even its slight changes – up, down, can be 

indicate serious health issues. On the other hand, amount of red cells (usually in one blood  

millimeter) is about 5 millions, and its difference(even if it’s, say, a million) is nothing to be 

extraordinary afraid of. Didn’t we do scaling before, neuron seeing two inputs at different levels 
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would neglect importance of temperature, ignoring blood analysis. Concluding – normalization 

allows us to treat every input according not to its value, but to its importance defined by neural net 

creator. 

2.8. How to explain a network where does cow come from? 
(Translated by Rafał Opiał rafal.opial@op.pl)  

The next problem is more difficult. Data provided to the neural network (or gained from it as a result 

of solving a problem) not always have a numerical nature, which causes serious complications. 

Unfortunately, our world is set as not everything can be measured and presented in numerical way. 

Much data, which we want to use as an input or output from a neural network have a qualitative, a 

descriptive, or – as it is the most often called – nominal nature. That means that their values are 

certain names instead of numbers. A good way to explain that would be an example. Imagine you 

have a task to solve in which a neural network distinguish, if certain animals may or may not be 

dangerous to a human being (soon you will be solving similar problems with programs I published for 

you on the Internet). 

Now, this task may need as an input, let's say, information about which part of the world does the 

animal come from. For if we know that the animal is big, has horns and gives milk, it is cow. But what 

determines, if it may be dangerous is the continent on which it live. European and Asian cows are 

calm and mellow as a rule, while some American cows, reared on open pastures, happen to be 

dangerous. Therefore in order to distinguish if an animal may or may not be dangerous, there is 

necessarily needed value of a variable determining animals origin. And here a handicap comes up: it 

is known how continents are named, but how to set a name “Asia” or “America” at the input of a 

neural network? 

A solution for the put problem is usage of representation called “one of N”, where N stands for the 

number of different possible values (names), that the nominal variable may adopt. On the figure 2.29 

I have shown a coding manner for the method “one of N” where N = 3. The principle is simple and 

consists in using for every nominal variable that many neurons in input layer, as many different 

values particular variable may adopt (which is simply N). If, for example, we assume that identified 

animal may come only from Asia, America and Europe, then for representing the origin variable we 

must designate a set of three neurons. When we have done that and then we want to inform a 

network, that in particular case the value of origin variable is name America, we shall pass signal of 

value 0 to first input, value 1 to second input, and once again zero to the third input. 

 

mailto:rafal.opial@op.pl
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Fig. 2.29. Method of nominal input data coding 

I think that since you are reading this book you are smart and ingenious person, so surely while 

reading about “one of N” method you were thinking with superiority: 

Why complicate things? I have a better idea! Let's code that Asia is 1, America is 2 and Europe is 3 

and let's put values to one input of the network! Or if take into consideration that signal on the input 

shall assume values from range 0 to 1, let it be: Asia is 0, America is 0,5 and Europe is 1. Why nobody 

before got this idea? 

Well solution (hypothetical) you proposed unfortunately is not good. 

Neural networks are very susceptible for mutual relations of values shown to them. If you adopt the 

first coding rule, neural network while learning will try to utilize fact that Europe is three times more 

than Asia – and of course it will be all nonsense. Even worse it will be in case of data having scaled 

character, because it will seem that America can be converted to Europe (by multiplying by 2), but 

Asia cannot be converted this way, because zero multiplied by whatever always stays zero. 

In brief you must agree that nominal values have to be represented with “one of N” technique, 

although unfortunately it increases number of inputs for a network and causes increase of 

connections between the input layer and further layers of a network. Especially the second fact is 

inconvenient, because you have to remember that with every connection in a network is related a 

weight coefficient which value must be determined in the course of teaching, so additional inputs 

(and connections) – are additional trouble at teaching. Though in spite of these troubles there is no 

other (better) solution and you have to (I say it again) multiply inputs related to every nominal 

variable by using “one of N” schema – well unless you make up a really effective and better method. 

Before I end this plot I have one more thing to add. Now usually there are exceptions from a certain 

rule. In case of “one of N” rule the exceptional case is when N amounts to 2. For the following 

“binary nominal variables” which for instance may be variable Gender, one can exceptionally code 

e.g. Man = 0 and Woman = 1 (or inversely) – and a network will cope with it. But this kind of binary 
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data is in fact “an exception that proves the rule” - and the rule is that nominal data should be coded 

with the “one of N” method. 

2.9. How to interpret answer produced through net? 
 (Translation by Marcin Krasiński;  mkk3@poczta.onet.pl ) 

The second characteristic  layer which we will discuss in this subsection is an output layer, producing 

final solutions to the considered  problem. These solutions are sent out as output signals from the 

whole network, so their interpretation is important for us, because we have to know and 

understand, what this network wants to inform us about. As for the number of exit neurons, it is 

simpler here, than in the case of entrance signals, because we usually know how many and what 

kind, of solutions we need and we have not dilemmas of the type - to add the signal or not , which 

was a difficult  question in the process of designing the entrance layer  of the net. As for concerns 

regarding the coding, method the situation on exit of network is similar to the one at the input layer. 

It means the numerical variables should be scaled to allow the neurons at  the output layer to 

produce a number which represents the correct solution to the problem. In turn, the “nominal” 

variables should be presented at the output using the method  “one from N”. However, on the exit of 

the net we expect a few problems typical of this layer, therefore we discuss then in this subsection.  

The first problem is directly connected with the using of the "One from N" method. You remember 

that in this method the signal with maximum value (usually is 1) can have only one neuron on exit - 

this attributed to proper name, being value of a nominal variable. All remaining neurons from 

representing one variable group should have values equal to zero. This ideal situation when the 

nominal variable at the output layer is correctly indicated is shown in Figure 2.30.Where a  

convention is used, that the task of example considered network is ( in some sense) reversal of task 

from Figure 2.29 – there it was need say to state  on entry in which continent lives the classified 

animal (in order to execute classification, or it is dangerous, or not), and animal on entry be showed1 

here, and network has to give information which continent it lives in 

 

Fig. 2.30. Ideal situation on the output of network producing nominal variable 

 

                                                           
1 Form of "showing" to the network of the animal depends on chosen information about his appearance and the 

building of body will send to neurons of entrance layer (shape of head, what color of fur, what paw, what tail 

etc.).This symbolizes red arrows on drawing, joining chosen elements of animal's building with entrance neurons 

to which information will be delivered on their subject. 

mailto:mkk3@poczta.onet.pl
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The situation which is illustrated in Figure 2.30 happens only in theory (in practice it could happen 

only as a result of a favorable coincidence). In practice, taking into account limited precision of the 

computations done by the networks, we will talk about it below, almost always on exits of all 

neurons, which create a group attributed to some exit nominal variable, appear some non-zero 

signals. This situation is showed in Figure 2.31. A question arises: what to do with this? 

 

Fig. 2.31. Real situation, which can happened when working with nominal variable as network output 

To obtain clear and unequivocal answers in such situations we should admit some additional criteria 

useful in further elaboration of the results at the output of the network. These additional criteria in 

processing of the results are the following: a threshold of acceptance and a threshold of rejection. 

Such additional treatment of the output signal leads to so called post-processing of the results. The 

exit signals computed by the neurons belonging to output layer of the network are, according to this 

concept, quantified by comparison of their current values with thresholds (as it is seen in  Figure 

2.32). 

 

Fig. 2.32. Result of output signals post-processing, causing unambiguous result values despite 

inaccurate values on the neurons outputs 

The value of parameters which are the threshold of acceptance and threshold of rejection can be 

chosen up to our needs, similarly, to decision rules responsible for neurons giving a lack signal. 

Experience shows , that it is better to set  high requirements for network. It means that does not try 

"by force" to determine unequivocal value of exit variable nominal type, for example in a situation of 

such low clarity as it is seen in Figure 2.33.  
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Fig. 2.33. Example situation, when only proper answer of the network is: “identification not possible” 

It is always better to admit that the network is not able to achieve an unequivocal classification of 

the input signal than to accept a network decision which is probably false.  

2.10 What is better to obtain from the network - number or a 

decision?  
(Translation by Łukasz Brodziak; lukasz.brodziak@gmail.com) 

While using a neural network one has to remember that results returned by the network even if they 

are numeric values (which can be subject to appropriate scaling) always are approximate. Quality of 

the approximation can vary, yet  the accuracy of significant figures is out of the question, it is good if 

a product returned by a neuron has accuracy higher than two significant figures (which means that 

the fault can reach several percent). That is simply what the nature of the tool is. Awareness of the 

occurrence of such limitations is forcing an appropriate interpretation of the output signals, so that 

they can be used in sensible way, and induces thinking about which neural calculations model You 

want to use. Generally speaking, neural networks can form to types of models: regressive and 

classification model. Regressive model is a type of model in which, on the output of the network, we 

expect (and demand) specific numeric value, which is a solution of the problem. Interpretation of 

such model is presented on figure 2.34. 
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Fig. 2.34. Example of neural network regressive model 

In the model shown on the above figure the task of the neural network is to estimate the price 

of the apartment. On the input we load data that can be numeric values (such as area in square 

meters) and data that are nominal values (for example if the apartment has a garage assigned to it), 

on the other hand on the output we expect a numeric value which would show the amount which 

can be gained on sale. As all apartment buyers and sellers know the market price of the apartment 

depends on many factors, yet nobody can present strict economic rules which would allow to predict 

that one apartment will cost this much, and the other one will cost twice as much. Seemingly 

it is impossible to predict because the price is each time a result of an unconstrained market game 

and sovereign decisions made by people who buy and sell a specific apartment. Still it appears that 

a neural network after long training (based on the previously finalized buy-sell transactions data) can 

form a regressive model of the problem so good that real prices obtained in successive transactions 

were only few percent different from the ones „predicted” by the network. 

The alternative classification model is connected with a demand of obtaining from the network 

information on classifying an object described by input data to one of the classes. Of course in this 

type of problem on the output of the network a nominal variable will be placed (see figure 2.35). 
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Fig. 2.35. Example of neural network classification model. 

Example shown on the figure regards the problem of classification of the people (or companies) 

soliciting for a bank loan. Such client has to be classified by the bank worker to one of two categories: 

First one contains clients who are trustworthy and reliable, and therefore can get a loan because 

they are going to pay it back along with the interests and will give the bank profits. To the second 

category are numbered all the frauds and potential bankrupts who will not pay the loan exposing the 

bank to losses. How one can distinguish one category from the other? There are no strict rules or 

algorithms but correct answer can be provided by neural network taught with data from the past. 

There is usually a lot of such data as very bank has given a lot of loans and has full data of its clients 

both those who paid the loans back and those who did not. 

Years of experiences in neural network exploitations proved that it is most convenient to interpret 

the tasks given to a neurocomputer in a way that would allow the answer to be given using 

classification model. For example we can demand that the network will state whether profitability of 

the investment is „low”, „average” or „big” relatively whether the loan-taker is „reliable”, „risky” or 

„totally unreliable”. However the demand of specific estimation of the amount of profit, accuracy of 

the risk level or the limit of the amount that can be loaned to somebody will inevitably lead to 

frustration because in general it is the thing which network cannot do. 

That is why the number of the outputs of the created network is usually bigger than number of 

questions that we seek an answer to. This happens because for many output signals we have 

to artificially add few neurons servicing each output – for example in a way that would allow 

the predicted range of output signal values to be divided into certain sub-ranges which distinction 

is essential for the user. In such case we should not force the network to return specific „guessed” 

value on its output instead we work in a way that each output neuron is responsible for signalizing 

appurtenance of current answer to specific range and usually that is all we need. Such classification 

network is way easier to build and teach, while making a network from which we „squeeze out” 

specific answers to mathematical problems is typical „art for an art's sake” – time-consuming fun 

with minimal practical application. Above formulated conclusions are summed up by figure 2.36 
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which presents one of the „classic” problems presented to neural network: prediction of currency 

rate. 

 

Fig. 2.36. Currency rate estimation is one of many problems in solving which the creator of a neural 

network can choose between regressive and classification model. 

As shown on the figure the problem can be solved in two ways: Either one can build a prognostic 

model which attempts to determine how many Euros will a dollar be worth tomorrow or one can be 

satisfied with a model which only will signalize weather one should expect a raise or fall of the rate 

value on the next day. The second task will be easier for the network to solve and the prediction 

of rate value raise or its fall can be useful for someone wanting to buy dollars before travelling 

abroad. 

2.11. Is having one network with multiple outputs better than having 

multiple networks with one output each?  
(Translation by Lukasz Brodziak lukasz.brodziak@gmail.com) 

There is another issue connected to the output layer of a neural network which can be solved in two 

ways and the choice of the way is a free decision of the network creator. It is known that it is always 

possible to create a network which will have any amount of outputs – as many as much data we want 

to get on the output as a result of solving the problem. It is not always an optimal solution because 

the teaching process of multiple-output network has to lead, while estimating weight values inside 

the network, to specific compromises which always have negative effect on the result. 

An example of above mentioned compromises can be a situation when while setting a problem for a 

specific neuron of the hidden layer one has to take into account (which shows during its weight 

factors estimation) what role will this neuron have in the calculation of the values of several output 

neurons to which it sends its output signal when it will be calculated. It may happen that the role of a 

given hidden neuron, optimal from point of view of calculating with its aid one given  output signal 

from whole network, will be significantly different then its role optimal for some other output. In 

such case the teaching process will change the weight values in this hidden neuron adapting it each 
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time to a different role – this will have an effect in long and less successful teaching. That is why it is 

better to divide a complex problem and instead of one network with multiple outputs build several 

networks which will use the same set of input data but have separate hidden layers and single 

outputs. 

 

Fig. 2.37. Comparison of one network with two outputs versus two separate networks 

The rule suggested in Figure 2.37 cannot be treated as a dogma because sometimes it appears that 

multiple-output network learns better than the one with single output. This, at first glance, paradox 

result can be substantiated with a fact that potential „conflict”, described in paragraph above, 

connected to functioning of the hidden neurons and estimation of their roles while calculating 

several different output values may never occur. On the contrary sometimes during the teaching 

process one can observe an effect of specific synergy which consists in the fact that while setting 

(during the teaching process) the parameters of a hidden neuron which are optimal from the point of 

view of the „interests” of several output layer neurons, one can achieve success faster and more 

efficiently than while doing it in separate networks individually tuned for each output signal 

separately. That is why one should not assume that for sure one solution is better than the other, it is 

better to test them both and then making a choice. My own observation, based on experience in 

building hundreds of networks for various uses and on consulting tens of works by my students, 

shows that significantly more often the collection of networks with single output is an optimal 

solution – although biological neural networks are more often organized as multi-output aggregates. 
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You already know that every feedforward network has to have at least two of above mentioned 

layers – input and output. Yet, there are networks (see fig. 2.38) – they are called single-layered 

networks because they have only one learning layer. It is of course an output layer because as you 

already know the input layer of any network does not learn. 

Fig. 2.38. Single-layered network 

Yet still many networks (especially those solving more complex problems) must contain additional 

layers connecting input and output layer. Those layers put between input and output are called 

hidden layers. The name sounds quite mysterious that is why you may feel troubled while getting in 

touch with hidden layer problem for the first time. That is why I would like to explain to you what 

those layers are and in what sense they are „hidden”. 

2.12. What is hiding in hidden layers? 

Not translated yet … 

2.13. How many neurons do you need to get a well-working network? 
(Translated by Anastasiya Zharkova, nastia_zhar@wp.pl) 

It follows from the above remarks that the broadest possibilities for future use are offered by 

networks which have at least three-layer structure, with an input layer that receives signals, a hidden 

layer that elicits those characteristics of input signals that are needed, and an output layer which 

makes final decisions and provides a solution. Within this structure some elements are determined: 

the amount of input and output elements, as well as the principle of connecting successive layers. 

However, there are certain variable elements which you have to determine yourself. These are: the 

number of hidden layers (one or more) and the number of elements in the hidden layer (or layers) 

(fig. 2.40). 

Despite many years of development of this technology, no precise theory of neural networks has yet 

been formulated, therefore these elements are usually chosen arbitrarily or by the process of trial 

and error. It may happen that the idea of a network’s author about how many hidden neurons 

should be used and how they should be organized (e.g. as a one hidden layer or as several such 

layers) will not be quite correct. Nevertheless, it shouldn’t have a crucial impact on the network’s 
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operation, because during the learning process network always has a chance to correct possible 

errors of the structure by choosing appropriate connection parameters. Still, we must here 

specifically warn our readers about two types of mistakes which trap many researchers of neural 

networks (especially beginners). 

 

Fig. 2.40. Most important problem during neural network design is connected with number of hidden 

neurons 

The first mistake consists in designing a network with too few elements – when there is no hidden 

layer or there are too few neurons, the learning process may fail miserably, since the network will 

not have any chances to imitate in its (too scanty) structure all the details and nuances of the 

problem that is being solved. Later, I will give you specific examples illustrating the fact that a 

network which is too small and too primitive cannot deal with certain tasks even if one teaches it 

very thoroughly and for a very long time. Simply, neural networks sometimes are like people: not all 

of them are talented enough to solve a particular problem. Luckily, there is always an easy way to 

check how intelligent a network is, because you see its structure and can count neurons, since the 

measure of a network’s capability is merely the number of its hidden neurons. With humans it is 

more difficult! 

Unfortunately, despite the freedom in building bigger or smaller networks, it sometimes happens 

that the intelligence of one’s network is too low. This always results in a failure to use such a network 

for a specific purpose, because such ‘neural dummy’ with not enough hidden neurons will never 

succeed in the tasks it has been given, no matter how much you will toil at trying to teach it 

something. 

However, network’s intelligence shouldn’t be also ‘overdone’. The effect of network’s excessive 

intelligence is not a greater capacity for dealing with problems that it has been set, but an 

astonishing phenomenon: instead of diligently acquiring useful knowledge the network begins to fool 

its teacher and, consequently, it doesn’t learn at all! It may sound incredible at first, but it is true. A 
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network with too many hidden layers or too many elements in its hidden layers tends to simplify the 

task and, as a result, it ‘cuts corners’ whenever possible. In order for you to understand it, I have to 

explain briefly how network’s learning process takes place (fig. 2.41). 

 

Fig. 2.41. Very simplified schema of neural network learning process 

You will learn about the details of this process in one of the further chapters, but right now I must 

say that one teaches a network by providing it with input signals for which correct solutions are 

known because they are included in the learning data. For each given set of input data the network 

tries to offer its own output solution. Generally, the network’s suggestions differ from correct 

solutions provided in the teaching data, so after comparing the solution worked out by the network 

with the correct exemplar solution in the teaching data, it becomes clear how big was the mistake 

made by the network. On the basis of mistake evaluation, the network’s teaching algorithm changes 

the weights of all its neurons so that in the future the same mistakes will not be repeated. 

The above model of learning process indicates that network aims at committing no mistakes when it 

is presented with teaching data. Therefore a network which learns well seeks such a rule for 

processing input signals that would allow it to arrive at correct solutions. When a network discovers 

this rule, it can perform tasks from the teaching data it has been provided with, as well as other 

similar tasks which it will be given during ordinary exploitation. We say then that a network 

demonstrates an ability to learn and to generalize learning results, and we treat it as a success. 

Unfortunately, a network which is too intelligent, that is one which has a considerable memory in the 

form of a large number of hidden neurons (together with their adjustable weight sets), can easily 

avoid mistakes during learning process by memorizing the whole collection of teaching data. It then 

achieves great success in learning within an astonishingly short time, because it knows and gives 

correct answer for every question. However, in this method of ‘photographing’ the teaching data, a 

network which is learning from provided examples of correct solutions, makes no attempt at 

generalizing acquired information, and tries instead to achieve success by meticulously memorizing 

rules like “this input implies this output”. 

Such incorrect operation of a network manifests itself in the fact that it quickly and thoroughly learns 

the whole of the so-called teaching sequence (i.e. the set of examples used to show a network how it 

should perform tasks that it is given), but it fails embarrassingly in the first test, that is in a task from 

similar class but slightly different from the tasks presented in the process of learning. For instance, 

teaching a network to recognize letters brings immediate success (the network recognizes all letters 

it is shown), but the network fails completely to recognize a letter in a different handwriting or font 

(all outputs are zero), or recognizes them incorrectly. In such cases a closer analysis of network’s 
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knowledge reveals that the network has memorized many simple rules like “if here two pixels are lit, 

and there are five zeros, letter A should be recognized”. Of course, such crude rules do not stand the 

test of a new task, and the networks falls short of our expectations. 

The described symptom of ‘learning by heart’ is not displayed by networks with smaller hidden layer, 

because limited memory forces the network to do its best, and, using the few elements of its hidden 

layer, to work out such rules of processing input signal that would enable its correct use in more than 

one instance of required answer. In such cases the learning process is usually considerably slower 

and more tedious (examples needed by the network in order to learn have to be presented more 

times – often a few hundred or a few thousand times), though the final effect is usually much better. 

After a correctly conducted learning process has been finished, and a network works well with base 

learning examples, one has the right to suppose that it will also cope with similar (but not identical) 

tasks presented during a test. It is not always the case, but it is often true, and it must be the base 

for our expectations regarding the use of the network. 

To sum up, it is important to memorize the following rule: do not expect miracles, so a presumption 

that an uncomplicated network, with few hidden neurons, will succeed in a complicated task, is 

rather unrealistic. However, too many hidden layers or too many neurons also lead to a significant 

decline in learning process. The optimal size of hidden layer lies somewhere between these two 

extremes. 

 

Fig. 2.42. Exemplary relation between hidden neurons and errors made by network 

Figure 2.42 shows (on the basis of particular computer simulations) the relation between errors 

made by networks and the number of their hidden neurons. It proves that there are many networks 

which operate with almost the same efficiency, despite different number of hidden neurons – 

therefore it is not so difficult to hit such a broad target. Nevertheless, one must avoid the extremes 

(i.e. networks that are too big or too small). Especially harmful are additional (excessive) hidden 

layers, and it comes as no surprise that a network with fewer hidden layers often produces better 

results (because one can teach it more thoroughly) than a theoretically better network with more 

hidden layers, where the teaching process ‘gets stuck’ in the excess of details. Therefore one should 

use networks with one or (but only as an exception!) two hidden layers, and fight down the 

temptation to use networks with more hidden layers by fasting and cold baths. 
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2.14. Control questions and self-work tasks  

Not translated yet … 
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3. Teaching the networks  

3.1. Who is the tutor, who will teach the network? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

A cycle of neural network’s activity can be divided into stages of learning, when the network acquires 

information needed to determine, what and how should be done, and the stage of regular work 

(sometimes also called an exam), when, based on gained knowledge, the network has to solve 

particular new tasks (just because solving tasks, on which you based on when learning the network, 

is of no interest to you at all – you already know these solutions). The key to understanding how the 

networks work and its abilities is the learning process itself, so we are going to start getting to know 

the networks from writing about this exact process, whereas activities of already taught networks of 

various types are going to be discussed in the next chapter 

Two variations of learning can be distinguished: with a teacher or without a teacher. We are going to 

talk about learning without a teacher separately in the next chapter, so meanwhile we will focus on 

learning with a tutor. Such learning is based on the fact that the network is given examples of correct 

actions, which it should later mimic in its current tasks (at the time of the exam). An example should 

be understood as a specific input and output signals given by a teacher, showing what is a required 

response of the network for a given configuration of the input data. The network watches, what is 

the connection between given input data and a required result (outcome, which should be produced 

as an output) and learns to imitate this rule. 

Remember: while learning with a tutor you always have to deal with a pair of values – a sample input 

signal and a desired output that is a required response of the network for this input signal. Of course 

the network can have many inputs and many outputs, and in such case the mentioned pair means in 

fact two collections of values: a set of values, which is a complete set of input data and a set of 

values, which should appear on the output of the network, as a full solution for a task. But they 

always go together: data for a task and its solution. 

 At this moment, let’s explain who is a teacher in the method of learning with a tutor. Under 

this name I do not necessarily mean a human being, who teaches network by himself – even though 

you will play with your networks. In practice a role of a tutor is taken over by the computer itself, 

who models the mentioned network, because it is easier and more comfortable. Unfortunately 

neural networks are not very smart and for good learning in a harder task, we need hundreds or 

sometimes even hundreds of thousands of steps! Who would have strength and patience to tutor 

such an ignorant!? That is why when talking about a teacher (tutor), I always mean a computer 

program supplied by a human with a so called learning set. 

What is a learning set? Look at figure 3.1. 
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Fig. 3.1. Example of learning set 

As you can see, there is a table with some sample data in the figure. These are the data concerning a 

pollution rate in various American cities, but it could be any other data. It is important that it is a 

real-life data, taken from a real database. I signalized that, leaving the elements of an original 

window (which comes from a program which was operating on this database) on figure 3.1. Among 

the data collected in the database we can isolate those, which will be used as outputs for the 

network (look at the range of columns of the table, which is marked by an arrow at the bottom of 

figure 3.1). In the example presented on this figure it will be data allowing us (perhaps) to foresee the 

level of air pollution, so it contains data about the city’s population, it’s industrialization, weather 

conditions etc. Based on those data, described as input data, the network will have to predict the 

average level of air pollution in every city. 

For a city, in which pollution level has not been marked yet, we will have to guess it – and that is 

where we will use the network, which we will have earlier taught. Nevertheless, on the stage of 

learning the network you will use the fact, that in our database, used as a learning set, the pollution 

data for some cities is known – and it has been placed in an appropriate column of the table, which is 

marked with a red arrow on figure 3.1. 

Therefore, you have exactly what you need to teach the network on figure 3.1: a set of data, in which 

the appropriate input and output data is given, and which make pairs: we can see reasons 

(population, industrialization, and weather conditions) and the result (value of air pollution). The 

network uses these data and will learn how to function properly (guessing the value of air pollution 

in cities, in which proper measurements have not been taken yet), using one of many strategies of 

learning that we know today. Exemplary learning strategies will be thoroughly discussed a little bit 

further. Whereas meanwhile please pay attention to another detail of figure 3.1:  one column of the 

table is shown there with letters in gray – not properly black -  so that it in fact can be seen, but 

barely. This type of color suggests that it is sort of less important. And so it is indeed: in this column 

there is data concerning names of particular cities. That information is required in the database, 

because based on it new data can be put and results given, but for a neural network such an 

information is useless (air pollution does not depend on the name of a considered city), so even 

though adequate data is available in the database, we are not going to use it for learning the 
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networks, There can be more of such unnecessary data (not used in the process of learning the 

network). 

And so we should memorize that the tutor in the process of learning a network will usually be a 

collection of data, which though is not taken “as it is”, but is adjusted to function as a learning set 

with a proper configuration of data (you have to clearly state, which of them you will use as an input 

data, and which as an output data) and through its cautious selection. You should not “litter” a 

network with data, which you indeed have, but which you know (or suspect), that are not useful 

from the point of view of finding the solutions to the stated problem. 

3.2. Can the network learn all by itself? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

Close by to the previously described schema of the learning with a tutor is also a series of methods of 

the so called learning without a teacher (or self-learning networks) that are in use. These methods 

consist of passing only a series of example input data to the entries of networks, without giving any 

information concerning desirable or even only anticipated output signals. It seems that the properly 

designed neural network can use only observations of entrance-signals and build the sensible 

algorithm of its own activity on their base - most often relying on the fact, that classes of repeated 

(maybe with certain variety) input signals are automatically detected and the network learns 

(completely spontaneously, without any open learning) to recognize these typical patterns of signals.  

With the self-learning networks you must also have the learning set – only that this set will only 

consist of data provided for input of the network. There is no output data given, because the 

technique of the learning without the teacher we should apply in the situation, when we do not 

know, what to demand from the network analysing some data. If we, for example, take data shown 

in fig. 3.1, to the learning without a teacher, you would only use columns described as input data, 

instead of giving the information from the column noted with the red pointer to the network. 

Network which would gain knowledge in such process of the learning would not have chances on 

predicting, in which city the air pollution will be greater, and wherein smaller, because it will not gain 

such knowledge itself. However analyzing the data on the subject of different cities the network may 

for example favor (just by itself!) a group of large industrial cities and learn to differentiate these 

cities from small country towns being centers of agricultural regions. This distinction will surrender to 

deducting from given input data on such a rule that industrial towns are mutually similar, whereas 

agricultural cities also have many common characteristics. On a similar rule the network can, only by 

itself, separate cities with beautiful and bad weather and make many other classifications, based only 

on values of observed input data. 

Notice that the self-learning network is very interesting from the point of view of the analogy, which 

exist between suchlike activity of the networks and with the activity of the human brain: people also 

have an ability of spontaneous classifying of encountered objects and phenomena (some call this "a 

formation of notions"), and after the execution of the suitable classification, recognizes another 

objects as adherent to one of these earlier recognized classes. Self-learning is also very interesting 

from the point of view of its uses, because it demands no openly given external knowledge - which 

can be inaccessible or gathering which can be too troubling - the network will accumulate all 



95 
 

necessary information and pieces of news all by itself. In one of the further chapters I will describe 

very exactly (and I will show demonstratively across suitable programs!) what is this self-learning of 

the networks based on. 

Now you can imagine (rather for fun and stimulation of the imagination, than from a real need) that 

a self-learning network with TV camera can be sent in the unmanned space probe on Mars. We do 

not know, what are the conditions on Mars, so we do not know, which objects our probe should 

recognize. What is more - we do not even know how many classes of objects will appear! It does not 

matter, the network will cope with it itself (look at fig. 3.2). The probe lands and the network begins 

the process of self-learning. At the beginning it recognizes nothing, only observes. However, over 

time  the process of the spontaneous self-organization will lead to a situation that the network will 

learn to detect and to differentiate between different types of input signals which appear on its 

entry: separately rocks and stones, separately plant forms (if they will be there), and separately living 

organisms. If we will give the network sufficient amount of time - it can be so educated that it can 

differentiate Martian-men from Martian-women - though her creator did not even know that they 

exist! 

 

Fig. 3.2. Hypothetic planetary lander  powered with self-learning neural network can discover not 

known forms of life (“alien”) on mysterious planets 

Of course earlier described self-learning Mars lander is exclusively a hypothetical creation, even 

though networks that form and recognize different patterns exist and are eagerly used. For example 

we could be interested in the fact of how many and which forms of the certain little known disease 

can in fact be found. Is this one sickness unit, or several? What are they differed by? How to cure 

them?  

It will be sufficient to take a self-learning neural network and show it the information on registered 

patients and their symptoms for a long enough period of time. Sometime later the network will give 

the information on how many typical groups of symptoms and signs will be detected and on the 
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ground of which criteria one can differentiate patients classified to different groups. Explorer then 

only has to name these groups with properly wise sounding Latin names of illnesses - and he can 

already run to the tailor, to try on the tailcoat sewn for the solemnity of the handing of Nobel Prize! 

The described method of self-learning has of course (as everything on this world) definite defects - 

however, I will describe them a little later, when it will be already clear how all this works. 

Nevertheless, it has so many undeniable advantages, that one ought to be surprised with its 

comparatively small popularity! 

3.3. Where and how do neural networks gather obtained information? 

(Translation by Agata Krawcewicz, hogcia@gmail.com) 

Let us let us take a closer look at the process of learning with a teacher. How does it happen that the 

network gains and gathers knowledge? Well, a key-notion here are the weights on the entrance of 

each neuron, which were described in the previous chapter. Let us remind: every neuron has many 

inputs, by means of which it takes signals from other neurons and input signals given to the network 

as data for its calculations. The parameters called weights are united with these entries; every input 

signal is first multiplied by the weight, and only later added up with other signals. If we change values 

of the weights - the neuron will begin to function in other way in the network, and as a result  - the 

whole network will begin to work in an another way. The whole art of learning the network relies on 

the fact that we should choose weights in such a manner, that all neurons would perform the exact 

tasks, which the network demands from them.  

There can be thousands neurons in the network, and every one of them can have hundreds of inputs 

- so it is impossible for all these inputs to define the necessary weights at one time and arbitrarily by 

oneself. One can however design and realize the process of learning relying on starting activity of 

network, with the certain random set of weights, and gradually improving them. In every step of the 

process of learning, the value of weights from one or several neurons undergoes a change, and the 

rules of these changes are made in the way, that every neuron is able to qualify, all by itself, which of 

its own weights it has to change, and which way (increase or decrease), and also how much. Of 

course when determining necessary changes of weights the neuron can use the information being 

descended from the teacher (as far as we use learning with a teacher), however, it does not change   

the fact that the process changing the weights itself (being the only memory trace in the network) 

runs in every neuron of the network spontaneously and independently, thanks to what  it can be 

realized without the necessity of the first-hand stable supervision from the person supervising this 

process. What is more, the process of the learning one neuron is independent from, how any other 

neuron learns, so learning  can be conducted simultaneously in all neurons of the network (of course 

under condition of constructing a suitable network as the electronic system, and not in a form of 

simulation program). It also allows us to reach very high speeds of learning and a surprisingly 

dynamic increase of "qualifications" of the network, which literally grows wiser and wiser in front of 

us!  

I will once again stress, because it has a key-meaning: the teacher need not get into the details of the 

process of learning - it will be sufficient that the person will give the network an example of correct 
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solution. The network will compare its own solution, which it obtained from the example that we 

used, which originated from given learning set, with the solution which is recorded in the learning set 

as a model solution (so most probably correct). Algorithms of learning are constructed the way, that 

the knowledge about the value of the error which the network makes, is sufficient to  correct values 

of its weights, whereat every neuron separately (controlled with the mentioned algorithm) corrects 

its own weights on all entries all by itself - if it only gets the message, what error was committed. Is 

very simple and the simultaneously efficient mechanism, shown symbolically in fig. 3.3. Its systematic 

use causes the network to perfect its own activity, till at last it can solve all assignments from the 

learning set and on the grounds of generalization of this knowledge - it can also solve other 

assignments which will be introduced to it on the stage of "examination". 

 

 

Fig. 3.3. Typical step of neural network learning 

The manner of the learning of the network, described earlier, is used most often, but in some 

assignments (for example at the recognition of images) one need not give the network the exact 

value of the desired output signal, but for efficient learning it is sufficient to give the network only 

general information on the subject, whether its current behavior is correct, or not. At times one 

speaks directly about signals "of the prize" and "the punishment", on the ground of which all neurons 

of the network, all by themselves, find and introduce proper corrections to their own activity. This 

analogy to the training of animals is not quite accidental! 
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3.4. How to organize learning the networks? 

(translation by Agata Krawcewicz, hogcia@gmail.com) 

Necessary changes of values of weight coefficients in each neuron are counted basing on special 

rules (sometimes called the paradigms of networks), where the number of different rules that are 

used today and their varieties is truthfully extreme, because almost every explorer tried to carry his 

own contribution in to the field of neural networks in the form of a new rule of learning. One opinion 

about this problem gives a collection of algorithms of learning described in my book "Neural 

networks" to which I constantly send the more inquiring Readers for more detailed information 

(http://winntbg.bg.agh.edu.pl/skrypty/0001/). Here I will talk over shortly (without the use of 

mathematics, because such a deal we contracted at the very beginning of this book!) two basic rules 

of learning: the rule of the quickest fall, lying at grassroots of the most algorithms of learning with a 

teacher and the Hebb rule, defining the most simple example of learning without a teacher.  

The rule of the quickest fall relies on the fact that every neuron having received definite signals on its 

entries (from the networks entries or from other neurons, which are earlier levels of processing the 

information) makes its own output signal using possessed knowledge in the form of earlier settled 

values of all amplification factors (weights) of all entries and (possibly) the threshold. Manners of 

marking the value of output signals by neurons, on the ground of input signals were talked over more 

precisely in the previous chapter. The value of the output signal, appointed by the neuron in the 

given step of the process of learning is compared with the standard-answer given by the teacher 

within the learning set. If there is a divergence (and at the beginning of the process of learning such 

divergence will almost always appear, because where on earth does this neuron have to know, what 

do we want from it?) - the neuron gets the difference between its own output signal and the value of 

the signal which would be - according to the teacher - correct, and also fixes (by means of the 

method of the quickest fall which I will soon explain), how to change the values of the weights, so 

that this error will most quickly grow smaller.  

In further considerations it will be useful to know the notion of the area of the error which we will 

now introduce and talk over precisely. And so you already know the fact that the activity of the 

network relies on the values of weight coefficients of neurons being its elements. If you know the set 

of all weight coefficients, appearing in all neurons of the whole network, then you know how such 

network will act. Particularly you can show to such network (in turns) all examples of assignments 

accessible to you, together with solutions, which are a part of learning set. Every time the network 

will make its own answer to the asked question - you can compare it with the pattern of the correct 

answer which is found in the learning set, marking the error which the network committed. A 

measure of this error is usually the difference between the value of the result delivered by the 

network and with the value of the result read from the learning set. To overall rate the activity of 

networks with the defined set of weight- coefficients in its neurons - we usually use the pattern of 

the sum of squares of errors committed by the network for each case from learning set. Before 

summing up the errors are squared, to avoid the effect mutual compensating of positive and 

negative errors, and what is more the squaring causes that the especially „heavy penalty” meets the 

network for large errors (twice greater error is a quadruple component in the created sum). 
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Fig. 3.4. Method of error surface forming. Discussion in the text. Please observe the yellow rectangle 

and yellow cloud fist and navy blue  rectangle and cloud next. 

Look at figure 3.4.  A situation was shown on it, which could take place in a network so small that it 

would have only two coefficients of the weights. Such small neural networks do not exist, but 

imagine that you have such a network, just because only for such very small network will we succeed 

to draw its behavior without going into difficult, multidimensional spaces. Every state of better or 

worse learning of this network will be joined with some point on the horizontal (light-blue) visible 

surface shown in the figure, together with its coordinates, that is with both considered weights- 

coefficients. Imagine now that you placed such values of weights in the network, which comply with 

the location of the red point on the surface. Examining such network by means of all elements of the 

learning set, you will find the total value of the error of this network - and in the place of the red 

point you will put a (red!) arrow, pointing up, with the height being the calculated value of the error 

(according to description the vertical axis in fig.).  

Next, choose other values of weights, marking other position of the point on the surface (navy blue) - 

and perform the same acts, receiving the navy blue pointer. 

And now imagine that these acts you perform for all combinations of weight- coefficients, that is to 

say for all points of the light-blue surface. In one places errors will be greater, in other smaller, what 

you would be able to see (if you had a patience to examine your network so many times) in the form 

of error surface, spreading over the surface of the changed weights. An example of such surface I 

have shown you it in fig. 3.5.  
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Fig. 3.5. Example of error surface formed during the neural network learning 

As you can see there are many „knolls” on this surface - those are the places in which the network 

commits especially many errors, so such places should be avoided, and we have many deep valleys 

which we find very interesting, because there, on the bottom of such valleys, the neural network 

commits little errors, that is to say solves its assignments especially well. 

 How should we find such valley? 

And so you should consider learning the neural network as the multistage-process. During this 

process you will try step by step to improve values of weights in the network, changing old (worse) 

sets of the weights, causing that the network to commit a large error, for new, regarding which you 

will be hoping (but you will not be certain)  that they are better. Look at the figure 3.6, whereon I 

have tried to illustrate this.  



101 
 

 

Fig. 3.6. Illustration of neural network learning process as “sliding down” on error surface 

You begin from the situation shown in the left bottom corner of the figure, which means you have 

some old set (a vector) of weights, noted on the surface of parameters of the network with the 

yellow circle. For this vector of weights you find the error, which the network makes, and you „land” 

on the surface of the error in the place which is marked with a yellow arrow in the left upper corner 

of the figure. Nothing good can be said about this situation: the error is very high, so the network has 

temporarily very bad parameters. It is necessary to improve this. 

 How? 

Well exactly. Methods of learning the neural networks can find which way it is necessary to change 

the weight coefficients, to obtain the effect of the diminution of the error. Such direction of the 

quickest fall of the error is noted in fig. 3.6 as a large black pointer. Unfortunately, the details of  how 

the methods of learning do this, cannot be explained without using complicated mathematics and 

such notions as the gradient or the partial derivative, however conclusions from these quite 

complicated mathematical considerations are simple enough. And so every neuron in the network 

makes the modification of its own weight- (and possibly the threshold) coefficients, using the 

following two simple rules: 

 weights are changed these more strongly, when a greater error was detected; 

 weights connected with these entries, on which large values of input signals appeared, are 

changed more, than weights of these entries on which the input signal was small.  

Previously described basic rules in practice still need several additional corrections (in a moment I 

will say more about them), however the described outline of the method of learning is surely clear. 

Knowing the error committed by the neuron and knowing its input signals you can easily foresee, 

how its weights will change. Also notice, how very logical and sensible are these mathematically led 

out rules: For example the faultless reaction of the neuron on given input signal should of course 

cause leaving its weights without a change - because they led us to a success. And this is just what is 

happening!  
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Notice that the network using described methods in practice, breaks the process of learning itself, 

when it is already well trained, because small errors cause only minimum, "cosmetic" corrections of 

the weights. It is logical, similarly as the rule of the subordination of the size of the correction from 

the size of the input-signal delivered by considered weight - because these entries on which greater 

signals appeared had a greater influence on the result of the activity of the neuron which proved to 

be incorrect, so it is necessary to "sharpen" them  more strongly. Particularly the described algorithm 

causes that for the entries on which in this very moment the signals were not  given (during 

calculations they had zero-values), suitable weights are not changed, because not we do not know 

whether they are good or not, because it did not participate in the creation of the current (surely 

incorrect, if it is necessary improve it) output signal. 

Returning to the presentation of one step of the process of learning, shown in fig. 3.6, notice, what 

goes on further: Having found the direction of the quickest fall of the error the algorithm of learning 

the network makes the migration in the space of weights, consisting of changing the old (worse) 

vector of weights to a new one (better).  This migration causes  that on the surface of the error we 

„will slide down” to a new point - most often situated lower, that is to say bringing near the network 

to the longed-for valley in which errors are least, and solution of put assignments - most perfect. 

Such optimistic scenario of gradual and efficient moving toward the place, where errors are least, is 

shown in figure 3.7.  

 

Fig. 3.7. Searching (and fining!) network parameters (weight coefficient for all neurons) guarantying 

minimal value of the error – during supervised learning. 
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3.5. Why does this sometimes not succeed? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

Not always is learning  such a simple and pleasant process, as I showed in fig. 3.7. At times the 

network „struggles” for a long time, before it finds a required solution. The detailed discussion of 

difficulties appearing here would again demand references to complicated considerations on the 

subject of the infinitesimal and differential calculus together with the analysis of the convergence of 

algorithms, and with other rather difficult things. However, instead of persecuting you with 

complicated mathematics I will try to explain it, by telling you a story of a blind kangaroo (look at fig 

3.8). 

 

Fig. 3.8. Learning of neural network presented as blind kangaroo hike. Discussion in text. 

Imagine  that a blind kangaroo got lost in the mountains and wishes to come back to its own house 

about which it knows only the fact, that it is situated at the very bottom of the deepest valley. The 

kangaroo thinks of a simple method: He is indeed blind, so he cannot see all the landscape of the 

mountains surrounding him (just as the algorithm of learning the networks cannot check the value of 

the error function in all points for any sets of weights), but can feel with his little paws, which way 

does the ground subside (in the same way as the algorithm of learning the network can find out, 

which way it is necessary to change weights, so that the error will grow smaller). So that way the 

kangaroo finds a proper direction and hop! - it jumps with as much powers as he has in his legs, 

counting on the fact, that he should aim to his own little house. 
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Unfortunately a few surprises are waiting for the kangaroo (and on the algorithm of learning the 

neural network). When you will look thoroughly at figure 3.8 you will notice that the imprudent jump 

can lead the kangaroo down of the rift which separates him from his house. A situation is also 

possible (not drawn, but easy to imagine), that the ground can drop in the certain direction - but a 

little further it can suddenly raise, what will cause that performing a long jump in the seemingly 

promising direction - the kangaroo will make his situation worse, because he will find himself landing 

higher (that is to say further from the aim), than he was in the starting moment! 

The success of the poor little kangaroo depends mostly on the fact, whether he can properly 

measure the length of the jump. If it will perform small jumps, then the way home will take him a lot 

of time. But if he decides on a jump that is too long, and in the environment there are some crags or 

rifts, he will harm himself!  

At learning the networks the creator of the algorithm must also decide, how big the changes of the 

weight should be, caused by particular values of input signals and the specific size of the error. The 

decision this is made by changing the so called proportion coefficient - learning rate. Apparently it 

can be chosen just as we wish, however every particular decision has specific consequences. 

Choosing a coefficient that is too small makes the process of learning very slow (weights are 

improved very slightly in every step, so in order for them to reach desirable values we have to 

perform lots of such steps). And choosing a too large coefficient of learning causes very abrupt 

changes of parameters of the network, which in the extreme cases can even lead to instability of the 

process of the learning (the network tosses, not being able to find the correct values of weights, 

changes of which being made so quickly, that precise "shooting itself" into necessary solution is very 

hard).  

One can have a look on this problem from yet another point of view. Large values of the coefficient 

of learning resemble an attitude of a teacher, who is very strict and difficult to please and who too 

radically and severely punishes the pupil for his mistakes. Such teacher seldom attains good results of 

learning, because he sets pupils into confusion and causes their excessive stress. On the other hand 

little values of this coefficient of learning resemble a teacher who  is excessively tolerant and whose 

pupils make too slow progresses, because he insufficiently rushes them to work.  

 When learning the networks and learning pupils it is necessary to make a compromise, taking 

into account both advantages related with quick work, and safety considerations, pointing out the 

necessity of obtaining a stable functioning of the process of learning. You can however help yourself 

in another smart manner which I will describe to you in the following subchapter. 

3.6. What is momentum used for? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

One way of increasing the learning speed without interfering with the stability is the use of an 

additional component, the so called momentum, in the algorithm of learning. Graphically one can say 

that momentum enlarges the inertia of the process of learning - changes of the weights then depend 

on both - the errors currently made by the network, and the course on the process of learning at the 

earlier stage. 
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Fig. 3.9. Learning process without momentum (left side) and with momentum (right side) 

The figure 3.9 allows you to compare the process of the learning with momentum and without it. In 

this figure I showed you the process of changing the weights coefficients. I can show only two of 

them therefore drawing should be interpreted as a projection on plane determined by weight 

coefficients wi and wj the weight adaptation process, which takes place in the n-dimensional space of 

the weights. In can see only behavior of two inputs for the certain neuron of the network. But in 

other inputs in other neurons processes are similar.  

Red points represent starting points (resulting from the setting - before start the process of learning - 

values of weight coefficients), and yellow points are the value of weight coefficients obtained in 

consecutive steps of the process  of learning. An assumption has been made that the minimum of the 

error function is attained in the point ”+”, and the blue ellipse shows the outline of the stable error 

(set of values of weight coefficients for which the process of learning attains the same level of error). 

As it is visible in the figure, introducing the momentum really causes the process of the learning to 

become calmer (values of the weights coefficients do not change as violently and as often), and other 

than that - more efficient (the consecutive points approach to the point ”+” faster than before, the 

"+" point being a solution of the problem). Now during the learning the network from a rule one uses 

momentum, because it improves the process of reaching the to correct solutions, and at the same 

moment the execution costs are not too high. 

Other manner of improving the process of learning can rely on the usage of changing values of 

coefficients of the learning - small at the beginning of the process of learning, when the network  

only chooses the directions of its activity, greater in the centre-piece of the learning, when it is 

necessary to act forcefully yet roughly enough to adapt the values of parameters of the network to 

established rules of its activity, and at last again smaller in the end of the process of learning, at the 

moment when the network perfects the final values of its parameters (fine tuning) and too 

impetuous corrections can destroy the construction of the earlier built structure of knowledge. Let us 

notice that these techniques of the activity, about the mathematically led out structure and the 

experientially examined usefulness lively resemble the elaborate methods of the teacher, who has a 

large didactic practice and used for pupils with a small psychical strength! Is without a doubt the 
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striking convergence of the behavior of the neural network and the human mind - not first, and not 

last after all. 

3.7. Where should we start when learning the network? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

Every creator of an algorithm of learning of neural network has to bare with the problem, of original 

values of coefficients of weights. The algorithm of learning described earlier shows, how one can 

improve values of these coefficients in progress of the process of learning, however, we have to start 

this process somewhere, because already in the moment of showing the first object of the learning 

he network must have some concrete, settled values of coefficients of the weights, to be able to 

qualify values of output signals of all neurons, and then to compare it with values given by the 

teacher for the purpose of the qualification of errors. Still, where should we get these original values 

of all weights from? 

The theory of the learning neural networks says that at the realization of certain (simple enough) 

conditions the lineal network can learn and find correct final values of weights - (resolving this 

problem - if simply such solution exists) coefficients not depending on which initial values we will 

take at the start of the process of learning. In the domain of non-linear networks the situation is not 

so simple, because the process of learning can get stuck in the starting values in the so called minima 

of local error functions, what in effect means that starting from different primary points (from 

different primary sets of weight coefficients) we  can receive different parameters of the taught 

network - better or worse fitted for resolving the set assignment. So does the theory say, but does it 

say anything about how to choose these good, advantageous starting points? 

Here we have to, unfortunately, support our knowledge on empiricism. A simple and easily used 

practice relies on fact, that the primary values of weight- coefficients are random. At the beginning 

all placed parameters receive accidental values, so we start from some not earlier presumed random 

values. It may at the first moment sound strange, but this makes sense - if nothing it is known about 

where to seek the necessary minimum the error function, there is no better solution as to rely on the 

blind fate!  

In simulator programs there is a special instruction "sowing" the first random values of coefficients, 

in the network; whereat we should avoid too large values of start coefficients (regularly practiced is 

the section from -0,1 to +0,1, whence they are chosen randomly). Additionally in many-layered 

networks one also has to avoid coefficients having value 0, because it blocks the process of learning 

of deeper situated layers (through a zero value of weights signals do not pass, what in practice means 

„cutting off ” a part of the structure of the network from further learning ).  

Of course the progress of the process of learning reduces the error.  This process is very fast at the 

beginning, later however becomes slower, and at last after realization of a number of  steps - the 

process of learning stops completely. It is useful to remember that the process of the learning 

targeting training of the exercise of the same assignment by means of the same network - can run 

differently. In fig. 3.10. I showed you three courses of this process which differ both with the speed 

of the progress of the learning, as and with the final effect (in the form of the size of the coefficient 
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of the error, below which the network no longer can to go down, in spite of the intensity of the 

further learning). Because all graphs refer to the same network and the same assignment, and differ 

only with primary values of coefficients of weights - we could say that these graphs show diverse 

„inborn abilities” of the networks. 

 

Fig. 3.10. Decreasing of network error during the learning process. The same neural network learned 

many times using the same learning set, but starting from different points (determined by random 

process of weight initial values setting). Three courses are plotted: average (most representative), 

course with maximal end value of the post-learning error (pessimistic case) and course with minimal 

end value of the post-learning error (optimistic case). 

In some types of network (for example Kohonen network) one demands additionally, that original 

values of weight- coefficients to be somehow normalized, but I will talk about this during the 

discussion of these particular types of networks. 

3.8. Is learning a network a long process? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

Unfortunately, the answer to the above question is pessimistic. For the comfort of using the process 

of the learning instead of "the manual" programming of the network, a price must be paid with a 

long period of the learning - and in general it is necessary to humbly accept this fact, because no one 

has yet found a really efficient solution to this problem. Worse still, it is difficult to anticipate, how 

long it will be necessary to teach the concrete, given network, before it will begin to develop some 

elements of an intelligent behavior. Sometimes it is going like a lightning, but in general  it is 

necessary to show elements of the learning set for a long time and with great effort, before the 

network will begin to understand at least a little of what we demand from it. What is more, as the 
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result of random choice of original values of weight- coefficients the results of learning of the same 

network for the same data used as the learning set can differ a little and this fact should be also 

simply accepted - unless somebody has time to teach the same network several times and 

afterwards to choose the variant which guarantees the best result. However, in practice this is very 

time-consuming, because in my research and the research of my candidates for a doctor′s degree I 

have found many times that a single process of learning a network with several thousands of 

elements lasts several dozens of hours! 

This is not an isolated result. For example from the compilation published in the monthly Electronic 

Design we can see that the number of the presentations of the learning set, necessary to achieve the 

correct work of the network in chosen uses brings out: 

 for the character recognition of Kanji - 1013 

 for the speech recognition    - 1012 

 for the diagnostics of manuscripts  - 1012 

 for the voice synthesis   - 1010 

 for financial prognosis   - 109 

Other authors bring similar results.  

Because of the speed of learning people seek different (from classical, described here, delta 

algorithm) new methods of learning the networks. It is considered that the time of learning the 

networks with the algorithm of the quickest fall (described earlier) grows exponentially with the 

advance of the number of elements of the network what can in the future be one of basic factors of 

limiting sizes of built networks.  

3.9. How to teach hidden layers? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

Lastly we will discuss one more problem - the problem of learning networks, connected with the 

presence of hidden layers. As I described in the previous chapter what we call a hidden layer is every 

layer except the entrance layer and exit layer. The essence of the problem appearing at the learning 

of neurons of the hidden layer consists of the fact that for these neurons we cannot directly set the 

size of errors, because the teacher gives standard-values of signals only for the exit-layer , and for the 

signals appointed by neurons of the hidden layer (probably also incorrect at the beginning of 

learning) we have nothing to compare them with. Certain solution for this problem is the method of 

the so called backward propagation of the error (backpropagation), for the first time suggested by 

Paul Werbos, and afterwards popularized by David Rumelhart and bound usually with his name. 

This method consists of reproducing the presumable values of errors of deeper (hidden) layers of 

network on the ground of projecting backwards the errors detected in the exit-layer. Roughly one 

can say (at this moment - because in further chapters of the book the process will be put to a 
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detailed analysis) that we do it like this: considering every following neuron of the hidden layer one 

takes under caution the errors of all the neurons to which it sent its own output signal and one adds 

it up , taking into account the values of coefficients of weights of connections between considered 

neuron and neurons whose errors are added up. This way "the responsibility" for errors of neurons 

of the hidden layer burdens the neuron of the hidden layer the more strongly, the more heavily 

(because with the greater weight) it influenced the  signal of the given hidden neuron for elaboration 

of definite signals of the exit-layer (that is to say at the creation of definite errors detected at the 

stage of evaluation of the network's answer).  

Proceeding consistently in this manner and moving step by step from the exit to the entry of the 

network we can evaluate presumable errors of all neurons, and consequently obtain premises 

permitting us to qualify the necessary corrections of weight coefficients of these neurons. Of course 

the described proceedings does not ever permit to mark errors of neurons of intermediate layers 

exactly, so corrections of errors in progress of the process of learning are less accurate and less exact, 

than in the case of networks without hidden layers. This effect appears in practice as a considerably 

longer time of learning such networks, which I wrote earlier. However, taking into account the 

considerably wider range of many-layered network's capabilities we have to accept the fact, that it is 

proper to carry the cost of larger complexity of the process of learning, even if the necessary result 

(in the form of the correctly trained network) will we succeed to reach only after tens thousands of 

demonstrations of all objects of the learning set. 

With a repeated presenting of all objects of the learning set in the progress of learning the neural 

network certain additional problems come up. The necessity of such presenting of learning set "over 

and over again" comes out of the fact that even at the presumption of an angelic patience of the 

teacher we can accumulate as a material to learning the networks tens, sometimes several hundred, 

and in sporadic cases several thousands of examples - however it is never hundreds of thousands or 

millions, and so many steps of learning are often necessary to teach the networks. So there is no 

other way out - it is necessary to present the same objects (this means input signals and patterns of 

the answer of the network) many times. It is definitely disadvantageous to show the learning set 

constantly in the same order of elements. Such periodical instruction can lead to appearing of 

definite cycles of the value of weight- coefficients , what does not forward the process of learning 

and was the cause of many, well-known to me, failures. So it is very important to randomize the 

process of the learning - the accidental mixing of the learning set and showing its elements to the 

network in a different order every time. It complicates the process of learning a little, but in most 

cases it is a condition of obtaining reasonable results. 

3.10. How can a network learn by itself? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

The question put in this subsection's title directs us to problems known in the literature under a little 

perfidious name of "learning without a teacher". The idea of the task which has to be solved leads to 

such a situation: a network  should by itself perfect the manner of resolving a particular assignment 

without having a set of ready examples with solutions. Still, is this at all possible? How can we expect 

that the network will perfect its own work, not giving it any clues for this task? 
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Even though it proves to be  entirely possible and even relatively easily attainable to have a 

spontaneous self-organizing neural network - with considering several simple conditions. The 

simplest idea of self-learning of a network is based on the observation of an American physiologist 

and psychologist , Donald Hebb, that in the brain of animals (and in the mind of a man)  happen the 

processes of strengthening (amplification) of connections between neurons (or with all sets of 

neurons, the so called centers), under a condition that they were stimulated to work simultaneously. 

In such a way the mind associations are created, and (by what Hebb states) reflexes are shaped, in 

such a way also simple forms of motor and perceptive skills come into being.  

Transferring the Hebba theories on the ground of neural networks computer scientists designed a 

method of self-learning which consists of showing the network examples of input signals, without 

giving any information on what should it do with them. The network simply observes the 

environment and takes different signals, even though no one tells it, what meaning do showed 

objects have and what dependencies exist between them. The network, on the ground of observing 

the occurring signals gradually discovers, what is its meaning and also sets the dependencies existing 

among signals. This way the network not only acquires knowledge - it in a way creates it! Let us now 

trace this interesting process a little more thoroughly. 

After passing every consecutive set of input signals, the network forms a certain distribution of 

output signals - some neurons of the network are stimulated very intensely, other weakly, and some 

yet another have output signals which are even negative. The interpretation of these behaviors can 

be that some neurons "will recognize" given signals as " its own" (that is those which are likely to be 

accepted), other treat it "indifferently", while other neurons are simply "disgusted". After the 

settlement of output signals of all neurons in the whole network - all weights of all neurons are 

changed, whereat the size of the suitable change is calculated based on the product of the input 

signal, entering the given entry (which weight is being changed) and the output signal produced by 

the neuron, whose weights we modify. It is easy to notice that this is just the realization of the Hebb 

postulate: in the effect of the algorithm described earlier connections between sources of strong 

signals and with neurons which react strongly on it - are strengthened. 

More exact analysis of the process of the self-learning with the Hebb method allows us to state that 

a result of the consistent using of described algorithm the start parameters, most often accidental 

"preferences" of neurons submit to the systematical strengthening and detailed polarization. If some 

neuron had "an inborn inclination" to accepting signals of a certain kind - then during following 

demonstrations it will learn to recognize these signals more and more accurately and precisely. After 

a long time of such self-learning the network will create (quite spontaneously!) patterns of each 

types of signals given on the network's entry. As a result of this process similar signals will be 

recognized in the progress of learning more and more efficiently assembled and recognized by 

certain neurons, while other types of signals will become "an object of the interest" of other 

neurons. As a result of this process of self-learning the network - all by itself, only by observing given 

signals - will learn , how many classes of similar signals appear on its entries and assigns the neurons 

which will learn  to differentiate, recognize and signal these classes. So little and as much! 
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3.11. How should we conduct self-learning? 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

 The process of the self-learning (or maybe self-learning) described  earlier has, unfortunately, faults. 

Compared to a process of learning with a teacher, the such self-studying is usually considerably 

slower, so if there is a possibility of choice - one ought to choose controlled learning, rather than 

spontaneous. What is more, without a teacher we never know from the beginning which neuron will 

specialize in the diagnostics of which class of signals (for example the first can stubbornly recognize 

the letter R, second D, third G - and no force can make these neurons arrange itself in an alphabetical 

order). What this determines is a certain difficulty at using and the interpretation of results of the 

work of the  network - for example in the system of steering of a robot. The indicated difficulty has 

yet a more basic character and more troublesome results - there is namely no guarantee that 

developing its own starting, random preferences, neurons will specialize to the extent that every one 

of them will show  different class of entrance-images. On the contrary, it is extremely probable that 

several neurons will insist to recognize the same class of signals - for example several neurons will 

recognize the letter A, while none "will decide" to recognize the letter B. That is why the network 

intended to do the self-learning must be greater, than a network solving the same assignment, but 

trained in a classical way, with the participation of a teacher. It is difficult to measure this exactly, but 

from my own experiences and from the observation of students writing their master′s theses in my 

laboratory there seems to arise a result that the network intended to be self-learning must have at 

least three times more elements (especially in the exit-layer), than it would get out of the number of 

the answers, which the network should state after learning. 

A very subtle and essential matter is the choice of the start values of weights of neurons of the 

network intended to be self-taught.  These values have a very strong influence on the final behavior 

of the network, because the process of learning only deepens on and perfects certain tendencies 

existing in the network from the very beginning, therefore from these first, "inborn" proprieties of 

the network, it strongly depends what the network will reach by the end of the process of learning. 

Not knowing from the beginning, which assignment the network should learn, it is difficult to 

introduce any determined mechanism of setting the start values of  weights, however leaving it all 

only to random mechanisms can cause that the network (especially small) may not manage to 

sufficiently diversify its own mechanisms in the first period of the process of the learning and all later 

efforts to find the representation for all occurring entrance-signals of classes in the structure of the 

network, can prove to be futile. However, we can introduce one mechanism of initial "distributing" of 

the value of the weights, in the first phase of the process of learning. The method, called convex 

combination (described more exactly in my book "Neural networks", accessible in the Internet under 

the address http://winntbg.bg.agh.edu.pl/skrypty/0001/ ) modifies original values of the weights in 

a way, that is intended to maximize the probability of an even distributing of all typical situations 

appearing in the entrance-data set, by particular neurons . If only data appearing in the first phase of 

the learning will not actually differ from those, which the network will afterwards analyze and 

differentiate - then the method of convex combination will automatically create a convenient 

starting point to the further self-learning and will assure the comparatively good quality of the taught 

network in most of practical assignments. 
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3.12.  Supervisory questions and problems to solve. 
(Translation by Agata Krawcewicz, hogcia@gmail.com) 

1. What conditions must be fulfilled by the data set, so that it can be used as a teaching set for 

the a neural network? 

2. How does teaching the network "with a teacher” differ from teaching „without a teacher”? 

3. On what grounds does the algorithm of teaching calculate the direction and the amount of 

the change of weights in the steps of the process of teaching? 

4. How should we set the starting values of weight coefficients of a network, to start it's process 

of learning? 

5. When does the process of teaching stop by itself? 

6. What are reasons of failures in the process of teaching the network and how can we prevent 

them? 

7. What does the process of generalizing the knowledge obtained by the neural network in the 

process of teaching consist of? 

8. Where can we obtain the data necessary to fix, in the process of teaching, the value of 

changes of weight coefficients of the neurons which are in the hidden layers? 

9. What is momentum and what can we do with its help? 

10. How long a process of teaching do big neural networks require? What does it depend on?  

11. Why, in the case self-learning networks, do we frequently speak about "discovering 

knowledge", and not simply about teaching the network? 

12.  A more difficult assignment, for the advanced: Try to suggest a rule, in compliance with 

which one can change the coefficient of the teaching (learning rate) in progress of the 

process of teaching in such manner, that it would accelerate the speed of learning in safe 

situations, and slow it down at the moment, when the stability of the teaching process is 

endangered. 

An advice: Consider changes of the value of errors committed by the network in consequent steps of 

the process of teaching. 
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4. Functioning of a simplest network  

4.1. From theory to practice – how to use programs dedicated to the 

readers of this book? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

The main purpose of the three previous chapters was to provide theoretical basis concerning neural 

networks. Starting with this chapter you will begin to gain practice in using them. From this moment I 

will do my best to illustrate all the further argument with the help of the simple programs, which will 

allow you to try on your own how the  neural networks work and what the basic rules of their usage 

are. These programs (as well as the data needed for their start-up) can be found at: 

http://www.agh.edu.pl/tad 

When you input this address into your web browser, you will see a site, which describe accurately 

and step by step, all actions you need to take to get (free of cost but totally legal) these programs, 

which we are going to use together further in this book. You need these programs not to believe 

uncritically in what I am going to write about the neural networks. Having these programs installed 

on your computer you will be able to discover different features of the neural networks, carrying out 

very interesting experiments and having a lot of fun with them. Don't worry – all you have to do is to 

run one or two typical installation programs. If you ever tried to install anything on your computer, 

you would be able to do it. The detailed information about the installation is at the website 

mentioned previously. As the software use to be updated, the detailed description in this book would 

quickly become outdated. However I will allow myself to bring up a few boring (alas!) details 

concerning what you should do. 

Downloading the programs from the website, which address I previously mentioned, is very easy and 

can be done with one mouse click (in case you need help ask someone who have downloaded a file 

from the Internet before). However getting only the programs is not enough. There are written in C# 

language and need installed libraries, which are called the .Net Framework (2.0 version). If you have 

no idea what is this all about – don't worry - you will be able to find all needed software at the 

website. 

The first step you should take is the installation of the libraries mentioned. Of course, it may occur 

that you have these libraries installed on your computer already and this step is unnecessary. If you 

are sure about that, you can skip the .Net Framework part of installation, but I advise you to perform 

it, just in case. If the appropriate programs are installed on your computer, installer will find out on 

its own, that there is no need to install them. However it may happen, that at the site mentioned 

there are newer versions of the libraries than the ones you have. Then the installer will get down to 

work, which should be ok, because it is always good to exchange old software for more modern. This 

new software will become useful in many purposes, not only the one concerning studying this book 

and performing described in it experiments. 

 

http://www.agh.edu.pl/tad
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Very important notice 

 All software available on site  

 http://www.agh.edu.pl/tad 

 is legal and free of cost on terms of the educational  license of Microsoft®.  

This license allows free use and development of the  .NET technology on condition it is not used for 

commercial purposes. It means that you can use this software for experiments described in the book 

with no limits. You can also use it for your own programs – as long as you don't sell them. 

Let's go back to the installation of software required. 

When you finish the installation of the necessary .Net Framework libraries - the necessary part of all 

your further actions - install the example programs according to the guidelines contained at the 

WWW site mentioned. The installer will run again, which allow you automatically (and from your 

point of view – totally painlessly) install all written by me example programs. You are going to use 

them during further studying of this book. Thank to them you will be able to get to know the neural 

networks theoretically, and, what's more, play with them in a very practical way (being more serious: 

perform necessary experiments :) ) and by the way get very useful practice in the application of the 

neuron calculations mechanism. When installer's work is finished, you will be able to access them 

through the Start menu, in the same way as the majority of your programs. 

 

Fig. 4.1 The installer is going to ask in fact only two questions 

http://www.agh.edu.pl/tad
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To convince all the unbelievers that this is simple, in the picture 4.1 there is shown the only hard part 

of installation, in which installer ask the user, where to install the programs and for whom there 

should be accessible. The wisest thing to do is to leave default values and just click Next. 

For more inquisitive adepts of computing science (you are one of them, don't you?) there are two 

others options: downloading the source code and the installation of the integrated development 

environment Visual Studio .NET.  

The first option allows you to download to the hard drive of your computer human readable (it 

means understandable to you!) texts of all of these sample programs which executable versions you 

are going to use during studying this book. It is very interesting to check, how all of this is made, and 

why every program works as it works. Having the source code will allow you – if you dare to – to 

modify the programs and perform even more interesting experiments. 

Although I would like to emphasize that the source codes are not necessary if you just want to use 

the programs described in the book, but if you have code, you will be able to learn more and use the 

resources I prepared for you in the more interesting way. It is tempting especially that obtaining the 

codes is not laborious. 

 The last option – Installation of the Integrated Development Environment Visual Studio .Net is 

addressed to those of you, who would like to modify our programs, to perform your own 

experiments, or basing on their components – write your own programs. This is option for ambitious 

readers. However I encourage you to do that even if you just want to look through the code. It is 

worth to spent a few more minutes to make viewing of the code much more easier. Visual Studio 

.Net is very easy to use Integrated Development Environment adjusted to convenient edition and 

browsing of the code. Having Visual Studio .Net installed you will be able to perform many more 

additional actions such as including extern sets, easy diagnosis of applications and quick generation 

of complicated ultimate versions of the software. 

Remember, that the installation of both the source code and the Visual Studio .Net is fully voluntary 

and you can use it or not. To run the example programs, which will allow you to create and 

experiment with described in this book neural networks, you only need to install .Net Framework 

(first step) and example programs (second step). 

All right, you copied and installed everything what was needed – what's next? 

Now to run any example you need to choose appropriate command from   Start/Programs/Neural 

Networks – Examples menu. After choosing the appropriate program you may use your computer to 

create and analise every neural network described in the book. Initially it will be a network with the 

shape and measurments designed by me, but when you immerse yourself in the source code, you 

will be able to modify and change everything you want. Started program will make network live on 

your computer, and it will be able to be teached, tested, analised – summarising, examined. I think 

that this way of discovering the features of the neural networks – through construction and making 

them work – may be found more inspiring and imagination arousing than any other lecture or 

theoretical reasoning. 
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The way the network works is dependent on its structure and purpose. That is why we are going to 

consider in the further chapters a few specific cases. Because it is the simplest to explain the work of 

the network that recognizes images (besides – I know a lot about image recognition – about other 

applications – not necessarily) and that is why we will start our discussion with it. 

This kind of network – as mentioned before – gets an image as an imput, and as an output signals, to 

which of previously learned classes object seen in the image belongs. This kind of network was 

presented in the picture 2.34 which you have been watched lately. The recognizing tasks are fulfilled 

by the networks classifing geometrical figures, identifying printed and hand-writen letters, either 

planes silhouttes, or people's faces. 

How this kind of network works? 

To answer that question let us start from the absolutely simplified network – the network containing 

only one neuron. 

 What? You say it is not a network, because in the network there should be a lot of neurons 

and they should be connected to each other? 

 Well, it doesn't matter. It will turn out that even so small network can act quite interesting! 

4.2. What can be expected from a single neuron? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

As you probably remember – neuron gets input signals, multiplies them with factors named weights 

(for every input set individually during the learning process) and then sums created in that way ratio. 

Let us stop for a while on this simplified model. Although you know already that in more complicated 

neurons these summed signal are converged to the output signal with an appropriate function 

(generally non linear one), but believe me - in our first simplified neuron it is not necessary. We will 

examine the behavior of this simple linear neuron. What does the value of the output signal depends 

on? 

It is easy to show that it depends on level of acceptance between the input signals on every input 

and the values of the weights on these inputs. Although this rule matches ideally only for the 

normalized input signals and weights (I'll specifically explain later how you should understand it). 

However even without specific normalization the value of the output signal can be treated as the 

measure of the similarity between assembly of the input signals and the assembly of the 

corresponding weights. 

You can say that a neuron has its own memory and stores there the representation of its knowledge - 

the pattern of the input data, which it is sensitive for (in the form of the actual values of the weights). 

If the input signals match the remembered pattern – the neuron 'recognizes' them as something 

familiar and answers to them with the strong output signal. If there is no connection between the 

input signals and the pattern – output signal in near to zero (no recognition). There is possible a total 

contradiction between the input signals and the weights values. The linear neuron generates the 
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negative output signal then – the stronger contradiction between the neuron's image of the output 

signal and its real value, the stronger output. 

To begin with I encourage you to try to run the simple program named Example 01a. You can start it 

and just perform a few experiments that program allows on. You can benefit even more if you decide 

to change this program or even try to make it better. Then you will learn much more about the 

network. After initialization of the Example 01a program you will see the window shown on Fig. 4.2. 

In its top part there is the text explaining what actually we are going to do. 

 

Fig. 4.2. The window of the Example 01a program just after start 

Blinking cursor signals that programs is waiting – for you! - to give it the weight of the neuron's input 

which is connected to the fragrant value. You can enter it manually by typing a number, or by clicking 

the arrows next to the field, or by pressing the up and down arrows on the keyboard. After inserting 

the value for the fragrant feature, go on to the next field, which corresponds to the flower's second 

feature – color. 

Let us assume that you want your neuron to like colorful and fragrant flowers, with more favor for 

color. After giving an appropriate answer the window can look like in the Fig. 4.3. 

Described program, as every other you will use, gives you the possibility to change your decision and 

choose another input data. Program is trying to update the results of its calculations. 

 

The explanation of 

the purpose of the 

program. Just read 

it. 
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Fig. 4.3. The initial stage of the user's communication with the Example 01a  program. 

After inputting the data concerning the neuron's features (in fact these are values of its weights) 

there is time to check the way neuron works. You can input different sets of data in a way shown in 

the 4.4 Fig. and then the program will calculate and answer what output signal the neuron has 

generated and what it means. Remember that you can change the neuron's preferences and the 

description of the flower at any time. 

 

 

We change 

the 

preferences 

of the neuron 
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Fig. 4.4. The final stage of the user's communication with the  Example 01a  program. 

Remark for the inquisitive readers: If you use mouse or arrow keys to input data you don't have to – 

as you have probably noticed – click the Racalculate button every time you want to see the result; 

calculations are made automatically. When you input the number from keyboard you have to click it. 

That is because computer doesn't know if you have finished entering the number or you are just  in 

the middle and went to get yourself a tuna sandwich. 

The next stage is to experience our neuron with unusual situation. The point of the experiment 

shown in the Fig. 4.5 is to observe how the neuron reacts for object that differs from remembered 

'ideal' (colourful and fragrant flower). We showed it a flower full of colors but with no fragrance at 

all. As you can see – it liked this flower as well! 

 

 

Neuron is kind of 

glad. Who said that 

only women like 

flowers? 

Push that button to see 

the neuron's answer. 

2 

3 

Let us show our 

neuron some flower. 

1 
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Fig. 4.5. The program  Example 01a  in unusual situation. 

Changing the parameters of the flower you can observe what the neuron will do in any other 

circumstances. The examples of such experiments are shown in the  Fig. 4.6. I tested the behavior of 

the neuron when the flower has nice fragrance, but practically no color (it likes it anyway), and then 

colorless and smelling badly (this one is not likeable at all). 

 

Fig. 4.6. The example of the another experiment with the Example 01a program 

 

The flower is kind of 

weird... 

I like it less, but it's 

still nice! 

This one is 
colorless but at 
least smells a bit.

'All right… But for 
my birthday I want 
to get nicer one' 

This one is 
colorless and 
smells bad.

'I definitely don't like 
this flower. Where 
did you get it from? 
Trashcan?'
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And now let us test our neuron with a little more complicated task: let us check if it accepts a flower 

that smells badly, if it is colorful enough. 

 

Fig. 4.7. One another example of the experiment with the Example 01a program 

As you can see, there is a plenty of ways to experiment. You can also try to change the preferences of 

the neuron and see how it acts in different situations when it, for example, likes when a flower smells 

bad (the weight corresponding to fragrance can be negative). 

4.3.  What is worth of noticing during further experiments? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

I suggest that you spend some time playing with the program – I assure you it is worth it. While 

entering different sets of data on input, you will discover fast that the examined neuron works 

according to the quite simple rule. It just treats its weights as the model for the input signal it wants 

to recognize. When there is given such a combination of signals that corresponds to the weights of 

the neuron – it finds in it something familiar and reacts enthusiastically – you receive high output 

signal then. When different signals are given – the neuron shows indifference (low output signal) or 

even the aversion (negative output signal). Well, that's its nature! 

Careful examination will indicate that the behavior of the neuron depends only on the angle 

between the vector of weight and the vector of the input signals. Have a look at it and use the next 

program which will also state which flowers neuron likes and which dislikes – this time the model of 

the ideal flower will be represented as the point (or vector) in so called input space. 
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The term of the space (and connected with it the weight space) is quite important and quite simple 

at the same time. It is important for you to focus your attention on this subject for a while – it is not 

very complicated, though at first time it seems to be the secret knowledge. 

When you set the preferences of a neuron – it means when you tell him how much it likes fragrant 

flowers and independently colorful flowers – you in fact set the parameters of the, so called, weight 

vector. You can draw two axes and on one (let's say – the horizontal) you can mark the values of the 

first feature (fragrance) and on the other (the vertical for example) the values of the second one (Fig. 

4.8). If you want to mark the preferences of the neuron – you can mark a values on the axes and then 

the point created by these coordinates will correspond to the neuron's preferences. For instance, a 

neuron that 'values' only the fragrance of a flower and color is rather indifferent to it – will be 

represented by the point located maximally to the right (high value of the first coordinate) but on the 

horizontal axis of set (zero or low value of the other coordinate). Apart from that, the neuron that 

you want to like puttyroots – flowers of beautiful colors and weak, sometimes even unpleasant, 

smell – will be located high on the top of the vertical axis (high value of color) but even on the left of 

this axis (acceptance to not nice smell). 

 

Fig. 4.8. The representation of the neuron's features as the point and the vector in  

the attribute space 

Identically you can treat any other object (flower) that you present the neuron to mark. 

Its color will be on vertical axis and its fragrance on the horizontal one. If it is Lily-of-the-Valley it will 

be represented by the point located maximally to the right (it's hard to get anything smelling nicer) 

but definitely low (color is not the advantage of this flower). If you decide to show it a gillyflower it 

will be located high (it's generally nice coloured) but definitely to the negative site of the horizontal 

axis (the smell of gillflower is hard to consider as nice). In the bottom left part of the coordinate 

system you will find a sundew (it is a plant that consumes insects – it lures flies with the appearance 

of rotting meat and similar smell), and majestic roses will be found in the top right corner. 

 
 

 
the values of the weights 
for the color attribute 

 

     the point representing the neuron's features  

        'favorite' neuron's color 

 

 

 

          this vector also represents the neuron's features 

 

 

    ’favorite’ neuron's  smell    the values of the 
weights 

for the fragrance attribute 
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During consideration concerning neural networks it is convenient to mark objects (tested flower and 

the images of the neurons of the ideal flowers) not only as points in the coordinate system but as 

vectors. You will ackquire needed vectors joining the point with the beginning of the coordinate 

system. That is exactly the way program Example 01b will work. It – similary to the previous one – 

can be found in the Start2 menu. Playing with this program notice the preceding facts: 

 The value of the output depends mostly on the angle between the input vector (representing 

the input signals) and the weight vector (the ideal object accepted by the neuron). It is 

illustrated in the figure 4.9. 

 if the angle between the input vector and the weight vector is small (both vectors are 

located next to each other) – the value of neuron's output is positive and high 

 if the angle between the input vector and the weight vector is big (both vectors create angle 

greater than 900) – the value of neuron's output is negative and high 

 if the angle between the input vector and the weight vector is close to 900 – the value of 

neuron's output is low and neutral (near zero) 

 if the length of the input vector is far more smaller than the length of the weight vector - the 

value of the neuron's output is neutral (near zero) independently on the direction of the 

output vector; 

All of the described characteristic features of the neuron's behavior you can test on your own using 

the Example 01b program. Although the pictures produced by it, aren't so graphically worked out, as 

the figure 4.9, they should be easy to understand. They would be the convenient basis to collect your 

own experiments letting you to learn and remember what a neuron actually does. 

The work with the program is quite easy. The only thing you need to do is to click in the area of the 

located on the left chart. First, click it with the right button to set the location of chosen point 

corresponding to the neuron's weight factors (see Fig. 4.10). You will be shown the point and its 

coordinates. Of course you can change it at any time, clicking again in the other part of the chart or 

modifying the coordinates manually – the same way you did it in the Example 01a program. Now 

click on the chart with the left button, to locate the position of 'the flower' and watch the answer of 

the program. If the neuron likes the flower (on the right there is the value of the output signal so you 

can easily get to know what your neuron thinks of the flower) then the appropriate point is marked 

on the chart with red (like a mountains on a map – see Fig. 4.11). If the quotient is negative – point is 

marked with blue (like a seabed on a map – see Fig. 4.12). When the reaction of the neuron is neutral 

– corresponding point is marked with light blue (Fig4.13). After some time you will be able to 

imagine how the areas corresponding to the decisions in the input space look like. To picture them 

easier you can try to drag the mouse pointer over the chart with one of the buttons pressed to 

observe the results changing. 

                                                           
2  If you haven't installed the example programs yet – do it – the fun is about to start right now 
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Fig. 4.9. Mutual position of the weights vector and the input signals vector – as the factor 

determining the value of neuron's response 

 

Fig. 4.10. The window of the  Example 01b program with the model object marked 

the values of the  
neuron's weights 
for the color attribute 
and the value of this  
feature for a specific  
flower 
 

      the point representing the neuron's features 

      'favorite' neuron's color 

 

 

        the color of the flower              the point representing the flower's 
         features 
          

    The angle determining the neuron's answer 

   
    'favorite' neuron's smell  the smell of the flower   

        the values of the neuron's weights 
         for the smell attribute 

and the value of this feature for a specific flower 
 

 

Here are the weights of 

the neuron's inputs 

located (click right 

mouse  button for fix it) 

 

Here you can see 

values of the 

fixed weights. 

 

The similar element you will see in many example 

programs. If you hover on it and wait for a while you will 

be able to read the guidelines. 
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Fig. 4.11. The presentation of the input vector location for which the output signal is positive 

 

Fig. 4.12. The presentation of the input vector location for which the output signal is negative 

 

We put flower here 

(click left button) 

Here you can see 

its coordinates 

Here the program 

shows us the output 

signal 

 

Our 'flower'. The neuron 

doesn't like it this time so it's 

marked with blue color. 
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Fig. 4.13. The presentation of the input vector location for which the output signal is neutral 

4.4.  How to manage with the bigger amount of the inputs of the 

neuron? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

The examples above are nice and simple because they concern only one neuron with two inputs. In 

real application of the neural networks you typically have to do with task where many inputs are 

considered (because the solution of the problem you try to solve with the neural network often 

depends on the huge amount of the input data) and there is a need to apply many cooperating 

neurons to gain the level of compliance of the network appropriate for the current problem. 

That's the point in the neural networks where jokes ends and problems begin. You cannot draw this 

(because nobody is able to imagine points in the input space having more than ten dimensions!) and 

that's why everyone thinks that it must be very hard. However – it doesn't have to be that way. I'll 

convince you in a minute. Just try out the program Example 01c (see Fig. 4.14) 

The program asks to enter the number of the neuron's inputs. You can accept the default value (5) 

and click Next. Then, as previously in the Example 01, you should input the weights, which define the 

model of the signal, on which your neuron should react positively. Fill in the column marked as w(i) 

(Fig. 4.15). Then you enter the values of the input signals in the x(i) column and then program will 

calculate the output. Really simple, isn't it? 
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Fig. 4.14. The beginning of the conversation with the Example 01c program 

 

Fig. 4.15. The sequent part of the conversation with the Example 01c program 

The 
weights

The input signals
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Don't worry that the program tells you something about some strength. You will get to know, what 

you can use it for in a minute. 

During experiments with this program you can easily notice, that even when we work in the five 

dimensional space of weights and signals (that's a kind of space even Albert Einstein didn't work with 

– he stopped on the four dimensional continuum) – we can easily foresee what neuron will do. When 

while setting the coordinates of the input signals vector, you set them to be similar to the 

corresponding weight vector coordinates – these values are obligingly recollected by the program – 

you will get high value of the output signal. It is quite obvious: similar values of weight vector and 

input vector means that these vector lay close to each other and this – as you know from previous 

consideration – is a condition of getting the high output signal. On the other hand, if the values of the 

coordinates of input signals vector are set similarly to the values of the weight vector – but with the 

opposite sign - you will make the input signal vector  pointing another direction than the weight 

vector. Of course the effect of this action would be the neuron generating strong negative output 

signal. Finally, if you don't try to keep any accordance between the input signals and the weights – 

there is a chance that your multi-dimensional neuron will remain haughtily indifferent towards the 

input signals producing output signal with very small absolute value. 

During experiments you will notice that high values of the output signals are returned in two 

situations: when input signals correspond to the weights of the neuron (that's what we expected) or 

just by entering huge input values, where weights are positive. The first way of obtaining the high 

output is intelligent, sophisticated and elegant – well, whatever, since the same (sometimes even 

better) effects we can get using the brute force and the method number two. Therefore during 

entering the input signals you should try to make them of the same strength (using the parameter 

given by the computer estimating the actual strength). Only then you will be able to correctly 

interpret and compare your results. Similarly comparing the behavior of two different neurons (with 

different weight values) for identical input signals – they should tend to have the same value of 

memory trace strength – it is just the length of the weight vector. In the network with the bigger 

amount of neurons the meaning of the strength of the input signals radically decrease, when – 

stronger or weaker input signals – get to every neuron and the difference of the signals from 

different neurons decide about the effect: these better 'tuned' to the input signal and those worse 

'tuned'. We will focus on that in a minute. However when we consider only one neuron – dissimilar 

values of input signals can make results harder to interpret – that's why we should agree on choosing 

the input values for examined neuron in a way, when the sum of their squares is (estimating – high 

precision is not needed here) between 5 and 35, for instance. Because program calculates the 

strength as a square root from the sum of squares of the coordinates (that's the formula for the 

length of a vector), let us agree that the strength of the signals should be between square root from 

5 and square root from 35, which is somewhere between 2 and 6. 

Why should we choose these values? Because during my work with the program I found out, that 

when entering small random integer values  for five inputs of the neuron – you will get (more or less 

accurately) values from this range. However if you prefer, you can choose any other value and it is 

going to work, but remember to keep with it. The same limitation should be applied to the values of 

weights (it will turn out to be useful, you'll see!). Thanks to it, it will be easier to check, if the input 

signals 'match' the values. 
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4.5. What does the simple linear neural network act like? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

Let us assume that there is more than one neuron and they are organized in a network, which is 

single-layered (it means that neurons are not connected with each other, only with input and output 

– see Fig. 4.16). 

 

 

Fig. 4.16.  The structure of the single-layered neural network 

Input signals you will apply to the network will be entering every neuron, output signals of the 

neurons will be treated as an answer of the whole network for the given task. 

How does it work? 

Every neuron has its own set of weights, which make it ready for recognizing the characteristics of 

the input signals. Every neuron has different weights and recognizes different patterns of the input 

signals. It means that when you enter the input signals every neuron will calculate its output signal 

independently, which will turn out to be high for one neuron and small for others (because this one 

particular neuron has recognized its pattern). Analyzing the output signals you can easily get to 

know, what pattern network 'suggests' (basing on observation of the highest output value of 

neurons), and you can see how much the network is 'sure' of its decision – comparing the output 

signal of the 'winning' neuron with the signals generated by the rest of the network elements.  

Sometimes this feature of a network, allowing to detect uncertain situations, is the most useful in 

practice, because there is nothing worse than algorithm that makes very certain decisions basing on 

incomplete data and estimated methods of concluding. If such an algorithm is used wisely – it may be 

useful of course. However – people use to trust computer more, the less they understand them. So if 

we imagine a fool equipped in too arbitrary expert system – the vision of a monkey with a razor is in 

comparison to that horror a child's play. 
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4.6. How to construct a simple linear neural network? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

I'll show you another simple program. This program named Example 02 will help you start a simple 

play with a very small neural network. I encourage you though to write by yourself a more 

complicated program solving one of your real problems. 

Network described in the Example 02 program recognizes animals. There are three categories of the 

animals (a mammal, fish, a bird) and therefore network contains only three neurons. Recognitions 

are made basing on five features, that make every neuron to have five inputs. On these inputs we 

send the following information: 

 how many legs does animal have,  

 does animal live in water, can it fly,  

 is it covered with feather,  

 does it hatch from an egg.  

For every neuron I set the values of weights in such a way to match the pattern of an appropriate 

animal. Neuron number one, which is supposed to recognize a mammal has the following weight 

values set: 

 4   = mammal has 4 legs,  

 0.01  = mammal sometimes lives in water (seal), but it is not typical for it 

 0.01  =  mammal sometimes flies (bat), but it is not typical for it 

 -1  = mammal has no feathers 

 -1.5   =  mammal is viviparous and it is a major feature of it 

The weights of the neuron number two recognizing a bird are set in the following way: 

 2   =  birds has two legs,  

 -1   =  a bird doesn't live in water (a duck only swims on a surface!),  

 2   =  a bird usually – which is important to it – can fly (exception: ostrich),  

 2.5   =  a bird has feathers and it is a major feature of it,  

 2    =  a bird hatches from eggs. 

The weights of the third neuron identifying fish are set in the following way: 

 -1   =  fish has no legs  
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 3.5   =  fish lives in water and it is a major feature of it 

 0.01   =  fish generally cannot fly (there are flying fish!),  

 -2   =  fish is never covered with feathers or nothing that resembles them 

 1.5   =  fish generally hatches from egg, which is not as important as in bird case, 

because there are exceptions (viviparous fish); 

Program after start prints out on a screen information about previously described weights for every 

input of every neuron (Fig. 4.17) and allows to perform quite amusing experiments, which I describe 

in the following sub-chapter. 

 

Fig. 4.17. The beginning of the work of the Example02 program 

4.7. How to use the described neural network? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

As I have mentioned before, the program presented previously, assumes that network has three 

outputs associated with the recognition of the three kinds of objects (animals): mammals, birds and 

fish. Because a network is single-layered – it means that it contains only these three neurons, 

although you will learn in the future about networks in which the number of the neurons is much 

more higher than the number of outputs. Thanks to the simple construction of the network it is very 

easy to reconstruct it to any number of the outputs. 

You enter the input – in our example – only five signals, corresponding to some features of 

recognizing objects. Obviously you can increase this number in a trivial way, if in your problem that 

you would like to solve with the network, there is a greater amount of the input data. All input 
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signals are connected to every neuron, according to 'the lazy rule' – if you don't feel like thinking 

which input signal influences which output signal – it is the best choice to connect everything to 

everything else. In practice of neural networks you usually do so, so it is the best for you to get use to 

this convention. 

It would be good, if you thought a little bit, before entering the input signals. Amongst them there 

are ones containing numeric information (info about how many legs animal have) or Boolean 

information (info concerning if an animal lives in water or flies, if is covered with feathers, or is 

viviparous). You need to consider in what way you will represent logical values in a network, because 

neurons operate – as I have mentioned previously – on values of the signals, not on a symbols (just 

like true or false). Because it is not easy – let me share a reflection. 

If you are an computer scientist (as I suspect you may be, as you are interested in neural networks) 

you may suspect that the idea of true and false can be expressed in binary form: 1 as for true, 0 as 

for false. And if you are the a Great Computer Scientist, especially from that kind that use Assembler, 

have dreams about microprocessor registry, hexadecimal memory records and Java applets – then 

that kind of relation is obvious, total and the only right. 

  Hmmm...  

I have something to confess. Entering in the reign of the neural networks will make you modify your 

habits. Here is where you have to do with it for the first time, but not for the last. 

Remember then that zero in neural network is quite a stupid signal to transfer (one from this kind 

which is absent, that means it brings no new information). It is due to way  neurons work, multiplying 

signals by weights and then summing it – multiplying by zero results always in the same way – 

independently on the value of neuron, which represents the inner knowledge of a neuron! 

Deciding on using zero as an input signal you deprive yourself of some possibilities of influencing on 

the network behavior, which is not smart or necessary. That is why in my program I use convention, 

to using which I encourage you: true marked with +1 signal and false with -1. Such bipolar signals are 

the best in fulfilling their tasks. 

 

Additional advantage of a bipolar neural network is a possibility of using any values of input signals 

during inputting the data, and that may reflect the convictions of a person using a network about an 

importance of some messages. When inserting data for a cod you can consider as crucial the fact that 

it lives in water and input +2 instead of +1 (you can interpret that as a yell 'of course, it does!' instead 

of calm 'yeah, it's true'), and for other cases you can input values smaller than one (for instance – for 

flying fish and the question 'can it fly?' you may doubt if you should answer +1, as for an eagle – in 

that case you can put uncertain and full of doubts +0.2, which may be interpreted as 'sort of...'). 

There's a lot more of possibilities, for example signal corresponding to question 'has tail' for snake 

should be of value '+10' ('only!' :-) ). 

Since you know how to input network input signals – try to perform a few simple experiments with 

me. Input data for a few randomly chosen animals and check if the network  recognizes them 
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correctly. You can notice that in network consisting of many elements, the normalization of the input 

signals (caring if they have the same signal 'strength') is not as crucial. You will get to know that, by 

giving input values – for instance for a fox: 

  4 (legs),  

  -1 (doesn't live in water),  

  -1 (doesn't fly),  

  -0,9 (not covered with feathers  - unless it just caught a goose...),  

  -1 (viviparous); 

as the values 

   8 (has 4 legs, but it is so important that it is worth to be counted twice),  

  -6 (hates water, especially in barrels hidden in the ground!),  

  -3 (absolutely doesn't fly, even if it wished to sometimes...), 

  -5 (ginger fur is an important feature), 

  -9 (doesn't lay eggs and doesn't tolerate similar suspicions!). 

During the testing of the program it is good to notice that it can not only recognize correctly typical 

situations (it will classify properly every mammal, fish and bird – see pictures 4.18 4.19. 4.20), but it 

acts quite well in strange situations – for instance it will recognize as a mammal a seal, a bat or even 

a platypus (it is a weird mammal from Australia – it hatches from eggs), and as a bird – a non flying 

ostrich for instance. (Even a flying fish is recognized with no failure!) Try it out! 
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Fig. 4.18 Recognizing a typical mammal using the network. 

 

Fig. 4.19. The work of the program during the bird identification. 
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Fig. 4.20. The work of the program during the fish recognition. 

However it will be puzzled if we show it a snake (it has got no legs, lives on a ground and hatches 

from eggs???). Then every neuron disgusted announces that something like that isn't a decent 

animal (every output is negative), which, in context of our rules of classification, makes sense. 

Described network is very primitive and makes sometimes mistakes, for instance repeatedly 

recognizes turtle as a mammal (it has 4 legs, lives on a land, but hatches from eggs, so there should 

be some doubts....), or even considers lungfish as mammals (they live during drought on a land – 

please check it, if you don't believe me) – but that is how it is with the neural networks – they can be 

wrong in such a nice way – if any of you haven't made ever a mistake – let him throw the stone at the 

monitor first! 

4.8. Why and what for there is rivalry in the neural networks? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

In practical application you sometimes use additional mechanism of 'rivalry' between neurons, which 

in some applications allows a network to perform better. It is possible to observe how the 

competition network works when we apply to the previously discussed network-recognizing animals 

– an element comparing every output signal and  selecting a winner. A winner is a neuron with a 

highest value of the output signal. Selecting a winner may have consequences (for instance you can 

allow only one neuron to learn – as it works in the Kohonen network, which I will describe later) but 

in most cases it is used to polarize the output signals in the network – for instance only the neuron 

that is a winner can output its signal, every other output is zeroed. This rule is called WTA (winner 

takes all) and allows to analyze the way the network works easier (especially when it has many 

outputs), but is sometimes dangerous as well (as mentioned previously). 
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The best thing to do is to try it out, introducing the element of rivalry to our program simulating the 

recognition of animals. For that purpose run program Example 02; this time check the box signed as 

Show the winner. As a result after processing the input data the program will mark with the red 

color the neuron, whose the output value is the highest and announce an unambiguous verdict. The 

example of that action is shown in the Fig. 4.21. 

 

Fig. 4.21. The example of the  program  Example 02 operating with the rivalry option enabled 

Notice, that during neuron competition we assume that only the positive value is a basis  to make a 

decision. If every output signal is smaller than value marked in program as threshold (you can set it 

as you wish) – the output signal should be a no recognition signal. 
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Fig. 4.22. The network with the rivalry option enabled trying to recognize a snake 

I encourage you to use program Example 02 to try to perform experiments on the described 

competition network. You will find out that this network – contrary to previously defined 'regular' 

linear network – has few nice properties: answers more categorically and, what's more, in a form of a 

text, not as numbers which require additional interpretation. The competition network has a limits as 

well, which you learn about during next chapters of this book. 

4.9. What are the further possibilities of an application of the neural 

network? 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

The purpose of the network described previously was to recognize some sets of information treated 

as a set of features of recognized objects. However it is not the only application of the simple single-

layered networks consisting of the neurons of the linear characteristics. The networks of this type are 

often used for other purposes, such as the signal filtering (especially as adaptive filters with 

properties changing in dependency on the current needs). They have also numerous applications in 

the signal transformation (speech, music, video, medical signals - EKG, EEG, EMG) – for example they 

can extract a spectrum of a signal or arrange the input data using the principal components analysis 

method.  I have mentioned only few example tasks, but the application of every network – even as 

simple as the one described previously – can very differ. 



138 
 

All decisions of the network are made by set of weights for every used neuron. By setting the weights 

differently, we change the way the network works. In the same way by changing a program we make 

computer work differently. In examples described previously we used the set of weights chosen 

arbitrarily (you had to figure out on your own what weight value should every neuron have), which 

can be interpreted as a change of the work program for the network. For a few neurons contained in 

the network, as well as for simple and quite obvious interpretation of the weight factors contained in 

it (as it was with the example of the animal recognition) – that kind of a 'manual programming' of a 

network can be used and have good results. However in practical applications networks have many 

elements and then the role and tasks of a single neuron are hard to follow, and that is why more 

useful networks choose the weights on their own in the process of learning. Therefore in next 

chapter we will devote our attention to the most important thing – the aspect of learning the 

networks.   

 

4.10. Control questions and issues to solve. 
 (Translated by Krzysztof Kajdański; krzysiek.kajdanski@wp.pl) 

1. What properties do the neuron's weights and the input signals need to have to make the 
output signal:  
 

o strong and positive? 
o strong and negative? 
o close to zero? 

2. How can you make the neuron to favor one of its inputs  (for instance to make the color 
of a flower more important to him than its fragrance)? 
 

3. How can you interpret the positive and the negative values assigned to every input of a 
neuron? 

4. How can you interpret the positive and the negative output signals of a neuron? 

5. Does neuron having all the input values negative have to have the negative output 
signal?   

6. Is there any limit of an amount of the neuron's input signals? 

7. Check, if the network modeled in the program Example 02 recognizes a dolphin as a 
mammal or as fish? 

8. What can be achieved thanks to the rivalry in the neural network? 

9. Check what animal group a bat will be assigned to by the network modeled in the 
program Example 02. 

10. Check, if the network modeled in the program Example 02 recognizes that dinosaurs 
weren't mammals, nor birds, nor fish (they were reptiles and that's the category we 
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don't have). Which known to the network animals will dinosaurs  turn out to be the most 
similar to? 

11. Is there always in the competition network a winner? Is that good or bad? 

12. Task for advanced: In the neural network recognizing the animals add additional classes 
of animals (for example predators or herbivorous animals)  and extra data describing the 
animal's features (the sharpness of teeth/bill or ability to fast movement). 
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5. Teaching simple linear one layer neural 

networks 

5.1. How built teaching data? 
 (Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

In this chapter you have to find out about how to teach the simplest network . 

I know that this matter has been discussed, but theoretical knowledge (which is result of reading 

algorithm description) is something completely different than practical knowledge (based on doing 

something on your own and seeing the results). 

While describing the experiments shown here we will still talk about linear networks, because in the 

previous chapter you have made researches on linear neurons included in networks. You have also 

built your first simple linear network and you have conducted some research on it – that is why, you 

should know how such neurons and such networks behaved.  

In the next chapter (number 6) I will also show you nonlinear networks and then you will get to know 

in practice, how this network is built and what kind of properties it has.  

Therefore allow me to describe in the next chapter (on the basis of differentiation) what is meant by 

the adjective linear (so often emphasized and repeated with names of networks in this chapter)  

Fig. 5.1. Structure and basic elements of artificial neuron being taught. 

Now take my word for it that linear networks are much simpler than nonlinear, and will be easier to 

give them tasks while teaching and to check the results.  

Moreover we will start the game from the easiest of the easiest tasks – from teaching a single 

neuron. 
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To achieve this, use program Example 03 which will let you conduct simulation research and 

automatic teaching of such simple linear neuron (fig. 5.1).  

However, before you put data in your computer, before you try out and (of course!) improve my 

teaching program, you need some introductory remarks. 

During the experiments based on research on the work of a single neuron and the entire network (in 

the previous chapter) you have used the manual possibility of putting all the needed signals, which 

gave you full control over the experiment.  

Then this method was easy, nice and comfortable.  

The moment you have tried to teach a bit larger network and more difficult tasks, it won’t be a piece 

of cake any more. 

Sometimes hundreds or thousands of experiments will be needed before something reasonable 

begins to appear out of the initial chaos. 

Of course, we can imagine the masochist who writes in the same data several thousands of times in 

order to teach the network the giving of the correct task solution. I assume, however, that among 

readers of this book such madmen are definitely in minority.  

Therefore from the beginning let’s assume that teaching process must be based on a set of teaching 

data which was created and saved on a computer. The set should include input signals (to all the 

neurons in the network) and the models of the correct (required) output signals, which the teaching 

algorithm will use to confront the real network behavior. 

In my programs the format of records of the set of teaching data will be as follows: 

comment (helps to observe what is going on) 

set of input signals 

set of models of the correct output signals 

I will assume here, that a set of input signals will include five-element-vectors (portions including five 

signals for five inputs of the analyzed neuron), while there will be only one model of the correct 

output signal (because you can temporarily use only one neuron). 

These network parameters are placed in the first line of the teaching sequence file.  

A teaching sequence can be as long as you wish (to be honest, the more examples with correct 

solutions you show to the network, the better). Hence, it happens that the file including the above 

mentioned sets of information can really be very big.  

To start with, for a program which teaches one neuron, I recommend the use of the following file: 
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5, 1 

A typical object that should be accepted 

3, 4, 3, 4, 5 

1 

A typical object that should be rejected 

1, -2, 1, -2, -4 

-1 

An untypical object that should be accepted 

4, 2, 5, 3, 2 

0.8 

An untypical object that should be rejected 

0, -1, 0, -3, -3 

-0.8 

The above presented text is a teaching file for Example 03 program which is to be found in a file 

called Default teaching set 03.txt.  

Example 03 program has information about that, so it will offer you to use that teaching file at first.  

Of course you can create your own, completely different file with data for teaching a network and 

connect it to the program described below.  

In this way you can teach your neuron to recognize completely different sets of target standards or 

you can force it to built a model of some occurrence (I mean, force it to approximate some 

relationship between input signals and output signal – for example, as a result of medical 

observations or physical measurements).  

But remember that this neuron is linear, therefore it is only able to learn how to transform signals 

similarly to, for example, correlation methods or multidimensional linear regression  (these are 

names of mathematical methods used by scientists for statistical description of the experimental 

research results), but is not able to learn more! 

You will get to know the wiser neurons and more universal nonlinear networks, but not right now.  

However I would suggest to use my program at the beginning.  
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Of course, as you will try this program out and see that everything works correctly – you will be able 

to enjoy the work with your own data without limitations, but with the knowledge, on what kind of 

data you teach your network – I will describe beneath, what you see during this teaching and what is 

result  of the fact that you see just that, and not something else.  

5.2. How can we teach one neuron? 
 (Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

At the beginning lets load Example 03 program and try to start it.  

You can see, what the program is doing: it is loading the data from the file (which is called, as we 

estimated, Default teaching set 03.txt) and first trying to classify objects correctly by itself. Data of 

the objects are recorded in file in the right order (in the form of input signals for neuron). 

If it does not work – and a neuron can notice this fact itself, because the Default teaching set 03.txt 

file has the models of the correct answers recorded by the teacher – then the program modifies 

(according to the detailed description in one of the previous chapters) the weights of modeled 

neuron.  

In this way it teaches that neuron to perform better when given a defined task. 

During simulated teaching, on the screen you can observe the progress of teaching process step by 

step, and watch how the weights change and see the errors. 

At the beginning errors are large – of course. (fig. 5.2) 

Fig. 5.2. Beginning of the process of teaching a neuron 
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If the network is being “tested” by you at the moment (you can go to this phase every time during 

teaching process, by clicking Next button), you may check what knowledge it has.  

However at the beginning of the teaching process you will see, unfortunately, that your hope, that a 

neuron should already know the shown objects, will turn out to be deceptive (see fig. 5.3). 

Fig. 5.3. Unsuccessful result of examination in case of poorly trained neuron  

(shown object was weakly recognized by the network) 

In order to get the neuron working in a reasonable way, it is necessary to teach it a little bit more.  

By clicking Back button let’s come back to previous Teaching window and teach neuron patiently, by 

clicking Teaching more! button many times tenaciously! 

If, after some time, by seeing errors which are notified by program, you will see that the error is 

already relatively not large, and its changes (decreases) are not specially significant as a result of the 

next steps of the teaching process (compare fig. 5.4) – then you can stop teaching process and try to 

estimate network knowledge by using exam again.  

The results should be better – either when you show some object from teaching data (fig. 5.5), or 

when you show some object which is not included in teaching data (in other words completely new, 

unknown by network before), but similar to teaching data objects (fig. 5.6). 

The result is 

not 

satisfactory 

after one 

step of 

teaching. 

You can “teach 

the neuron 

more” by 

coming back to 

the Teaching 

window

The result is 

not 

satisfactory 

after one 

step of 

teaching. 

You can “teach 

the neuron 

more” by 

coming back to 

the Teaching 

window



145 
 

Fig. 5.4. Advanced stage of teaching process is characterized by small value of error in every step  

and it’s not large decrease after teaching 

Fig. 5.5. In advanced period of teaching process, the network passes without trouble the examination 

by rejecting the object which should be rejected 
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Fig. 5.6. In more advanced period of teaching process, the network shows ability to generalize, 

because it definitely rejects the object, which is only similar to object from teaching set,  

that should be rejected 

During teaching process you can look at the history of this process, which appears (upon request) in 

the form of changing network error value chart made in the following steps of teaching process. 

This useful and instructive chart can be used any time you want on your screen by clicking History 

button. 

Fig. 5.7. The error decrease  during teaching process for different values of initial weights  

in researched network 
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Program demonstrates you errors (as primary elements, having influence on teaching course 

process), and weights value – before and after teaching process correction as well. 

Let’s notice that by using a small number of teaching data, which in addition are shown to invariably 

taught neuron (without “shuffling” its sequence, which was advantageous and recommended in one 

of previous chapters ), you cannot demand too much – and certainly you will not achieve a great 

success in a  difficult tasks teaching process. But the simple tasks (the same as task presented in 

Default teaching set 03.txt file) neuron is learning surprisingly fast and effectively.  

Bearing in mind(from previous chapters), that correctly trained neuron should create the target 

standard object itself (in the form of suitable weights values), which is to be recognizable. Then you 

are able to estimate immediately if the teaching process “follows its nose” (so it may happen 

sometimes…).  

Let’s also take into account how dynamic the teaching process follows.  

The first few presentations already show significant progress in the range of improving the neuron 

working correctness, whereas the learning speed decreases after that, but still it is possible to look at 

decreasing error in the following steps of working networks.  

I would like to remind you the figures showing a typical characteristics of one neuron or entire 

network changing error value in a teaching process (fig. 5.7).  

Let’s try to check, how would the characteristic of teaching process progress look like in your 

experiments?  

Also let’s try to check the fact that you will get different characteristics of teaching process in 

following experiments, despite using the same set of input data. It is the result of the fact that a 

neuron would start from different randomly drawn initial weight value every time.  

Example 03 program is quite “friendly” in use. 

With its help, you can freely experiment with a neuron, for example breaking the teaching process 

up, to examine the neuron and check, how it behaves after using the trial signals – best similar to 

these by which it was taught, but not the same.  

You can come back to the interrupted teaching process every time and “tune up” the neuron a little 

bit, before it will be examined again.  

In this way you can teach the neuron a little bit, then examine it, and teach the rudiments again, and 

examine again etc. 

I only advise you to use successively longer and longer periods of teaching process between the 

following exams, because changes appearing during teaching process with the passing “epochs” (the 

following cycles showing all elements of learning data) are less and less noticeable.  

It is worth to devote a moment to conduct these types of experiments, because they give very 

substantial and detailed opinion (all the better, that they base on a simple and easy-to-analyze 
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example) on one of the most impressive features of neural network– the ability to learn and 

generalize the achieved knowledge. 

5.3. Can neuron have inborn abilities? 
 (Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

I also advise you to check how “inborn abilities” influence the effect of teaching. To achieve this aim 

you should repeat the teaching process several times by starting the program from the beginning and 

observing the occurring changes.  

Random process of setting initial weight value will enable you to observe different pace of teaching 

neuron for the same input data – sometimes neuron learns instantly (it happens that the one is 

talented from birth!), but sometimes it takes very long to teach one. During the teaching process it 

happens that neuron has period of time with worse results (error increases in spite of intensive 

teaching), if the neuron has to overcome some “inborn preferences” during learning process.  

This effect of coincidence in the course of the teaching process and its results can sometimes be 

surprisingly large, what everyone should see in order to believe it.  

For that reason do not save time and conduct a few experiments with the use of the suggested 

program, changing the range in the text of program, in which initial random weight values are set3.  

You can do it by giving initial parameters of weight neuron value other than assumed in 

InitializeTeaching () klasy ProgramLogic method.  

For example you can use, instead of instruction 

_examinedNeuron.Randomize(_randomGenerator, -0.1, 0.1); 

apply the instruction 

_examinedNeuron.Randomize(_randomGenerator, -0.4, 0.4); 

As a result, initial weights value will have much wider range of changes – and because of that a bigger 

influence on teaching network process and on its result. 

By starting the teaching process several times with the same teaching data, you can easily observe 

how strong is the influence of the random initial weight value.  

The neuron will learn in a completely different way every time!  

                                                           
3 Unfortunately this experiment requires looking at the program text and changing one of its instructions, and 

then making a compilation again – it means that this game is intended for more advanced readers of this book.  

But I hope that with the use of the previously given tips you will not have a problem with this. 
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In this way you can tangibly cognize one more property of neuron networks, sometimes demonized 

(“free will of an automatic machine!”) – its indeterminism, it means unpredictability of the learning 

process and its results as well.  

Let’s take into account the following  fact. The network which you use in the experiments described 

in this chapter, is rather small and not very complicated, and the task which network should perform, 

is rather easy.  

However in the big network and during solving really complicated tasks the addition of many random 

effects, such as investigated in the described program, can lead to completely unforeseeable 

network behavior. The effect may sometimes amaze “the scribes” who got used to complete and 

infallible behavior repetition of regular numeric algorithms, which are used in typical computer 

programs. 

5.4. How strongly neuron should be taught? 
 (Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

The simple demo-program suggested above can be a “testing ground” on which you should 

investigate one more important factor, influencing the teaching process, namely the influence of 

teaching ratio value (describing the pace of teaching) on the characteristic of teaching process.  

This factor can be changed in the field Teaching ratio in  Teaching of Example window of 03 

program. 

By giving a larger value of the factor, for example  

Teaching ratio = 0,3  

instead of used in program 

Teaching ratio = 0,1 

you can get faster effect of teaching process, but then the characteristic of teaching process will be 

more “nervous” (with sudden weight value changes and unexpected leaping up and down values of 

network errors).  

Also you can try to use a few different values and precisely observe  their influence on the teaching 

process. 

You must remember though that if you give too high value of this factor, the teaching process 

becomes chaotic and does not give any positive results, because neuron will be “struggling”  from 

one to another extreme, and the final effects will be deplorable– instead of improving its results, 

neuron will record much more errors.  

That effect is also worth to be seen with your own eyes! 
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On other hand too low teaching ratio value causes that the teaching process will be proceeding very 

slowly. In practice it means that the teaching progress can be simply unnoticeable and it is highly 

probable that in practice the neural network user will become discouraged not seeing the progress of 

its working, and will abandon this method, looking for more effective algorithms.  

 It is worth interpreting the described experiments with the reference  to situations which exist in a  

real teaching process, in which, instead of artificial neural networks the participants are the real 

brains of students gaining knowledge.  

It is easy to notice that the teaching ratio value expresses “strictness” of a teacher.  

Low values of this factor are connected with the situation when the teacher is gentle and lenient – 

who notices and corrects teaching errors indeed but does not extort the correct answers. 

As you have seen on the basis of conducted experiments – such indulgence can lead to poor results. 

However too high teaching ratio value, that is too excessive teacher’s strictness, may also be harmful.  

Very strict punishments falling on an apprentice, determined and hard reprimand after every mistake 

can lead to frustration shown as the neuron is “struggling” from one extremity to another– without a 

real progress in the teaching process. 

5.5 How to teach a simple network? 
 (Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

The natural course of events is to proceed from teaching a single neuron to teaching the entire 

network.  

Example 04 program, which has been built by me to reach this aim, is very similar to the program 

described above designed for one neuron, so it will be easy to use.  

You also need file of teaching set data to conduct experiments with this program.  

I have prepared and used such file, also calling it Default teaching set 04.txt, but this time placing it 

in such a position that it is connected with Example 04 program. 

The content of that teaching set is quoted below:  

5, 3 

A typical object that should be accepted by the first neuron 

3, 4, 3, 4, 5 

1, -1, -1 

A typical object that should be accepted by the second neuron 
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1, -2, 1, -2, -4 

-1, 1, -1 

A typical object that should be accepted by the third neuron 

-3, 2, -5, 3, 1 

-1, -1, 1 

An untypical object that should be accepted by the first neuron 

4, 2, 5, 3, 2 

0.8, -1, -1 

An untypical object that should be accepted by the second neuron 

0, -1, 0, -3, -3 

-1, 0.8, -1 

An untypical object that should be accepted by the third neuron 

-5, 1, -1, 4, 2 

-1, -1, 0.8 

An untypical object that should be rejected by all neurons 

-1, -1, -1, -1, -1 

-1, -1, -1 

The program, which you will study, informs about the state of teaching process and values of 

particular variables in a little bit less detailed way than previously described program (Example 03). It 

results from the fact that by using the bigger number of neurons, too precise view into what every 

single neuron performs can turn out inconvenient – the program would shower you with 

information. It would be difficult to find this essential information among all of them.  
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Therefore the insight into the teaching process given by Example 04 program is more synthetic – for 

each of the three neurons of considered networks instantly, as you can see in the example in figure 

no 5.8.  

Fig. 5.8. State of network condition at the beginning of teaching process in the Example 04 program 

However it does not interfere with getting a view into the most essential aspect– into the progress of 

the teaching process, which can be seen by comparing the figure no 5.8 with the figure no 5.9. 
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Fig. 5.9. State of network condition at the end of teaching process in the Example 04 program 

The described program, for the same reasons which were mentioned previously, shows network 

behavior  during exam (fig. 5.10) also in a little more synthetic way, which does not disturb the 

efficient judgment if the network works correctly or not.  

As you can see in the figure no 5.10 – the network after teaching process is able to work quite well 

with the object which has not been shown in the teaching data, but is similar to the object which 

should have recognized the specific neuron correctly (in this example - the first one). 

Let’s notice that during exam only the first neuron has positive value of output signal, which 

definitely and unambiguously points to the fact  that the recognition process has been finished 

successfully.  

However the ambiguity of this situation causes that neurons no. 2 and 3, which should have 

definitely renounced this object, have doubts – their answers were hesitant and uncertain.  

This situation is quite typical.  

Requiring the generalization  of the knowledge, obtained in the process of teaching, from the 

network, we can  almost always notice its uncertain behavior. It is based on the fact that it is easier 

to achieve the success (for example correct positive recognition) than to get great certainty and 
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reliability of network actions, in reference to cases that should be definitely and strictly rejected by 

it.  

Fig. 5.10. Characteristics of network examination in the Example 04 program 

During the observation of the network teaching process, you can surely notice that among demands 

which you make during the teaching process (in the form of suitable examples included in a set of 

teaching data), there are some which are easily and quickly solved by the network, and some other 

which are much more difficult to solve.  

In reference to the previously shown example of the file Default teaching set 04.txt, all those tasks 

are easy,  in which there is the necessity of correct recognition of the specific – typical or untypical – 

target standards by specific neuron. On the contrary, the example of the object which should be 

rejected by all the neurons, turns out to be difficult to teach. In the figure no. 5.11 I showed one of 

the very distant stages of the teaching process, where correct recognition of specific objects happens 

almost correctly, and the object that should be rejected – as you can see in the figure – is still making 

causing trouble.  

Moreover – you can notice that repeated unsuccessful attempts of adapting network to solve this 

difficult task as well, lead to deterioration of up-to-now relatively well skilled network in the scope of 

solving elementary tasks (which means the typical object recognition).  
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Fig. 5.11. Network teaching in case of recognizing the inconvenient examples 

If you encounter this situation in practice – instead of struggling and teaching the network 

unsuccessfully for a long time –just think if it is possible to reformulate the task being solved in order  

to prevent such a situation.  

Usually the removal of one or few troublesome examples from teaching data radically improves and 

accelerates the  teaching process.  

How strongly it improves the skills of learning, you can see for yourself by removing the  proper 

fragment from Default teaching set 04.txt file and by teaching the network again – but now without 

this troublesome element.  

You will certainly notice a beneficial change of speed as well as the effectiveness of teaching.  

5.6. What are the possibilities of using such simple neural networks? 
 (Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

I will surely not surprise you (and I also hope that I will not make you sad), if I confess that the 

network (which you have investigated a moment before) is not the largest and the most complicated 

neuro-computer that has ever been built in the world. 
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To tell you the truth, it was so simple that for some of the readers it seemed to be almost primitive. 

However even this simple network showed quite interesting forms of behavior and was able to deal 

neatly with fairly complicated tasks – because collective action of many neurons opens a really wide 

range of varied possibilities.  

Now allow me to make a bit more general remark, namely, it is easy to notice that there are some 

similarities among single neuron and entire network possibilities.  

Therefore, the network can be investigated as the cooperating neurons collectiveness, and the  

knowledge of single neuron’s behavior can be transmitted into the entire network in a quite natural 

manner.  

However there are some uniquely connected possibilities with the network, which a single neuron 

did not supply. 

For example the networks, even so simple, as these described here, enable us to enter boldly in the 

space of solving multidimensional problems, that in other mathematical and computation methods 

can often cause really serious difficulties. To realize that, enlarge the network dimension in a proper 

way  by assuming the larger value for a number of inputs and outputs to try to use the network for 

some practical tasks.  

The network can be especially used for modeling different complex systems, in which many causes 

(input signals) influence the occurrence of many results (output signals). You can find out, how many 

of these applications exist, for example by writing into the Google search engine the headword 

“Neural Networks Modeling” . I have just found the information , that these described examples can 

be viewed almost 30 million times in the Internet. It would be difficult to find so many practical 

applications of use for a single neuron!  

Apart from creating the neuron models of different complex systems, we can use these simple linear 

neural networks (like those described here) to adaptable signal processing.  

This is again a huge and a very popular discipline – I do not even want to tell you, how many articles 

Google browser found, when I wrote in the headword “Signal Processing”.  

It is because of the fact that the digital technique created a possibility of computer (and also neuron) 

processing for many more varied signals– for example speech transmission by phone, pictures 

recorded by camera or video camera, signals describing patient’s body condition, delivered by a 

modern medical equipment, the results of scientific experiments, usually producing huge quantity of 

signals, records from control-measuring equipment in industrial automatic systems – and many 

more. 

I think that it would be good to take a short look at this wide, important and interesting discipline, 

because a signal filtration itself (that is erasing these noises from the signals, which impede 

perception, analysis and interpretation of data)  forms particularly attractive area of implication for 

neural networks.  
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5.7. Can network be taught signal filtering?  
 (Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

Imagine that you have some signal with some  noise put on it.  

Telecommunication, automatic, electronics and mechatronics engineers torture themselves with 

such signals every day, so the above situation is not strange. 

If you ask one of those experts, what should be done to clear the signal from the noise, then with 

feeling of superiority you will be instructed that you should use a filter.  

If you tackle matter more precisely, you will get to know that a filter is a device (usually – electronic) 

that allows to pass the useful signal , but stops the noise.  

It works very good, and as the result of that fact we have efficiently working phones, radios, TV-sets 

etc.  

But each expert will confirm that it is possible to create a good filter only when the noise has some 

property which is not present in the useful signal. 

If something has this property – than it should be stopped by the filter as a noise.  

If it does not have this property – than it is allowed to pass. 

It is simple and effective!  

However,  to get the system work you have to know a lot about a noise, that disturbs your signal. 

Without the needed knowledge you will not create a filter, because the filter does not possess the 

data, which information should be kept and which should be stopped.  

Unfortunately, it often happens that you do not know what the source of the noise disturbing your 

signal is, and what its properties are.  

If you send a probe rocket somewhere far away into space with the intention to gather signals 

describing for example an unknown planetoid – then you do not know, what rubbish may come and 

hang about with signals from the probe during its journey over millions of kilometers in 

interplanetary space.  

How to create a filter then?!  

Yet, it is possible to separate a useful signal from unknown noise by using adaptive filtration method.  

In this case adaptive means teaching the signal receiving device the previously unknown rules of 

separating the signals from noise. Particularly, the neural networks can be trained to filter  and select 

signal from noise.  

To achieve this, samples of disturbed signal are treated as input signals for network, and “clean” 

signals are used as output signals. 
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After some time the network will learn to select the undisturbed output signals from disturbed ones 

and will be able to work as a filter. 

Fig. 5.12. Disturbed signal which has to be filtered by neural network 

Let’s consider a real example.  

Let’s take a standard signal – for example a part of sinusoid signal – both a “clean” and a disturbed 

one.  

At the beginning the 

program will 

automatically project 

this window and will 

ask for filling in the 

indispensable 

parameters needed to 

create used signals and 

to define the 

configuration of the 

network

At the beginning the 

program will 

automatically project 

this window and will 

ask for filling in the 

indispensable 

parameters needed to 

create used signals and 

to define the 

configuration of the 

network
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Fig. 5.13. Standard signal which has to be reconstructed by neural network 

These signals – in the form of a file which allows to teach networks– can be created by Example 05 

program.  

This program will automatically produce a file with data called teaching_set, which can be used to 

teach a simple network.  

The window in which you can modify the required parameters to generate this file, appears  when 

we start the Example 05 program.  

This window is shown in the figure 5.12. 

Unfortunately, in this window the program demands from you to give the network size (Network 

size), expected noise value (Noise level measure), frequency (Frequency) and number of teaching 

steps (Number of teaching steps).  
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Fig. 5.14. Results of signal filtering after one step of teaching process 

Looking at all these needed details, you can definitely become discouraged from the fun of working 

with this program, because it looks mysteriously and vague, and in addition where would you know 

these all necessary values from? It is not as bad as it seems, though. 

Looking closely at the described window, you will find some information written in each of the 

windows.  

These values are selected and tested by me for the program to work well and show interesting 

effects. Therefore if you do not have better ideas, then at the beginning you can use these default 

settings and simply (without further ado) accept it by clicking the button Apply. 

Of course in future, when you have the will and ability, each of these values can be changed at will – 

at least just to observe “what happens, if”.  
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Fig. 5.15. Results of signal filtering after five steps of teaching process 

The freedom, that the program gives you in this field, is very large.  

The values that have been already introduced, can be erased any time (Cancel button), and you can 

also immediately reconstruct again all the settings designed by me using Default button. As the 

result the Example 05 program can really be liked, , despite the unfriendly impression you can have 

at the beginning, and by using its operations, you can observe the work of the network, which will 

learn to filter the signals by itself. 

During the experiment the network will be correcting signal step by step, but  every time you can 

observe what the not-filtered signal (fig. 5.12) and the original signal, that is the signal without noise 

(fig. 5.13) look like.  

To achieve this aim, it is enough to mark proper option (reference or noisy) in Show signal group in 

the range of  the right margin displayed by the program on the screen.  

Now, let’s take a look at how it works. 
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Fig. 5.16. Results of signal filtering after twenty steps of teaching process 

The first results of filtration, after few steps, are not very promising (fig. 5.14 and 5.15), but the 

constant teaching of the network (by repeated clicking the button Next) leads to the fact that finally 

the well trained network learns to filter signals in a nearly perfect way (fig. 5.16). 

The teaching process can proceed automatically or step by step. 

It  means that the program shows, at your request, all its mysteries or can pass many stages of 

teaching automatically, during which the network makes its work perfect, and you can view only the 

final effect at ease.  

You decide about the teaching mode of the process, depending on your choice of Simulation mode 

group(Auto or Manual). 



163 
 

 

Fig. 5.17. Estimation of effectiveness of signal filtration after twenty steps of teaching 

At the beginning, during first experiments, it is worth to observe step by step how the network 

teaching process  proceeds, and if it is the case, one should choose Manual mode.  

During next experiments it is possible to modify the number of steps (by using Menu->Configuration 

option on the upper edge of our program’s window) and try the longer teaching – for example 50 or 

100 steps using Auto mode. 

The results are very informative, so it is worth to make an effort! 

As you can see in the presented examples – the network really learns and improves its work in such a 

way, that after some time (pretty short!), it quite effectively erases accidental disturbances 

appearing in the original signal. 

Filter effectiveness, which is generated as the result of using the network teaching process, can be 

estimated by putting the picture of the signal before filtering on the process of the filtrated signal 

(fig. 5.17). 
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Fig. 5.18. Results of filtration of a moved signal after one step of teaching 

While experimenting with the program you will see that the network can really learn to filter the 

signal and after some time performs this task quite well. 

It is also easy to notice that the most difficult task is to teach the network to reproduce signal in a 

place, where the values of the standard signal are small (particularly if they equal zero), therefore in 

the Example 05 program it is possible to use two versions of network teaching  – first with the 

original sinusoid signal, and after that by sinusoid signal moved in such a way that the values 

processed by the network could be only positive.  

You choose the option with the window “choose case” (Choose case on the right side). 

At the beginning, the results in the second case (definite in Choose case window as “with 

displacement” – With shift)  seem to be worse (see fig. 5.18), however persistent network teaching, 

in this case, gives much  better results than the mentioned  before  (fig. 5.19).  
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Fig. 5.19. Results of filtration of a moved signal after twenty steps of teaching 

The observation of the network behavior in both considered variants will help you in the future to 

detect and analyze the causes of possible failures in the process of using the network to much more 

complicated tasks. 

I hope that the teaching process of the network filtering the signals was  interesting for you and 

helped you to understand how and in what way the network performs tasks during its work 

improvement.  

However, taking into account the entire attractiveness of tasks which were solved in this chapter by 

us I have to confess that the linear networks are just ‘the kindergarten’ of the neural networks, they 

are some kind of  warm up. 

These networks can only be single layer (if you want to know why – look at the end of chapter 3 of 

my book entitled Neural Networks, it is not possible to explain that without mathematics, but I have 

promised not to use it here), meanwhile the cerebral cortex is MULTILAYER...  

So, the real adventure will really begin when you create and activate your first multilayer network 

created from nonlinear neurons. 

As you can guess yourself, it will happen quite soon – in the next chapter… 
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5.8. Questions and tasks to individual solution 
 (Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

1. Why during network teaching process of much complicated tasks do we use teaching set saved 

on a disc, and we do not teach networks by giving the proper data to the program  using a 

mouse or keyboard? 

2. What is the reason why the chart in figure 5.4 (and many other charts of error changes, which 

you will observe during teaching process) apart from unlucky declining tendency, that 

determines the progress of teaching and systematic error reduction, has “protuberances” 

upstairs? Does the neuron suddenly ‘go crazy’ from time to time? 

3. Try to estimate (on the basis of experiments described in this chapter) to what degree the 

teaching process, in the form of a particular behavior, has the influence on the final result, 

and on the contrary, to what degree “ the inborn abilities” which result from a random 

initialization of  the parameters ranging in the network influence its work? 

Can you draw some practical conclusions about the influence of your education on your life 

career? 

4. Try to establish by experiments (starting many times Example 03 program), what the most 

profitable value of teaching ratio (Teaching ratio) is in the task that was solved by the above 

described network. Will, in your opinion, in another task, described by completely different 

teaching set, the optimal value of teaching ratio be the same – or maybe other? 

5. Think when you can use bigger values of teaching ratio (Teaching ratio): in the tasks that are 

easy to solve by the neural network, or in the tasks that are difficult and complicated? 

6. Try to invent and use another teaching set cooperating with Example 04 program, with the use 

of editor Notepad of Windows system or (better) with the use of specialized tool that is 

Visual Studio, then save  the new content in Default teaching set 04.txt file.  

Try to come to the point when Example 04 program becomes a universal tool for you, which 

enables you the solving of different tasks, depending on a teaching set,  randomly selected by 

you.  

7. Prepare a few files with different teaching sets and try to compare, how well the network can 

be taught, in case of each different task.  

Establish, what degree of task difficulty (measured by the degree of similarity of data sets 

describing these objects – especially atypical – which have to be distinguished by the 

network) influences the time of teaching and level of network errors, after finished teaching 

process. Try to find such a difficult task, that the network will be unable to learn, no matter 

how long the teaching process is. 

8. Examine, how the teaching process of Example 04 program proceeds in relation to  initial 

weight value, teaching ratio and different modifications of teaching set. 
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9. The neural network that learns the adaptive signal filtration has at its disposal: the signal 

disturbed by noise and the standard of undisturbed signal. 

 Why isn’t only the disturbed signal(noise) used as a model during network teaching? 

10. The figures no 5.18 and 5.19 show, that the filtration conducted by Example 05 program is 

better in the upper part of chart than in the lower. Why? 

11. Task for advanced students: 

Example 03 program used the teaching neural network to create a classifier (a network, 

which after being given a specified set of inputs signals would produce a signal on output, 

which could be interpreted as an acceptation of object described by data or absence of such 

acceptation). 

Examine how this program will behave, when it is forced to learn a more difficult trick: 

calculation on the basis of inputs data value, the definite output value. 

This network will be able to work as model of some simple physical or economical 

phenomenon.  

That is example data set in the form of Default teaching set.txt, for which this model can be 

created (only two inputs for the network were assumed, in order not to use too much 

teaching data): 

 2, 1 

 Observation 1 

 3, 4,  

 -0.1 

 Observation 2 

 1, -2  

 0.7 

 Observation 3 

 4, 2  

 -0.2 

 Observation 4 

 0, -1 
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 0.3 

 Observation 5 

 4, -5 

 1.9 

 Observation 6 

 -3, -3 

 0.6 

 Observation 7 

 -2, -4 

 1 

 Observation 8 

 3, -2 

 0.9 

 Observation 9 

 -1, -1 

 0.2 

Make sure, that the program gives solutions for another (not used during teaching) data set 

correctly, knowing that the teaching data were obtained from the problem described with 

equation y=0,1X1-0,3X2. 

12. Task for advanced students: 

Example 05 program is a program that illustrates the work of adaptive filter based on   the 

neural network being taught, and not working program, which is designed for practical uses. 

 However the same network can be used to filter other signals – for example ECG record. 

This signal in digital form is surely not at your disposal, but try to use proper modified 

network for others signals – for example filter a sample of sound in the form of WAV or MP3 

file. And if you like particularly difficult tasks then think about how similar rule of adaptive 

filter network can be used for picture processing? 
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6. Nonlinear networks 

6.1. Why do we need non-linearity? 
 (Translation by Weronika Łabaj, weronika.labaj@googlemail.com) 

Linear systems (not only neural networks but all linear systems in general) have number of nice 

qualities. Their behaviour is well-known and predictable, mathematical description is simple and we 

are always able to find a solution. You might ask what’s the point of leaving that comfortable, cosy 

room and replace it with complex and difficult non-linear networks. Does it make any sense? 

Well, we have to do it, as it happens. 

- Why? 

There are number of reasons (you will learn about them later in that chapter), but for the time being 

let me only say this: Using network created from non-linear neurons we can solve many more types 

of problems than when using the linear ones. With linear network we can only find solutions of one 

class of problems - where the correlation between output and input signals is linear. Non-linear 

networks are much more flexible. 

If you are fluent in math it should be clear by now what the problem is. But if math is not your strong 

suit don’t worry. In that book you won’t find any single mathematical formula. I’m not going to leave 

you alone right now in fear that above explanation wasn't clear enough. Is there anything 

extraordinary in a fact that network created from linear neurons deals only with linear functions? At 

first it might seem to be a bit confusing. 

If you were fluent in math I would only say (and that explanation should do) that in case of linear 

transformation we can use transformation matrix to get the output of the network being given only 

the input signal. Output signals are vectors in that case. Well great, but for you matrix is probably a 

Hollywood blockbuster, so I'm afraid that my explanation might be not clear enough yet. 

So I’m going to compare linear and non-linear transformations by showing their basic properties, 

that is homogeneity and additivity (also called superposition property). You don’t have to 

remember those complicated words, it doesn't matter. What is important is getting the idea of what 

they stand for.  

Homogeneity means that if the argument is multiplied by a factor, then the result is multiplied by 

some power of this factor. You can think of it as a cause (or trigger)  and result. It doesn’t matter 

what the cause and result represent in the real world. Just remember that if you know the cause you 

can predict the result because you're familiar with the rule, the correlation between them. 

Multiplicative scaling behavior isn’t the only possible linear correlation though. Quite contrary, in the 

real world you can find many examples of correlations in which you don't observe multiplicative 

scaling. For example you know that the more you study the better your grades are. So one can say 

there’s a direct correlation between your efforts and grades you get. We can present it as a kind of 

transformation. However it's not true to say that if you learn twice more than your grade will be 
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twice better. So the correlation between your efforts and grade is non-linear one because it's not 

homogenous. 

The other requirement of linearity is additivity. It’s also quite easy despite its complicated name. 

When investigating some kind of transformation you check how does it behave after triggering it and 

then what is the result when the cause (trigger) is modified. You know the end result for the first 

trigger and for the second one – then we try to predict what will be the result if both of them work 

simultaneously. If the result is the exact sum of the results we got using triggers separately then the 

phenomena (and therefore the transformation or function we study) is additive. Unfortunately we 

don’t know about many processes and phenomena that are additive - they simply aren't common in 

nature. If you fill up a pitcher with water then you can put flowers in it. If it falls from the table – it's 

going to lie there. But if you fill up a pitcher with water and it falls from the table you’re not able to 

put flowers in it. A pitcher full of water falling from the table is going to break for sure. The fact of 

breaking the pitcher is therefore non-linear phenomena and can’t be predicted as a simple sum of 

the activities that were studied separately. 

While creating mathematical descriptions (models) of systems, processes or phenomena we prefer 

linear functions as they are actually easier to use. If we want to use them in neural network it's really 

great, as it's going to be probably nice and simple network. 

Unfortunately, many systems, processes or phenomena can’t be put into “frames” of linearity. We 

have to use complex non-linear mathematical models for them –or – what is easier and more 

comfortable – we can create non-linear neural networks that model those systems, processes or 

phenomena. In that case neural network is extremely powerful and efficient tool. In a huge, 

multilevel linear network the correlation between the input and output can be actually anything. This 

fact can be derived from one of the basic mathematical theorems about function interpolation and 

extrapolation, linked with a great Russian mathematician - Kolmogorov. 

It isn’t the right place to go into details in here, the problem is highly theoretical and mathematical. 

So for the time being it’s enough to simply trust me. Let me only assure you that superiority of non-

linear networks over linear ones isn’t only academic problem (such as “scientific” discussions on 

Easter being better than Christmas) but is an extremely practical issue. There are quite a lot of 

problems, very practical problems that can be solved only with non-linear networks, linear ones 

wouldn't do for them. One of the programs you’re going to study in this chapter is going to make it 

clearer but for now try playing with some other programs showing how the non-linear networks 

work and what are their capacities. 

6.2. How does nonlinear neuron work? 

Not translated yet … 
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6.3. How does work network made from nonlinear neurons? 
(Translated by Michał Majewicz, mmajewicz@gmail.com) 

In the above described program, you used a neuron, which output accepted two values, which could 

be associated with the acceptance (recognition) of certain set of signals or with its total rejection. 

This acceptance or rejection is often connected with recognition of an object or a situation, that is 

why networks built with those neurons, which you examined in the program Example 06a, are often 

called perceptrons. 

Perceptron types of neurons generate on their outputs only two types of signals: 1 or 0.  

It represents the rule (in limited mark) known from neurophysiology as “Everything or nothing”, 

referring to the typical act of a real biological neuron. This is how the above described program 

Example 06a acts and with such neurons you will build all consecutive, described in this books 

networks. Now you will trace a way of acting and learning of a group of bipolar neurons by studying 

an example of simple one layered, nonlinear network, built with this type of neurons. Such network 

is described in the next program Example 06b. For teaching network from this program, you can use 

the file Default teaching set 06b.txt, defaulted by Example 06b and containing examples, witch 

which you will teach your network what to do.  

This file may have for example the following structure: 

5, 3 

A typical object that should be recognized by the first neuron 

3, 4, 3, 4, 5 

1, -1, -1 

A typical object that should be recognized by the second neuron 

1, -2, 1, -2, -4 

-1, 1, -1 

A typical object that should be recognized by the third neuron 

-3, 2, -5, 3, 1 

-1, -1, 1 

Content of a similar file has been earlier discussed, so it seems, that there is no need to repeat a 

detailed discussion of its content – however if you have some doubts at this point, look up the 

previous chapter. 

Comparing presented above file to the one you have used earlier, notice, that it suffices a small 

number of examples, because – as you will find as soon as you start the program – the nonlinear 
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network can learn very quickly. Usually4 suffices just one step of learning to eliminate appearing 

errors (Fig. 6.5). 

 

Fig. 6.5 Just in the first step of teaching of nonlinear network one succeeds  

to remove majority of the errors 

On average the network is totally taught after 6 - 7 steps and then one can conduct the examination. 

An exam evidences, that network not only quickly learns, but also nicely generalizes the captured 

knowledge (Fig. 6.6). 

 

                                                           
4 Conditional form of this statement results from the fact, that in neuronal networks, one can never be 

completely sure of everything - each try, each step of the teaching process may be different, because random 

factors have strong influence on the final result. These factors are never identical twice. Completely as in life, as 

in your life! 



173 
 

 

Fig. 6.6 Nonlinear network well generalizes knowledge, gained during teaching 

The effect of the knowledge generalization in the neuronal networks has always been and is very 

important. What would be the benefit if you taught a neuronal network a series of tasks with the 

correct solutions when you would later recognized that network cannot solve any other task but only 

those that you taught it earlier? After all there is no need to solve tasks from teaching set, because 

solutions for these cases are already known. What you really need is a tool, which first learns solving 

tasks from a teaching set and later can also solve other tasks. Fortunately neuronal network can 

generalize knowledge, by also skillfully solving these tasks, which are not included in the teaching 

set, but in a sense are similar to those teaching tasks (they are based on the similar logic of the 

relationships between input and output).  

The property of the generalizing of knowledge is one of the most important features of neuronal 

network, that is why I encourage you to check how far can you disturb the input data in relation to 

the data on which the network has been taught, so the results generated by the network were still 

sensible and could be recognized as the effect of generalizing gained knowledge, but not entirely free 

fantasizing – of which the network is also capable! I warmly recommend that you try yourself again, 

to “bully” the network in several other ways – and I am sure that you would adjudge its superiority 

over linear networks! 

6.4. How to present action of nonlinear neurons? 

Not translated yet … 

6.5. What are the capabilities of multilayer network of nonlinear 

neurons? 
Not translated yet … 
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6.6. How the learning of nonlinear neuron proceeds? 

Not translated yet … 

6.7. Which research can be performed during the neuron learning? 

Not translated yet … 

6.8. Questions and tasks to individual solution 
Not translated yet … 
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7. Backpropagation 

7.1. What is backpropagation? 
(Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

In the previous chapter we were discussing some chosen aspects of functioning and teaching a 

single-layer neural network built from non-linear elements. Here, we continue the analysis showing 

how the multi-layer non-linear networks can work. Such networks have, as you already know, more 

significant and interesting possibilities – which you may have found checking the functioning of the 

program Example 06. Today we will talk about how such networks can be used and taught.  

You have already got the information that we are going to build multi-layer networks from non-linear 

neurons. You also know how a non-linear neuron can be taught (revise the program Example 06). 

However, you do not know (and even if you know you have not felt it!) that the basic problem with 

teaching such multi-layer neural networks built out of non-linear neurons is the problem of so-called 

hidden layers (fig. 7.1).  

 

Fig. 7.1. Hidden layers in a multi-layer neural network 

What does this problem mean? 

The rules of teaching that you have acquired in the previous sub-chapters were based on a simple 

but very successful method: each neuron of the network individually introduced corrections to its 

working knowledge (by changing the values of the weight coefficients on all its inputs) on the basis 

of the known error value which has been made. In case of single-layer network the situation was 

simple and obvious: output signal of each neuron was compared with the correct value given by the 

teacher which gave the sufficient basis to correct the weights. In case of multi-layer network the 

process is not so easy. Neurons of the final (output) layer may have their errors estimated in quite 
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simple and certain way – as previously, by comparison of the signal produced by each neuron with 

the model signal given by the teacher.  

What about the neurons from the previous layers? Here, the errors must be estimated 

mathematically because they cannot be measured directly – we lack the information what SHOULD 

the values of the right signals equal, because the teacher does not define the intermediate values, he 

or she only concentrates on the final effect.  

A method, which is commonly used to “guess” the errors of neurons in hidden layers is the method 

called backpropagation (backward propagation of errors). This method is so popular that in most 

ready programs which are used to created networks models and to teaching networks – the method 

is applied as default method, although there are currently many other teaching methods, for 

example an accelerated method of this algorithm called quick-propagation, as well as methods 

based on more sophisticated mathematical methods such as conjugate gradient method and the 

Levenberg-Marquardt method. The mentioned methods (with at least a dozen more which are even 

more sophisticated) have such advantage that they are very fast. But such advantage occurs only in 

case when the problem which should be solved by the neural network (by finding out the method of 

its solution on the basis of teaching process) meets all sophisticated mathematical requirements. 

However, in most cases when we know the problem which should be solved by the network we do 

not know if the problem meets such complicated assumptions or not.  

What does it mean in practice? 

In a nutshell, the following situation occurs:  

We have a difficult task to solve, so we take a neural network and we start to teach it with the use of 

one of those sophisticated and modern methods – for example we use the Levenberg-Marquardt 

algorithm. If we had that kind of problem, how easy the network can be taught with the use of this 

method – then the network would quickly be well trained. But if not so, and in case such modern 

algorithm will endlessly lead us astray and the network will not learn anything – it means such 

theoretical assumptions are not met from the beginning. On the contrary to the previous method, 

the backpropagation, which I shall present in this chapter, has such nice advantage that it works 

independently from whatsoever theoretical assumptions.  

It means that, contrary to the other clever algorithms which sometimes work, the backpropagation 

method always works. Of course, sometimes it may work irritatingly slow – but it will never let you 

down. It is worth to get to know the method, because those people who use the neural networks 

professionally often and willingly come back to this method as to a well-tried out partner.  

The backpropagation method will be presented in action through the analysis of behavior of another 

program which I will present here. Before it happens, however, we must come back to one detailed 

issue, which will be very important here and which has been a little neglected so far. I will tackle the 

problem of the shape of nonlinear characteristics used in testing neurons.  
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7.2. How to change the “threshold” of nonlinear characteristics of a 

neuron? 
(Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

In the previous chapter the analysed neurons were based on “all or nothing” rule. They could work on 

the basis of logical categorisation of input signals (true or false – 1 or 0) or could be based on bipolar 

characteristics (approval or disapproval, signals +1 or -1). In both analysed cases the transition 

between two different marked states had a sudden character: either the output signals (in sum) 

“exceeded the threshold” and then the signal on the output instantly equalled +1 or the output signals 

were so weak (“subliminal stimulation”) that there was no reaction (signal 0) or the reaction was 

totally negative (-1).  

What is more, the rule of zero value of threshold was assumed, which meant that the positive sum 

of input signal equalled +1 signal and the negative value was 0 (or -1) – which limited the 

possibilities of the analysed networks. By the way, when we discuss the transition of nonlinear 

neuron, it would be advisable to analyse also the notion of the value of threshold because in 

general cases it needs not to have zero value.  

In the non-linear models of neurons analysed today, the threshold will be released which 

will lead to achievement of moving characteristics with the possibility to chose the point of switch 

freely, with the use of parameter usually called BIAS in the programs for modelling networks. 

With the use of program Example 07a you will be able to draw out a family of threshold 

characteristics of neurons with changing value of BIAS – it will let you achieve a very good 

overview concerning the role of that factor in the shaping of the behaviour of single neurons and 

the whole networks. This program shows you what the behaviour of the neuron with freely 

shaped threshold can look like (fig. 7.2).  

 

Fig. 7.2. The family of the threshold characteristics of neuron with changeable BIAS value (view from 

program Example 07a) 
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7.3. What is the most common shape of the nonlinear characteristics 

of a neuron? 
(Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

The characteristics of the real, biological neuron are even more complex. Between the state of full, 

maximum stimulation (as physiologists say the “tetanus” stage) and the subliminal state in the form 

of no activity at all, the so-called “diastole” stage, there are many intermediate stages which may 

appear in the form of impulses with changeable frequency. In other words the stronger the input 

stimulus which reaches a given neuron by all its dendrites (entries) the bigger the frequency of the 

impulses on the output of the neurons becomes. It can then be assumed that in the brain all the 

information is transmitted with the use of PCM5 method which was invented by Mother Nature… a 

few billion years earlier than the engineers specializing in telecommunications! 

A full discussion over the issue of coding the signals of neurons in a real brain goes beyond the topic 

range of this book, but if you are interested in this topic – look through my book entitled Problems of 

Biocybernetics. From the point of view of only this subchapter one conclusion of such analysis comes 

to mind: it is possible (and purposeful!) to use neural networks built out of neurons on the output of 

which there are signals changing in a continuous way in the range from 0 to 1 or from -1 to 1.  

Such neurons with continuous nonlinear transfer function differ positively from linear neurons, 

which we dealt with for a long time in some previous chapters, as well as from non-linear 

discontinuous neurons introduced in the previous chapter which have only two allowed output 

signals. I am not able to present here all the advantages (particularly when some of them can only be 

described with the use of some mathematical theorems and I promised not to use even only one 

mathematical formula in this book), but even just theoretically you may easily guess that nonlinear 

neurons with continuous characteristics give – considerably – broadest range of possibilities. On the 

one hand they are nonlinear structures, so they can (contrary to linear neurons) form multilayer 

networks which enable finding (in the course of training) a totally unlimited dependence between 

the input and output. On the other hand, however, the signals in such networks can take any values 

in a fluent way which allows for the use of them in tasks where the calculations result of the 

neurocomputer should not be limited only to decisions of the “yes-no” type but should define a given 

value – for example the expected soaring in the stock market in lately fashionable networks which 

analyse the market and predict its changes.  

The second argument is less obvious but as important as the first one and it suggest the 

abandonment of the simple, “jumping” characteristics. Thus, in order to teach the multi-layer neural 

network it is NECESSARY for the neurons out of which it is built to have continuous and differential6 

characteristics. Proving that this notion is really easy would be considerably simple, but I do not think 

                                                           
5 It is a modern method of impulse coding of signals, used in modern electronics, automatics, robotics and 

telecommunications. 

6 Both notions – the continuity and the differential are of course mathematical notions and I promised you that 

there is not going to be any mathematics in this book. But if you do not understand at this point what those 

notions mean, this fact will not make the understanding of the rest of the text any more difficult, because the 

mentioned properties will not be further (openly) used. 
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that this book is the right place to present such proofs. But it is important to remember this fact – the 

transfer function of a neuron in a multi-layer teaching network must be sufficiently “smooth” if 

teaching should be conducted without interruptions.  

We could find many functions suitable for the role of transfer function for modeled neurons but the 

most popular is the logistic curve, called also (from the shape of its graph) a “sigmoid”. A sigmoid 

has the following advantages: 

=> provides a smooth transition between the values 0 and 1; 

=> has smooth derivative which can be easily and practically calculated; 

=> has one parameter (usually called “BETA”) the value of which allows for choosing the shape of the 

curve freely – from very flat one, close to linear function, to very steep, “relay” transition from 0 to 1. 

 

Fig. 7.3. Various forms of logistic curve (view from program Example 07b) 

Program Example 07b will allow you to get to know the function more deeply. It is easy to notice that 

by building the nonlinear transition function of a neuron the possibility of moving the “switch” point 

between the values of 0 and 1 with the use of parameter BIAS is taken into account, but you may 

additionally choose the steepness of the curve and general degree of the nonlinear behavior of the 

neuron (fig. 7.3).  

Logistic curve, the properties of which you explored in the experiments with the above mentioned 

program has a lot of applications in natural sciences. I may write something more about it one day 

but now I would like to say state only one thing: each development (for example a development of a 

new company or technology) goes right according with the logistic curve. Think for a while, and you 

will see that it is true: at the beginning the growth is small and the development is slow. As you 

gather experience, the money and other resources the development starts to accelerate and the 

curve rises up more steeply. In the moment of the biggest success, it the steepest section of the line 
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going up – a refraction appears and the curve begins to bend towards a horizontal line – at the 

beginning it is almost unnoticeable but later on radically leading to a stop in growth of the curve, that 

is to “satiation”. The end of each development is stagnation and then – which is not visible on the 

logistic curve – inevitable fall. But this is a topic for a totally different story… 

A variation of a sigmoid for bipolar signals (symmetrically arranged between -1 and +1) is a 

hyperbolic tangent. The name sounds dangerous, but it is really a very nice function. The best option 

is to see it yourself in the next program Example 07c. Was it true that this function is not scary at all? 

Once you know what the characteristics of nonlinear neurons look like – it is time to build a network 

out of them and start to teach it.  

 

Fig. 7.4. Various forms of hyperbolic tangent function (view from program Example 07c) 

7.4. How does the multilayer network constructed from nonlinear 

elements work? 
(Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

Multi-layer networks which are constructed of nonlinear elements are currently the basic tool to use 

neural networks in practical applications. There are a lot of ready programs which may be 

successfully used when needed. I will tell you about the ready programs modeling various kinds of 

networks (both commonly available – public domain and a lot of commercial ones) some other time 

because what I want to present here are two simple programs which will make it visible for you first 

how a multilayer network works (program Example 08a), and then (what you will find in the next 

subchapter) I will show you the program Example 08b, where you will find a method of teaching such 

a network.  

If you analyze those two subchapters carefully and conduct the experiments with the use of offered 

programs, you will be able to see yourself what this all backpropagation method is really about. I 

really encourage you not to hurry and to read very carefully, think it all over and precisely in person 

try out all what is going to be presented here, because backpropagation is the key and core of 

techniques in neural networks. When you get to know precisely and understand this technique – 
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most issues connected with networks will be easy and obvious for you. If you do not, however, get 

involved in this game which I offer to you here then you will not know exactly “what is going on”. I 

am sure you can live without it, but is it really worth it? 

Before you start the next programs – read a few additional remarks concerning how they work which 

is not (unfortunately) as obvious as the functioning of the simple programs I showed you before.  

Program Example 08a shows the functioning of complex network built out of only four neurons really 

precisely (it will be easier to follow them, see fig. 7.5) which form three layers – input, which cannot 

be taught (at the top of the screen), output, where the signals will be copied on the output of the 

network where they will be assessed and taught (at the bottom of the screen) and the most 

important hidden layer, presented in the central part of the screen. Neurons and signals in the 

network will be numbered with two numbers: number of the layer and following number of neuron 

(or signal) in a layer.  

And now a few words about the functioning of the program and instruction of use.  

At the beginning the program asks you to give it the weight coefficient for all neurons in the whole 

network (fig. 7.5).  

 

Fig. 7.5. Setting the parameters and input signals for the network in program Example 08a 

You should give exactly 12 of them, because – as I previously mentioned – there are 4 neurons being 

taught here (two in the hidden layer and two in the output layer) and each of them has three inputs 

(two from the neurons of the previous layer plus an additional input – also possessing the weight 

coefficient – connected with “the threshold” which presents, in a given network, the generator of the 

artificial, constant BIAS signal). When you work hard on that, think how nice it is in typical networks, 

which possess hundreds of neurons and thousands of weight coefficients, that you do not need to 

write in all the data personally but they are set on their own – automatically – exactly during the 

Each neuron of hidden layer 

receives 3 weights: for 

neurons (1,1) and (1,2) 

 

Each neuron of output layer 

receives 3 weights: for 

neurons (2,1) and (2,2) 

Inputs (1,1) and (1,2) 

introduce the external signals 

to the network 

Hidden layer 

Output layer 
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teaching process. In the program described here, I gave you the option of “writing in” all the 

parameters because I would really like you to have the chance to check if the results which are 

provided by the network on the output of its neurons are in accordance with those which you think 

should be right. In order to do it you will be able to shape the input signals to the network freely and 

observe the signals both on the inputs of neurons and on the outputs. For the lazy people there are 

of course the default values… It is best to chose simple whole numbers as weight coefficients and 

input signals because in this way you will easily check if the results which you achieve from the 

network are in accordance with those which you calculated yourself and you will check if you really 

know and understand what goes on in the network.  

After giving the coefficients you must additionally give the values of both input signals which the 

network will get on its inputs (fig. 7.5). Now is the moment when the program is ready to work. You 

must have noticed how the structure of the network is presented (places where particular neurons 

are placed and where particular signals will be displayed – see fig. 7.6.).   

 

 

Fig. 7.6. Beginning of the network demonstration in the program Example 08a 

If you click the button Calculate you start it and you will conduct the simulation process of sending 

and processing the signals in a modeled network. First – in each following layer there are calculations 

made and displayed (against a red background) of the sums of the values of signals multiplied by the 

right weights of input signals (together with BIAS component). Next, the calculated values of the 

output signals will be shown (“answers”) of particular neurons (also initially against a red 

background), which were created after pushing the summed input signals through transfer function 

(with the shape of a sigmoid). The roads of the signals being sent are marked on the picture (fig. 7.7.) 

in the form of blue arrows.  

Places where the program will 

display the calculated signals 
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Fig. 7.7. Visualization of the direction of signals transmission in the initial section of the network 

Next the answers of neurons of the lower layer become the inputs for the neurons of the higher layer 

and the whole process repeats itself (fig. 7.8).  

If you press the button Calculate again, you can observe the movement of the signals through 

following neurons from the input to the output of the analyzed model of the network. You can 

change the values on the inputs and observe the outputs – as many times as you want to check if you 

really understand correctly what really goes on in the network. I advise you to spend some time on 

detailed analysis and thinking over each number on the screen (you can even calculate it alone on 

your calculator to be sure the numbers are matching those which you would expect on the basis of 

your knowledge about neural networks) because only in this way will you know exactly and 

understand precisely what the network really does. 
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Fig. 7.8. The last stage of the functioning of the program – all signals have been calculated  

7.5. How can you teach a multilayer network? 
(Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

When the above described multilayer network, in which you personally give the weight values and 

signals, has no more secrets for you – try and introduce and start the same network but as a network 

which is learning. Program Example 08b will do it for you. After launching this program you must 

give the values of two coefficients deciding about the course of the teaching process. First of them 

determines the size of the correction which is introduced after finding each of the incoming mistakes 

and at the same time it marks the total speed of learning. The bigger the value of the coefficient you 

give, the stronger and faster the changes in the weights of neurons will proceed in the course of 

detection of mistakes while learning.  

This coefficient is called learning rate in literature and for this program I called it simple learning 

coefficient. This coefficient must be chosen very carefully because both too big and too small value of 

this coefficient drastically influences the course of learning. Fortunately, you do not have to wonder 

what value the coefficient should equal because I have found the right value and the program will 

suggest you this particular value. But if you want – you can change the given value of the coefficient 

for any other and then you can be surprised for a long time why has everything “gone wrong” – they 

say we live in a free country and everyone can do what they want!  

Second coefficient defines the degree of “conservatism” of the process of learning. In literature, this 

coefficient is defined as momentum, which means, as can be easily found in a dictionary, a physical 

quantity of momentum. If you want, you can use a Polish name but don’t be surprised later on when 
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your friends will talk about your suspicious activities connected with physical attractions* towards 

neural networks. This is why I left the original English name in the program. The bigger the value of 

momentum coefficient is, the more stable and safe the process of teaching becomes – but too big 

value may lead to difficulties in finding the best(optimum) values of weight coefficients for all 

neurons which may be taken into account in a network. Again I have found considerably right value 

of this coefficient. It is enough now to confirm both offered values by clicking the button Intro (see 

fig. 7.9). You can, however, try out your luck and find a better value. I wish you good luck – you may 

succeed! 

 

Fig. 7.9. Setting of the parameters marking the efficiency of learning in the program  

Example 08b 

After setting the coefficients, either chosen by you or given to you by me, the program presents you 

a window, with which you are familiar from previous experiments, and in the window you see 

particular neurons, values of signals, the weight coefficients and errors. To simplify actions the 

program has additional element introduced which explains and informs you in the form of subtitles 

on top of the screen what is going on in a given moment. Such simplification will become useful and 

necessary because the tasks of this new program will be more complex than those of the previous 

one – because this program will teach the network.  

7.6. What should be observed while teaching a multilayer network? 
(Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

The task of the modeled network is to identify the signals given on the input correctly. Ideal 

identification should display in the initial layer signal 1 on neuron assigned for a given class (either 

left or right): second neuron should of course give at the same time the value of 0. In order to assess 

the correctness of network functioning it is enough to set some less strict conditions – it is enough 

when the error on any of the outputs is not bigger7 to 0,5 because then the classification of the input 

signal given by the network does not differ from the classification given by the teacher. As a result – 

the notion of error (measured as divergence between the real values of signals on the input of the 

                                                           
* Translator’s remark– Polish word “pęd” is close to the word “popęd” in Polish language which signifies 

physical attraction to something and which in context sounds dubious. 

7 For example, for the input signals which appear is some stage of the learning process which equal -4,437 and 

1,034 the responses of the network are 0,529 and 0,451, which is qualified as an error because the objet with 

such co-ordinates should be classified is the second class and in the meantime the input of the second neuron 

is smaller than the first. On the contrary the second object of the teaching array presented by the program with 

co-ordinates -3,720 and 4,937 causes responses of 0,399 and 0,593 and may be considered as indentified 

correctly (it is also an object of the second class) although the value of mean squared error in both cases is 

similar (try to observe the similar situation during your experiments!) 

 

mailto:Piotr.Czech@polsl.p
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network and the values given by the teacher as model values) is not the same notion of the 

assessment of the correctness of solving the given tasks by the network, because this case is 

connected with the general behavior of the network and not the values of single signals. We can then 

more often “let it go” for the network, as long as it is able to give you the correct answer. The 

process of teaching with the use of backpropagation method is not likely to be tolerant, as you will 

see playing with the program. If the result on the output was supposed to be 1 and the neuron set 

the value of 0,99 – then this is an error and it should be corrected no matter how much the student 

cries and kicks in fury! (Oh, sorry, I went too far, we didn’t plan kicking in fury in our program).  

Such perfectionism is, as you can see, worth the trouble because when you make your values of 

signals perfect according to the suggestions of the teacher the network learns by the way to reach 

the given aims even more efficiently. A nice analogy with school comes to mind here – although the 

information received in the process of learning – say geometry – are not directly applied in practice 

(because in reality we never encounter ideal geometric figures) but the knowledge received for those 

ideal creations comes in handy for solving practical tasks which the life brings us (for example in 

order to decide, how much wire net you need to build a fence around a building site with given 

dimensions). If someone is not working hard when solving seemingly nonsense theoretical tasks, 

then he or she acquires the basis knowledge in a “so-so” way – he or she then gets into trouble when 

confronted with real, practical task. The better you learn to solve mathematical tasks, the more 

efficiently you will manage with problems in practice. It does not concern economy, however, 

because it is a dominating opinion in Poland that we should strive brutally at maximizing the profit, 

buying cheap and selling expensive – cheating the client whenever possible. Economy, according to 

professor Steczkowski from the University of Economy, has nothing to do with school type of 

mathematics and finds its ideal model only in plundering expeditions of the Vikings. It is then beyond 

question that learning the idealized physics helps in understanding the very practical techniques, 

knowledge of biology is helpful when you cultivate the soil and breed farm animals, and the 

knowledge of geography helps is spatial economics. Neural networks are, as you see, similar in this 

aspect. If you strive at achievement of ideal aims given in the process of teaching by the teacher they 

come close to the role set for them – the role of practically useful tool.  

Let’s come back to the discussed program. During teaching the network your role will be limited only 

to observation. It is enough then for you to sit, press any button and watch carefully what is 

happening on the screen. Everything is generated by the program itself – from the initial values of 

weights, input signals to the models of correct identifications. Some data is chosen for given 

networks at random (the initial weights and the input signals) but the models of correct 

identifications on the basis of which the network will learn are not random! Try and read yourself 

from the program or from the way it functions what rule works here because I don’t want to spoil the 

fun. Nevertheless, you don’t need to know this rule – it is enough if the network will find on its own 

what is happening – and will classify the signals correctly. You can be sure that the network can do it 

even if you can’t!  

And now a few remarks about the functioning of the program and its operation.  

At the beginning the program shows only the structure of the network and you are kindly informed 

about it in subtitles on top of the screen (in red color) – fig. 7.10.  
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Fig. 7.10. Presentation of the network structure 

 

Fig. 7.11. Network and its parameters 

Notice that the sources of “pseudo-signals” BIAS were marked this time on the yellow background so 

that they are not mistaken with the sources (and values) of the real signals taking part in the teaching 

process. Then, after pressing Intro again, the program will show you the values of weight 

coefficients - chosen at the beginning at random for all the input of all the neurons (fig. 7.11).  



188 
 

If you look closely at the network and its parameters – after next clicking of the button Intro the 

values of input signals will appear given by the neurons marked with numbers (1,1) and (1,2) – fig. 

7.12.  

                                    

 

Fig. 7.12. The input signals appear 

From this moment up the process of teaching begins, but you active role will be limited to clicking 

the button Next step further number of times to start and conduct a simulation of the modelled 

network (fig. 7.13).  

First, the signals calculated during sending signals from input to output will be shown for particular 

neurons. It is a phase of “forward propagation” – input signals are recalculated by the neurons on the 

output signals and the process is conducted on all the layers one after another – from the input to 

the output. This phase could have been observed by you earlier during the experiments with 

program Example 08a. Currently used program allows for observation of the course of the process 

with the very same precision. First the sums of values multiplied by the right weights of input signals 

(together with the BIAS component) are calculated and then the calculated values of the output 

signals (“answers”) of particular neurons are shown (the background is then in red colour) which 

were formed after sending the sums of input signals through transfer function with a characteristic of 

sigmoid.  
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Fig. 7.13. The view of the screen during the initial stage of simulation of functioning of the network 

 

Fig. 7.14. Network after finishing the stage of forward propagation 

Of course, the answers of neurons of the lower layer also form the inputs of the upper layer and that 

is why you can press the button Next step and observe the movement of signals through next 

neurons from input to output of the discussed network model. The target view, after conduction of 

many steps looks like it is presented in fig. 7.14.  
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After the output signals are fixed on both outputs of the network (after clicking the Next step button 

again) “the moment of truth” comes – the subtitles at the bottom show you the given signals (the 

models of the correct answers) for both outputs of the network (fig. 7.15) and then the errors are 

marked on the outputs of the network and the mean squared error of both outputs is shown. In the 

end the final mark is given for the whole network (fig. 7.16).  

 

Fig. 7.15. Confrontation of the results of network functioning with the model given by the teacher 

At the beginning the mark (given – of course – in red color at the bottom of the screen) will be for 

sure “BAD”, but then the network will start to learn and will reach the wanted “GOOD” marks. The 

moment the network (as a whole) makes a mistake – the errors of particular neurons should be 

calculated.  
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Fig. 7.16. Markings of the errors of output layer neurons and mean error of the whole network 

First the error values are marked for the output neurons of the network. Then the errors are 

recalculated into corresponding values on the inputs of neurons (that is why we need the 

differentiable transfer function of the neuron). Those errors transferred to the input are marked in 

fig. 7.17.  

 

Fig. 7.17. Transfer of errors on the inputs of neurons 
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Here comes the most important stage – propagation of errors to lower (hidden!) layer. The right 

values appear by the right neurons – first by their outputs and then by their inputs – fig 7.18.  

 

Fig. 7.18. The result of the backpropagation of errors 

When all the neurons have their error values marked - the next step of the program leads them to 

marking new (corrected) values of weight coefficients in the whole network. New coefficients appear 

below the previously used coefficients and thanks to such solution you are able to look at them 

closely to see how much and in what direction the process of teaching changed the parameters of 

the network (fig. 7.19).  

It is a very important moment in the experiment with the program. Though you can see a lot of 

information on the screen, you can see everything clearly on it – input signals, output signals, the 

errors, the old values of the weights and the new ones. Read everything carefully and think it over – 

the more detailed your understanding how it works is, the bigger chances you have for future 

successes in applications of networks.  

Further experiments with the program can be continued in two ways. If you decide that you want to 

see the whole course of iteration of the teaching process: the signals going up, the backpropagation 

of the errors and the changes of weights – you should press Next step button. You can also 

accelerate the whole process by doing next complete iteration that is “jump” way of leading the 

program to the moment when the new values of all the signals, error and new weights are marked. 

To do this, use the button Next iteration.  
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Fig. 7.19. Change of weight coefficients 

It is the most convenient mode of working on this stage because you will have to conduct a lot of full 

iterations before the network starts to act in the right way. Due to such solution you can, with the 

use of the program, easily and comfortably observe the teaching processes, changes of weights and – 

what is most important in the described algorithm – the process of projecting the error values set in 

the output layer backwards. You will see and try it out how the exactly marked errors of output 

neurons and the errors, calculated in the process of backpropagation, of neurons from remaining 

(hidden) layers enable you finding the needed corrections of values of weight coefficients for all 

neurons. You will also see that through gradual introduction of corrections the process of network 

teaching advances. I advise you to analyze it carefully. The example final result of teaching is shown 

in fig. 7.20.  
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Fig. 7.20. Final effect of the teaching process 

Getting to know the program Example 08b required some effort, for sure, because is a big and 

complicated program. But you achieved your own tool (which is easy to modify individually) which 

helps to acquire deeply and thoroughly the technique of backpropagation – one of the most 

important methods of teaching networks used in modern technology of neural networks. You got 

also something even more precious – the deep and reliable knowledge about what goes on in the 

network taught with the use of backpropagation method. You will see for yourself how precious such 

knowledge can be! 

7.7. Questions to answer and tasks to be solved individually 
(Translation by Piotr Czech, Piotr.Czech@polsl.pl) 

1. What is the reason why backpropagation is called backpropagation? What and why is “sent 

backwards” in it?  

2. What is BIAS and what is it used for? In what way does it the possibility to teach this parameter 

provided?  

3. Why are two values displayed in each neuron during the work of the program (Sum and Output)? 

How are they connected?  

4. What influence on the process of network teaching do the coefficients Learning rate and 

Momentum have? Revise the theoretical knowledge you have about it and then try to 

observe the influence on those parameters during the experiments conducted with the 

program.  



195 
 

5. What does the process of sending errors from the output of neuron (where it is marked) on its 

input (where it is applied for weight modification) mean?  

6. Which of the neurons of the hidden layer will be most heavily loaded with the error made by a 

given neuron of the output layer? What is that dependent on?  

7. Is such situation possible when the neurons of the output layer show errors and some neuron of 

the hidden layer has the zero error assigned (by backpropagation algorithm) and does not 

change its weight coefficients?  

8. How is the mean mark of the network functioning given? Can we assess the functioning of the 

whole network in some other way (and not single elements analyzed individually)?  

9. Task for the advanced students: Add a module to the program, which will show the changes of 

error values of the whole network and particular neurons in the form of graphs. Is it always 

so that if the functioning of the whole network is improved the errors made by single 

neurons of the network are minimized?  

10. Task for the advanced students: Try to expand the programs described in this chapter in the 

direction of using more input and output signals and bigger number of neurons, formulating 

(if you want to treat this task really ambitiously) more than one hidden layer.  

11. Task for the advanced students: With the use of network which uses bigger number of inputs, try 

to observe the phenomenon of throwing out the unnecessary information in the course of 

learning. To do so, give unnecessary information (such which have no connection with the 

required response of the network for example values from the generator of random 

numbers) to one of additional inputs. The other inputs should get all data required to solve 

the required task! You should observe that after a short period of learning the weights of all 

connections leading to such “parasitic” input to hidden neurons will take values close to zero 

and it means the idle input will practically be “amputated”.  

12. Task for the advanced students: The programs described in the paper presented the functioning 

of network displaying in all places the values of the appropriate parameters and signals. Such 

method of presentation made it possible to check (for example with the use of calculator) 

what the network does and how it works, but the program was not very clear and readable in 

quality observation of the courses of processes. Design and produce such version of the 

program which presents all values in graphic form which is easier and nicer to interpret.  
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8. Forms of neural networks learning 

8.1. How to use a multi-layer neural net for recognition? 
(Translation by Piotr Ciskowski; piotr.ciskowski@pwr.wroc.pl)  

Multi-layer neural nets, which you have studied thoroughly in the previous chapter, may be used for 

many tasks. Nevertheless, if we want to analyze their properties and the way they work, the most 

appropriate area is image recognition. Image recognition is a problem, in which a neural net (or other 

kind of a learning machine) decides on the membership of images to certain classes. The analyzed 

objects may be of various kinds – from digital camera images to scanned or grabbed analog images. 

We present a comparison of a digital and  analog image in fig. 8.1, in order to illustrate what we are 

talking about, but also to displease all those readers too much confident that “digital” always means 

“better”. 

 

Fig. 8.1. A comparison of  an analog and digital image 

This book is about neural nets however, not about images, so we are not going to go deep into the 

theory of image recognition, especially considered as picture recognition. Still it is worth noticing that 

the problem of recognizing images, namely pictures, actually started that field of research and gave 

name for it. The first (historical!) neural net built by Frank Rosenblatt (presented in fig. 8.2) was used 

to recognize images and that is why it was called a “Perceptron”. Please regard this picture (even if 

quite ancient and of poor quality) with the proper respect, as a relic of one of the first achievements 

in the discipline we are studying in this book. 

 

 

analog image digital image 
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Fig. 8.2. Rosenblatt’s „perceptron” – the first neural network recognizing images 

The meaning of the word “image” has been generalized so much that now neural nets are used for 

recognizing samples of sound signals (e.g. spoken commands), seismic or other geophysical signals 

(when searching for geological ledges), symptoms of patients to be diagnosed, scores of companies 

applying for loans – and much more. We consider all these tasks as image recognition, even if the 

above mentioned “images” are in fact, respectively: acoustic, geophysical, diagnostic, economical, or 

other. 

A neural net used for image recognition has usually got several inputs, supplied with signals 

representing features of the objects being recognized. These may be for example some coefficients 

describing the shape of a machine’s part, or the liver’s tissue texture. We often use many inputs as 

we want to show the neural net all the features of the analyzed object, so that the net is able to learn 

properly how to recognize it. However, the number of image features is much less than the number 

of image’s elements (pixels). If you supply the net with the raw digital image, then the number of its 

inputs will go into hundreds of thousands, or even a few million! That is why we practically never use 

neural nets for analyzing raw images. The nets usually “see” the features of the analyzed image, 

extracted by other independent programs outside the net. This image preparation is sometimes 

called “preprocessing”. 

A neural net used for recognition has usually got several outputs as well. Generally speaking, each 

output is assigned to a specific class. For example an OCR (optical character recognition) system may 

use over 60 outputs, each assigned to a certain character – e.g. the first output neuron indicates 

letter A, the second neuron – letter B and so on. We discussed that in chapter 2, if you would like to 

recall the possible output signals of a net used for recognition, go back to figures 2.30, 2.31 and 2.33.  

There is usually at least one hidden layer of neurons between the input and the output of the net – 

we will now study the hidden layer in a more detail. Generally speaking, there may be many neurons 

in the hidden layer or just a few of them. After analyzing briefly the processes going on in neural 

nets, we usually think that more neurons in the hidden layer give a more “clever” net. However, you 

will soon learn that it is not always worth having a net with large “built-in intelligence”, as it 

sometimes turns out to be surprisingly disobeying!  
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8.2. How I implemented a simple neural net for recognition? 
(Translation by Piotr Ciskowski; piotr.ciskowski@pwr.wroc.pl) 

We are now going to build a sample net with just two inputs. Fairly speaking, it is rather not possible 

to recognize anything based on just two features, and so neural nets are most commonly used to 

analyze multidimensional data, which need a net with more than two inputs. However, using two 

inputs in our example has one significant advantage: Each recognized object may be represented as 

a point on a plane. The first and the second coordinate of that point indicate the value of the first 

and of the second feature, respectively. 

 

Fig. 8.3.The way we present signals to the neural net 

I hope you remember a similar situation in chapter 6.4 where I suggested you imagining that a two-

dimensional input space is a brain of an animal having two receptors – e.g. primitive eyes and ears. 

The stronger the signal captured by the eyes – the point on the plane is more to the right. The 

stronger the sound – the point is higher on the plane. Please recall now that analogy and fig. 6.8 as it 

will be very useful also here. 

Due to this commitment every image that we show to the net (each „environment” in which an 

“animal” appears) may be shown as a point on an axes, or as a pixel on a screen, with coordinates 

corresponding to the features of the considered environment. We will use a screen of a fixed size, so 

first we should limit the values of our features. In the example considered here both features of the 

analyzed image will take values from -5 to +5. You will have to remember that scale when 

formulating tasks for the net.  

Each net has an output on which we observe its behavior. In our example there will always be one 

output. We have already interpreted its meaning in chapter 6.4, fig. 6.8. Let us recall: To each 

presented situation, the animal may react with positive or negative attitude, indicated by the intense 

red or blue color of our point, respectively. You will place our “animal” consequently in various 

environments, by supplying the net with various sets of input signals. Those signals correspond to 

different positions of the “animal” in the feature space (that is different features sensed by the 

animal). You will be able to prepare a map of places , where your “animal” feels good, and where it 

doesn’t. Such a map should be built of separate points, as it will be created by the program we are 

going to run soon (see fig. 8.4), yet for our comfort and to improve the visual appearance we will 

draw these maps a little “smoothed” (see fig. 8.5). 
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        Sound   the input for a specific environment 

 

         Light 

Fig. 8.4. An example of a „map” showing the “animal” 

which conditions  (regions of input space) it should accept 

and which ones it should reject 

 

Fig. 8.5. The same „map” as in Fig. 8.4., but smoothed a little 

As the net grows, we will more often observe intermediate states: partial disgust (light blue), a 

neutral attitude (light green) and partial applause (yellow turning into light red) – fig. 8.6. Just like on 

a map in geographical atlas – from the deep abyss of blue to the dark red of high enthusiasm! 

 

Fig. 8.6. A sample “map” of the trained “animal” at some stage of training 

Due to the fact that the net has only one output, it will be easy to show how it should work. By 

switching on a pixel corresponding to a certain input vector, you will see if that point is accepted 
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(red) or rejected (blue) by the net. Of course the data describing these points will have to be 

prepared by the program, as I will show further. 

You will see maps like these during net’s training. They will change many times, as the net will dislike 

something it approved some time ago or it will convince itself to something it used to reject. It will be 

very interesting to watch how the initial confusion turns into working hypothesis and then crystallizes 

into absolute certainty. It is not easy to illustrate these phenomena so suggestively for a multi-output 

net, but as I mentioned earlier in real systems you will usually see more than one output. 

Using only one output in our example has another advantage: you don’t have to worry which net is 

better – the one which classifies a signal into several classes at a time with the same confidence 

(while the proper class is one of all those indicated) – or the net with all responses weak, among 

which the strongest one is the correct class of the analyzed object. Multi-output nets may cause 

many other problems; therefore it is hard to judge the current performance of the net, its reaction to 

unseen situations (thus its ability to generalize its knowledge). In a one-output net the situation is 

always clear. 

8.3 How to choose the structure of the net for our experiments? 
(Translation by Piotr Ciskowski; piotr.ciskowski@pwr.wroc.pl) 

Program Example 09 allows you to experiment with the net. At the beginning the program shows a 

panel, in which you may define the structure of the net to be tested. The program will suggest some 

default parameters, which of course you may change, and that is what we are going to do at the 

beginning.  

Fig. 8.7. Defining the net’s structure in Example 09 

We have agreed that the net you are going to teach and analyze will have the structure: 

2 – xxx – 1, 

where the successive numbers stand for the numbers of neurons in the following layers: two inputs, 

one output, and some neurons (xxx is a number to be modified) in the middle. To define a specific 
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net, you will only have to specify the number and the order of hidden neurons (that is how many 

hidden layers to create).  

You will be able to define the number of neurons in each layer of the net, depending on how many 

layers you choose in the field Layers. When specifying the number of layers, remember that only 

these layers count which have neurons that are able to learn – that is why the output layer counts, 

although it contains only one neuron, while the two input neurons, which only accept input signals, 

do not count. Thus if you choose to have a one-layer net, you will get such a net: 

2 - 1 

and you will not be able to specify the number of hidden neurons as this number is already fixed by 

net’s architecture. If you choose a two-layer net, you will get the following structure: 

2 – x – 1 

and the field Neurons in first hidden layer will appear, where you will be able to specify the number 

of  hidden neurons – see Fig. 8.8. 

Fig. 8.8. Defining the net’s structure in Example 09 – in  case of a two-layer net  

Finally, if you choose a three-layer net (or just leave the default settings unchanged) you will get such 

an architecture: 

2 – x – y – 1 

and you will have to set the number of  neurons in both hidden layers (fields: Neurons in first hidden 

layer and Neurons in second hidden layer). 

Our program cannot simulate more than a three-layer net. You may change this significant limitation 

by yourself if you want to “play” a little with the source code. We chose to limit the number of layers 

as for big nets the program works slowly. You will see that a few hundred training steps (which is not 

much when observing the training process) will obviously take some time – even if you have the 

latest and fastest computer. 
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8.4. How to prepare recognition tasks for the nets? 
(Translation by Piotr Ciskowski; piotr.ciskowski@pwr.wroc.pl) 

After choosing the size of the net, and – if necessary – number of neurons in all its layers, we may 

proceed to the most interesting part – preparing the task to be solved by the net. 

 

Fig. 8.9. A sample training set generated by Example 09 

As you know, the idea of recognition problem is that for some combinations of input signals the net 

should react positively (“recognize” certain situations as nice images), while negatively for other 

combinations (“reject” those images that it doesn’t like). The information about what our net should 

like and what it should dislike – is contained in the training set. It consists of a certain number of 

points on a plane. Each of them has two coordinates – so that we know where to put a point on the 

screen, and the expected answer of the net: positive or negative – so that we know what color this 

point should be: red or blue. 

It is You that decide – where to put blue and red points, that is the desired areas of acceptance and 

rejection. I could suggest you prepare these data manually as sets of three numbers – two inputs and 

one output, but it would be tough for you to create a proper task this way, and the final image -  the 

desired net’s “preference map” -  would be hard to interpret. 

That is why I decided that the program Example 09 will generate examples automatically, while your 

task is just to show it the positive and negative areas. Again – I decided for You. I could have left the 

decision on these areas up to You – so You would specify the shapes of these areas only up to 

yourself  – but that would require including a graphical editor in our program, which would get 

complicated and hard to use. That is why we’ve got to find the halfway solution – the areas of 

positive decision, that is the fragments of input space, to which the net should respond “yes” (red 

points on the plot) will belong to three circles. This is quite a big constraint, but also a fast and 

comfortable way of preparing tasks for the net. You will be able to prepare really interesting 

problems for the net, by combining the areas of three circles, of any size and position. 
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You may set the coordinates of these three circles in the same window (the first one that appears 

after the program Example 09 starts) in which you defined the net’s architecture (fig. 8.10a). First 

two coordinates x and y define the centre of the circle, while the third coordinate defines it radius. 

You may set them independently for each of the three circles (Circle 1, 2, 3). 

a)       b) 

Fig. 8.10. a) An example of defining the net’s structure and the regions for recognition, 

b) A "map" of regions, for which the net’s should react with a positive and negative answer 

(after training) 

You are free to choose these parameters, but - as I have already mentioned – only that part of the 

plane is used in the recognition process, for which both coordinates are in the range (-5,5). Therefore 

quite a reasonable area for placing the points to be positively recognized is a circle with parameters 

0,0,3 

while you will not be able to such a circle in the screen 

10,10,3 

so it doesn’t seem to be useful in our experiments.  

After setting the parameters of the task to be solved by the net, you may see the result of your 

choice in the next panel, in which your net is simulated. To proceed to this panel press the Next 

button at the bottom of the window, see fig. 8.10a. The results of your decisions are illustrated by 

the “map” of positive and negative response areas of your net. 

This way you may easily check, whether your expectations on the areas to be learned by the net 

meet the reality or not. If you are not able to specify any task convenient for you – you may always 

go back to the previous panel by pressing the Back button, where you will be able to modify the 

centre coordinates  and sizes of the circles. 

Training will proceed in the following way. A random point will be chosen, for which the class will be 

decided according to your map. Then a set of two input coordinates and the desired class will be 

supplied to the net as an example from the training set. This procedure will be repeated many times. 
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Let us notice one detail, easy to be missed out. If you define the decision areas in such a way, that 

most of  the decision plane are positive (red points), then during training the net will get mostly 

these examples while quite rarely it will see the points for which the desired answer is negative, and 

so it will slowly learn the negative reactions. The same will happen in the opposite direction, if the 

net is trained with oversized amount of negative examples (the “big blue”). Therefore we should 

have approximately the same amounts of red and blue training points in our training set. Then the 

training process will be the most effective. If you don’t listen to my advice, the net will finally learn 

the problem, but you are going to lose much of your valuable time. 

After specifying the task as a map that is satisfactory to your ambitions and well balanced (in the 

sense described above), you may start the training of your net. To do this just press the Start button, 

as in fig. 8.10b. 

At the beginning you will see the decisions of the net with random weights of all its neurons. Usually 

this initial distribution of net’s decisions has nothing common with the task you defined. How would 

it be possible that before training the net knows what you want from her? However, it is useful to 

compare this initial map with the map of the task. The whole training process will strongly depend on 

how similar these two maps are at the beginning. If they look alike, the net will learn fast and 

effectively. If there are significant differences between these maps (and that usually is), the net will 

learn slowly and especially at the beginning no major improvements will be seen, as the net will have 

to prevail  its inborn intelligence (which is really a hard thing to do), and only after that it is done it 

will be able to start improving its knowledge (fig. 8.11) 

 

Regions      Decisions of the net A crisis of training Braking 
defined      based on its     “bad habits” 
by the user  initial weights 

 
   

       Training data  Final “fine-tuning” of      Creative phase  
   recognition process  of training 
 

Fig. 8.11. The way Example 09 presents the subsequent phases of training 

Let us say a few words about the structure of the figure displayed by the program. Small rectangles 

filled with color spots that appear during the simulation are the illustration of  neural net’s 

consciousness in each training state. As you already know, each point inside the rectangle represents 

two features (corresponding to both coordinates of the point) being the input signals for the net, 

while the point’s color stands for the actual net’s answer for this input. Let us consider the first two 
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rectangles, in the upper left corner of the figure. The first one shows what You want to teach your 

net. Acting the way we described in the preceding section, You assume what conditions are to be 

accepted by your „animal“, and which are to be omitted – these regions are illustrated by the map of 

desired reactions. The second rectangle marked out (the second one in the upper row) shows the 

natural („built-in“) net’s predispositions. In each experiment the net may have different initial 

parameters (set randomly), thus its initial behavior is totally unpredictable. 

The following diagrams correspond to the subsequent stages of the training process. They are drawn 

as rectangles, shown in fig. 8.11, and may be shown in different time steps, as it is You that decide 

(using the field Iterations) on the number of steps between showing the results of training. As You 

may have noticed, there is an additional read-only field under Iterations, called Total Iterations, 

which shows the total number of training steps performed in all training stages until now. 

Before performing the given number of steps (specified by You, or left unchanged from the preceding 

stage), You may also change the values of training parameters – training coefficient Alpha and 

momentum coefficient Eta – in the corresponding fields shown all the time on the screen. You may 

set them to any values, but I advise You to leave them at their defaults and not change during 

training. Then, after You learn the ups and downs of the training process – You may try to modify 

these parameters and see the results. 

8.5. What forms of learning may we observe in the net? 
(Translation by Piotr Ciskowski; piotr.ciskowski@pwr.wroc.pl) 

The program Example 09 allows You to investigate many aspects of learning, that may occur in 

neural nets. These experiments are so interesting and inspiring that I have also spent many hours 

setting different tasks for the net and analyzing many combinations of training parameters. Let me 

now share my observations and remarks with You. Then You will be able to tell me how your nets 

behave. 

Learning processes in living organisms, particularly neural mechanisms determining and controlling 

them, have always been a key interest of biological scientists. Through the years they have gathered 

and organized observations about learning of humans and animals, in order to discover the basic 

rules of this process. They have already been used in teaching people and training animals. However, 

this knowledge is behavioral – based on observing behaviors, without identifying the mechanisms 

controlling them. Thousands of neurophysiological and biochemical experiments conducted later on 

in order to discover the idea of learning – gave far less satisfactory results. Luckily, new methods 

have emerged that enable us to verify the concepts on how the neural system works. Many of these 

methods simulate the process of learning using neural nets. They use programs like our Example 09. 

It simulates the training process and comes out with figures that bring many interesting ideas to our 

mind. We shall consider one such case, while further examples You will find out and analyze yourself. 

As You remember, training a neural net means submitting examples of input signals (chosen 

randomly from the training dataset) on its inputs, and forcing the net to produce an output 

accordingly to the map of preferred behaviors. This scenario may be converted to the previously 

considered example of an “animal“ with two senses. Such an animal would be repeatedly put into 

various “conditions” which provide our “animal’s” senses different random (but known) signals. The 
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“animal”, or the neural net, reacts accordingly to its current knowledge – it accepts some conditions 

while rejects the other. The “teacher” (that is the computer which trains the net) having the map of 

preferred reactions, supplies the net with the desired output signal as if it was telling the net: You 

ought to like this and dislike that! 

You may watch the training process dynamically on Your screen, as it is fully illustrated by the big 

square in the lower left corner of the figure presented by the program. In this square the subsequent 

points are drawn corresponding to the input signals presented to the net. As You can see, they are 

randomly chosen from the whole area of the square. Each point is marked with a color – red or blue. 

This is the teacher’s suggestion: this one is good, that one is bad. The net uses these instructions and 

corrects its errors by adjusting its parameters (synaptic weights). The adjustment is performed 

according to the backpropagation algorithm  presented earlier. 

The training process is paused once in a while and the net is examined – it has to give its answers for 

all the input points. The results are presented by the program using the “maps” of color points, 

arranged as the consecutive squares from left to right (as in cartoons) and from upper to lower row 

of the image produced by the Example 09 program. After each such pause You decide on the number 

of steps until the next exam. 

I will begin my presentation of  the ways neural  nets learn with an example of such a one-layer net: 

2-1. 

The task for this net is very simple – to divide the area of all possible input data into two regions: 

approved and rejected, using an almost straight line. To define this problem the following 

coordinates of three circles were defined in the program: 

100,100,140 

0,0,0 

0,0,0 

We defined a map of “preferred” net’s behaviors, which is simple and easy to interpret (see fig. 8.12) 

– our “animal” should look for bright and loud environment. 

 

Fig. 8.12. A model of environment and preferences defined by the teacher 
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As You already know, at the very beginning the Example 09 program examines the natural (built-in, 

inborn) preferences of the net. The second square You see on the screen (see fig. 8.13) should be 

regarded as a complete result of testing the “animal” before it starts to learn. The program just 

places the “animal” in every possible environment (checks all the points inside the square) and waits 

for its reaction. Each point is drawn red – if the reaction was positive, or blue – if the reaction was 

negative. The color scale is continuous to illustrate all the reactions between the two extreme stages 

defined. As we can see, at the beginning our “animal” “likes” dark places. It feels best in darkness and 

silence, but tolerates a little bit of light – generally the more sound it hears, the more light it accepts. 

Speaking not seriously, its favorite places are both the disco and the bedroom. Oh, what kind of an 

animal is that?!  … 

The network You will train on Your computer will surely have a different map of initial preferences, 

because – as You have already noticed – they are random. As the network’s state desired by the 

teacher and the actual one are very much different (and it happens almost all the time experiments 

like this) an intensive training must take place. 

 

Fig. 8.13. A presentation of the desired (by the teacher) and built-in properties of the net 

You proceed to next steps of training by specifying the number of training steps to perform before 

the program pauses to show the decision map of the network.  I suggest You watch the training 

effects relatively often in small nets, let’s say every 10 steps. For larger networks, with several layers 

and many hidden neurons – much more training is needed to notice the results. So now it suffices to 

specify the lengths of subsequent training epochs, sit down and watch, compare and discover. That is 

just the best way to learn how neural nets work – better than studying loads of scientific books or 

articles. 

I now suggest You analyze thoroughly some training stages that I have observed while preparing 

examples for this book – although You may obtain a bit different images on Your computer while 

trying to follow my experiments. Anyway, You will know what to expect. 

A rectangle that I obtained after the first stage of training (see fig. 8.14) shows quite a similar image 

to that of a “newborn” network. This means that despite intensive training the net does not want to 

give up its original beliefs. Such an initial stubbornness and attachment to ones opinions is quite 

typical for neural network training and finds confirmation in many examples of people and animal 

learning. 
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Fig. 8.14. Net’s state after the first stage of training 

Next stage of training adds another square to our figure and shows an intermediate state of training. 

The network obviously starts to change its behavior, however it is far from the final solution – the 

boundary between positive and negative area is almost horizontal (fig. 8.15). At this moment the net 

thinks it knows the teacher’s intentions: it should feel comfortable when it is loud. Unfortunately, it is 

not correct, so more adjustments are needed. 

 

Fig. 8.15. Net’s state after the second stage of training 

Right after another portion of training, the network’s behavior becomes more and more similar to 

the desired one, although the exact position of the decision boundary is not ideal yet (fig. 8.16). 

 

Fig. 8.16. After three steps of training the net is close to success 

You may consider it an outstanding performance – especially if You look at the short time it took to 

achieve such a result. Generally we should stop training at this stage. However, just for research, we 

continued training the net, assuming that our strict teacher aims for an absolute perfection and 

compels the net to adjust even after a really minor mistake. 

The only effect of the next stage of training is a sudden crisis. The net’s performance deteriorates – 

the decision boundary’s position is worse than before (compare to fig. 8.17). 

 

Fig. 8.17. Crisis in training, caused by a too strict teacher 

Quite a long time is needed, taking many training steps, to recover and then achieve the accuracy 

imposed by the teacher. This effect is worth noticing. At this training stage when the net’s knowledge 

is not yet formed and stable, excessive rigorousness of the teacher is almost always damaging, in 

extreme cases leading to a complete breakdown of the learner. 
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The whole process of learning this simple task by this simple net, after 12 training steps, is presented 

in fig. 8.18. 

 

Fig. 8.18. Final result of training the net 

Let us interrupt the program and go Back to the screen, on which we set the new parameters for the 

problem to be solved. After specifying the same net structure as before (a one-layer net) let us 

formulate a different (more difficult) task. Now we want our “animal” to be an enthusiast of the idea 

of “the golden mean” – let it discard all the extremes and feel comfortable only in a typical 

environment. It is easy to obtain by defining only one circle to be learned, as follows: 

 0,0,3.5 

We shrink the other two circles to zeros: 

 0,0,0 

 0,0,0 

The scheme of the ideal net’s behavior is now presented in fig. 8.19. 

 

Fig. 8.19. The new task for the net 

Observing the net’s learning at fig. 8.20 (prepared in exactly the same way as fig. 8.18), we can see as 

the net struggles and continuously changes its behavior trying to omit the penalties imposed by the 

teacher – yet it has no chances. 
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Fig. 8.20. Failure of training – reason: too simple structure of the net 

Whatever parameters are chosen for the net and anyway the decision boundary between positive 

and negative reactions is set up – the net will always fall into a trap of accepting some region of 

extreme conditions. 

E.g. many subsequent figures show that the “animal” tries to hide in the darkness, accepting the 

examples with  a small amount of light – and that is what it will be punished for by the teacher in the 

next steps of training. Before I interrupted the experiment, the “animal” formulated another 

incorrect hypothesis – it started to avoid the regions of scary silence, thinking that the clue to success 

is to look for noise. Unfortunately, here it also happened to be wrong. 

The reason for these failures is quite simple – the modeled neural net was too primitive to learn such 

a sophisticated behavior as “choosing the golden mean”. The net we used in our experiment was 

able to understand only one way of input signals selection – linear discrimination, which for the 

second problem turned out to be too simple and primitive.  

Therefore the next experiment will engage a larger and more complicated network for the same task. 

When setting the net’s structure, we may specify the parameters as shown in fig. 8.21. 

 

Fig. 8.21. This way we set up a “more intelligent” net 

It is worth noticing that after declaring more than one layer in the net – our program asked for the 

number of neurons in it. The more layers You need, the more answers You give. 
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Fig. 8.22. An example of the initial state of a more complex net 

As You know, the more layers and the more neurons are in the net, the wider is its “intellectual 

potential”. Such a net can really make better use of its “in-born intelligence”. Let us watch now how 

it learns. Its initial distribution of color areas, shown in fig. 8.22, indicates that the net is initially – by 

itself – enthusiastic about everything. The modeled “animal” feels comfortable in almost all 

conditions, although it loves dark and quiet corners. 

 

Fig. 8.23. After a few training steps 

First examples of training show the net that the world is not so beautiful, life is not always sweet, but 

sometimes also bitter. The net reacts in a typical way – at the beginning it cultivates its initial 

prejudices, it is definitely less positive about dark places after the first stage of training, but it is still 

far from the final success (fig. 8.23). 

 

Fig. 8.24. After some more training steps 

Further training leads our “animal” to a series of disappointments. It receives more punishment for 

being too much trusting and enthusiastic, and so it retreats to more suspicious attitude towards the 

whole untrustworthy world. We can see that the initial enthusiasm and favor to everything and 

everyone diminishes into a slight fondness for quiet and sunny places (the small dot of yellow at the 

bottom and to the right of the last square on fig. 8.24).  

 

Fig. 8.25. A crisis of total negation during training 

But this attitude also meets the teacher’s disapproval, so after the next training stage the net goes 

into a complete stagnation – it rejects anything at all. Such a state of absolute breakdown and 

discouragement is quite typical for neural nets training and usually it precedes an attempt to 

construct a positive representation of the knowledge desired by the teacher. 
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Fig. 8.26. A positive wave of optimism 

In fact our net really tries to create an image like this, as we can see in fig. 8.26 –only a few positive 

examples shown to the net by the teacher are enough for it to fall into a phase of enthusiasm and 

optimism in which it approves all the environments except those very loud and not too bright. Total 

darkness or intensive light reduce its tolerance for loudness. 

 

Fig. 8.27. Formation of the proper hypothesis 

Of course, the next training stage must suppress these enthusiastic hopes, so the net backs up again 

into a region of rejection and frustration – leaving a small trace of only those positive memories that 

have not caused severe punishment (the green “tongue” in the figure illustrating the net’s state after 

5 training steps). Not later than in the next stage this small area will become a seed of correct 

hypothesis (the red spot near the middle of the volatility region – fig. 8.27). 

 

Fig. 8.28. The whole process of learning a more complex task 

After that, training is only about controlling another rush of enthusiasm and reducing the area of 

positive reactions to a reasonable size. When I interrupted training (after 15 stages) the net was able 

to quite appropriately follow the teacher in this signal classification task so that further improvement 

of its performance was not necessary (fig. 8.28) 

As we can see – the system with larger and more efficient “brain” (more than ten times more 

neurons! and more powerful structure of connections between them) turned out to be able to learn 

the behavior that the smaller “creature” could not manage to learn. 
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Fig. 8.29. Training process of another net 

Another interesting experiment is presented in fig. 8.29. It illustrates how the same ability (of 

deducting that the teacher requires accepting medium light and sound conditions and rejecting the 

extremes) is learned by another instance of the net with the same structure as the one analyzed in 

fig. 8.28 

The training process of the second net is presented in fig. 8.29. Despite the fact that the net has 

exactly the same structure as the first one, it is rather melancholic at the beginning of training. In fact 

it does not like anything – the figure is dominated by cool green and blue colors. Initial training 

makes it a little more interested in “disco” conditions (a yellow spot in the rectangle illustrating the 

first stage of training), but several consecutive failures throw the net into an area of total (yet 

modest) rejection. At the fourth training stage the net tries to put forward a hypothesis that the 

teacher wants it to approve bright and medium loud places. At the next stage the net’s guess aims at 

medium and average conditions to be accepted. Then from one training step to another this 

hypothesis grows stronger and clearer. This is illustrated by the red dot of complete acceptance. 

With each training step the dot’s shape matches more exactly the acceptance area given by the 

teacher. Green and yellow areas of confusion and uncertainness vanish replaced by more and more 

exact division into utterly good and bad conditions. Finally the “melancholic” net learns to act exactly 

the same way as the “enthusiastic” net, what proves that the built-in predispositions are not 

principal – strong, determined training always achieves its goal, however the way of achieving it 

varies much for different starting points. 

 

Fig. 8.30. An example of a problem for two-layer net 
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Fig. 8.31. An example of a problem not every two-layer net is able to solve 

 

 

Fig. 8.32. A very difficult problem only for a three-layer net 

You my perform many kinds of experiments using our program. Figures 8.30 - 8.32 show the record 

of a few of them. Analyzing these figures, reconstructing them on Your computer, conducting Your 

own experiments – may be fascinating world for many discoverers. It is really worth exploring! 

One conclusion just to finish this chapter. Please compare figures 8.30 – 8.32 with figure 8.20. You 

may notice how the behavior of a well “intellectually equipped” net varies from the behavior of a 

simple net that was absolutely unable to learn more sophisticated rules. Let us notice that this neural 

“moron” could not learn simple behaviors, yet its reactions were very strong and categorical. The 

world was just black and white for this net. One object was absolutely good, another one was 

definitely wrong. If during the experiment the net’s experience did not confirm these harsh rules, 

they were replaced by another – opposite – opinions, far more strict and rigid, usually also incorrect. 

As for the nets with more “intellectual power”, although they were able to model more subtle 

divisions, they were much slower in reaching the goal and stayed longer in many such stages as: 

hesitation, breakdown and “hamletizing”. Yet it were these neurotic,  hesitating, excessively 

intelligent individuals that reached the goal of understanding the rules imposed by the teacher and 

adjusting to them, while the tough moron was turning round and round and could not make up any 

rational conclusion… 
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Notice how interesting and diverse behaviors of neural nets we were able to observe due to one 

simple program. The computer running it did not resemble a dull and limited machine, it did not act 

monotonously and repeatably – on the contrary, it demonstrated some individual characteristics, 

mood changing, a variety of  talents… Doesn’t it remind You of anything? 

8.6. What else can we observe in our net? 
(Translation by Piotr Ciskowski; piotr.ciskowski@pwr.wroc.pl) 

I could end now, leaving You with the program to discover more interesting aspects of training, but I 

will try to suggest You, what sample shapes are worth investigating, before You gain some 

experience. My experiments showed that interesting training process may occur if You use a 

“snowman” made of three circles: 

0,03 

4,0,1 

0,4,1 

The task is complicated enough so that the net must work hard to discover the actual rule of 

recognition (the net for this task should be 3 layered, and the number of neurons in hidden layers 

should be high – e.g. 17 neurons in the first and 5 neurons in the second hidden layer). At the same 

time this task is compact enough to be displayed well on the screen and so the results are easy to 

observe. I will not show You my results for these examples, as I do not want to spoil Your personal 

pleasure of discovering them yourself. I will only show You what results You may obtain if You decide 

to explore a bit more the properties of neural nets and their sensitiveness to some parameters that 

affect the training. 

As You already know, before the program executes the number of training steps You chose, You may 

also specify some parameters of training that influence its speed. The first one, defined as Alpha is 

known as the learning rate. The greater the learning rate the more intense the training process is. 

Sometimes high Alpha gives good results, but other times may worsen them – it is worth trying on 

Your own. The second parameter, denoted here as Eta is known as momentum. It makes learning a 

little “conservative” – the net does not forget the previous directions of weight changes while 

performing the current training step. Again – in some cases higher values of Eta help in learning, 

other times they slow it down. 

 

Fig. 8.33. The default value of learning rate leads to quiet and steady but slow training 
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Fig. 8.34. Higher value of learning rate sometimes gives faster training 

 

Fig. 8.35. Too high learning rate ends up in oscillations 

– the net in turns comes close to the desired solution, then goes away 

Both mentioned coefficients are constantly  accessible in the program  window of Example 09, so 

You may change them during training to observe interesting results. You may start with modifying 

them only once before learning starts. You should notice how training speeds up with higher values 

of Alpha. E.g. fig. 8.33 presents the training process for some task with standard values, while fig. 

8.34 shows training with higher Alpha. 

 

Fig. 8.36. The regions learned by the net do not match the desired ones 

if we use a two-layer net 

Too high Alpha is not good, however. Signs of instability occur, as it is perfectly illustrated in fig. 8.35. 

The way to suppress the oscillations, which are always the result of a too high learning rate, is turning 
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up the Eta coefficient, that is momentum. If You wish, You may analyze the influence of changing 

momentum on training and notice its stabilizing power when training goes out of control.  

 

Fig. 8.37. Good solution found quickly by a three-layer net 

 

Fig. 8.38. Signs of instability during learning of a three layer net 

Another possible area of interesting research is the dependence of net’s behavior on its structure. To 

analyze that You must choose a really tough problem to be learned. A good one is presented in fig. 

8.4 and 8.5. The difficulty here is the necessity of fitting into narrow and tight bays defined by the 

blue area of negative answers. In order to fit to each of these slots a very precise choice of 

parameters is needed and that is really a big challenge for the net.  

A three layered net is able to distinguish all the subtle parts of the problem (fig. 8.37), although it is 

sometimes difficult to keep the training stable, as it happens that the net – even being very close to 

the solution – moves away of it due to the backpropagation of errors and searches for solution in 

another, incorrect,  area where it cannot find it (fig. 8.38) 

Now You may use your imagination and freely define the regions where the net should react 

positively and negatively. You may run tens of experiments and obtain hundreds of observations. 

Although I am warning You – think of your precious time, as training a large net may take long time 

especially in its initial stages. What You need is either a very fast computer or some patience. I am 

not forcing You what to choose, but just suggest that the patience is cheaper… 
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8.7. Questions and exercises 
(Translation by Piotr Ciskowski; piotr.ciskowski@pwr.wroc.pl) 

1. Does image  recognition only to refer to visual images (e.g. from a digital camera) or does it 

have a wider meaning? 

2. How do we input the image data (and information about other objects to be recognized) to a 

classifying neural net? 

3. How do neural classifiers usually present the outcomes of their work, that is the information 

on what was recognized? What consequences does it have on the usual structure of their 

output layer? 

4. Try to confront the observations we made in this chapter on training the nets for several 

generated problems – with theoretical information on how multi-layer networks (with 

different number of layers) work, presented in chapter 6. Notice the higher capabilities of the 

nets presented in this chapter, resulting from the use of neurons that are able to produce 

continuous output signals, not only 0 and 1 (what refers to the blue and red color in the 

figures given by the program). 

5. Think about the relation between the number of hidden neurons in a complex multi-layer 

network and the number of separate areas in the input space, for which the net is able to 

learn opposite decisions (0 and 1). 

6. An example of relation between the number of hidden neurons and the efficiency of the net 

in performing several (trained) tasks in illustrated in fig. 8.39. The left side of the plot is quite 

easy to interpret: a net with a small number of neurons is not “intelligent” enough o solve 

the problem and adding more neurons improves its performance. How should we interpret 

the fact (which has also been proved many times in neural nets) that too large number of 

hidden neurons – by irony – worsens the performance of the net? 

 

Fig. 8.39. See exercise 6 
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7. Learning rate is the measure of intensity of weight adjustments applied to the net after 

detecting wrong operation. The informal interpretation for the learning rate is that its high 

values represent a “strict and demanding” teacher, while small values correspond to a 

“gentle and tolerant” one. Try to justify the fact that the best results of the training process 

are observed for moderate values of learning rate (neither too small, not too high). Try to 

confirm  that experimenting with our program. Draw a plot of leaning rate vs. training 

performance after some given number of epochs (e.g. after 500, 1000 and 5000 steps) . 

8. Many training methods are known, in which the learning rate is not constant throughout the 

whole process. What do You think, in what conditions should it be increased and when 

should it be reduced? 

9. Some training theories suggest that the learning rate should be small at the beginning, when 

the net makes a lot of major mistakes. If we apply strong changes to the weights, according 

to these large errors – the net would “go into convulsions”, avoiding some mistakes, but 

making other ones (for other training examples). So at the beginning the net needs a “gentle 

and mild nursery school teacher”. Then, as the net gains more and more knowledge, we may 

increase the learning rate, because the net make less mistakes, and they are less significant, 

so for successful teaching, “tightening the screw” is needed. At the end of training, when the 

net has gathered a lot of knowledge – again a small learning rate is advisable, so that 

incidental mistakes (e.g. those associated with a few hard and unusual objects in the training 

set) do not spoil the whole effect (as an improvement in one point always results in – even 

smallest – worsening in other points). Try to confirm this theory or negate it with your 

experiments. 

10. The effects of a too large value of the learning rate (putting at risk the stability of training) 

may be compensated by increasing the momentum coefficient, which in turn is the measure 

of conservatism of training. Design and conduct some experiments in order to draw a plot 

showing what minimal values of momentum are needed for different values of learning rate, 

to guarantee fast and stable training process. 

11. For eagles: Modify our program so that it is possible to define the regions for different 

classes (areas where the “animal” should feel comfortable and uncomfortable) with the use 

of a graphical editor. Using this tool, try to build a net that will learn an especially difficult 

problem, in which these regions are defined as two spirals (fig. 8.40). 

 

Fig. 8.40. The problem of “two spirals”: training set (left) and two possible solutions (right) - see 

exercise 11 
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12. For eagles: Design and make a model of an “animal” with more receptors (“senses” to 

observe various features of the environment) and more sophisticated in its actions (e.g. able 

to move in the “environment” in order to look for conditions it likes, or to search for some 

objects, e.g. food) . Observing such a neural net, as a “brain” of an animal, may be a 

fascinating intellectual adventure! 
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9. Self-learning neural networks 

9.1. What does the self-learning of neural networks rely on? 

Not translated yet … 

9.2. What is the way that long self-learning of a network proceeds? 

Not translated yet … 

9.3. Can the progress of self-learning be considered as growing wise of 

a network? 

Not translated yet … 

9.4. What is also noteworthy during the self-learning process of 

network? 
Not translated yet … 

9.5. Dreams and imaginations arising during the self-learning of 

neural networks. 
 (Translation by Ryszard Tadeusiewicz, rtad@agh.edu.pl) 

Once you observe how notions spontaneously discovered by the network are formed and specified - 

you can pass on to more subtle phenomena. You probably notice  (particularly when practising 

examples with a large number of neurons), that beside the main process of formation of neurone 

clusters  recognising main objects introduced to the system, we  also get entire tracks of neurones. 

These neurones are spontaneously aspiring to detect and recognise  input objects, having the 

properties shared by real-life objects (Fig. 9.24). During the further process of self-learning these 

detectors of hybrids get absorbed by real centres signalling the presence of real-life objects. However 

this stage of spontaneous fantasizing about possible, though not existing entities is repeated  in  self-

learning networks with an astounding regularity.  
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Fig. 9.24  Appearance of parameter localization for neurons (detectors of hybrids)  ready to detect 

objects having the properties shared by  real objects 

What does it mean, really ? A network which is repeatedly shown a fish and a woman  will be able to 

recognize both the woman and the  fish. At appropriate points of  space of input signals there  will be 

neurons which correctly recognise input images of a woman and a fish. There will be also neurons 

which will recognise (or rather, which will be ready to recognise) entities displaying the features both 

of the fish (tail) and of the woman (the head and shoulders). During the self-learning process such 

creatures weren't shown – and yet the neural network prepared neurons for detecting them. It is 

reasonable to suppose that in a certain sense the network itself would imagine them.  

Following the similar principle, the same network which developed an ability to recognize bird 

species in a group of neurons  is able to associate bird features  with the characteristics of the 

woman (the head, hands, the dress), thus creating … an image of an angel (see Fig. 9.25). 

Having repeated numerous experiments, we become convinced that every young (not fully taught) 

neural network will have a tendency to invent various not existing objects. If new experiments 

regularly prove that both women and fish do exist and there are no creatures sharing the properties 

of both women and fish- such as legendary mermaids, the relevant neurons will change their 

specialisation. 

These neurons will proceed to recognise real life creatures instead of imagined phantasmagorias. We 

notice how unwilling they are to do so during the experiments! But if such a hybrid creature should 

exist (a mouse with wings = bat) – the  previous experience with “component’ objects will definitely 

facilitate the detection and classification tasks. 
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Fig. 9.25 Representatives of real and imaginary objects in self-learning the neural network 

It appears  that this ability to invent not existing objects,  combining elements of sometimes distant 

impressions and experiences is the property displayed only by networks in the early stage of self-

learning (also referred to as young networks). Perhaps that partly explains the well- known tendency 

among young children is enjoy fairy tales and legends, which seem boring or even  annoying to adults 

and more experienced people? Perhaps that also explains the  phenomenon of poetry, full of fantasy 

and youthful imaginations in young civilisations (ancient Greece) and the blunt pragmatism of old 

and stiff societies in the early 21st century? Maybe when observing (Fig. 9.26) feeble chains of 

neurons emerging in the course of self-learning, which, despite obvious facts, are trying hard to 

maintain the non-existing links between the detected and specifically localised phenomena, you are 

actually watching the neural mechanism of formation of brilliant associations, distant analogies and 

surprising metaphors  in  certain minds? 

Perhaps such small bridges, spontaneously coming into existence, but then collapsing under pressure 

of new facts, products of associations and phantasmagorical dreams, fantastic combined features of 

existing objects, created by the very neural mechanisms in order to produce something which may 

not exist but is beautiful and  exciting, are the very essence of poetry, art as well as  creative science? 

And now perhaps, you are closer to understand the well-known fact that poets (and real scholars) 

are a little bit like children ........ 
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Fig. 9.26 Voluntary coming into existence and destroying associations in the process of self-learning 

We notice during some experiments that some (usually single) neurons will remain outside the areas 

concentrated near the spots where input objects shall turn up. Actually, they are of little practical 

significance since the vast majority of neurons shall be meekly taught and ready to subject to more 

and more precise specialization. The majority of neurons is aiming at perfection in handling the task, 

involving detection and signalling the objects that regularly turn up in the real world. And yet, these  

neurons that are out of touch with reality will stay and retain  (Fig. 9.27) their images of winged 

snakes or multi-head dragons - as dreams returning when you sleep... 

 

Fig. 9.27 Appearance of singles neurons outside global centres at a very advanced process of self-

learning (after closing two hundred steps) 

Let us now return to further experiments. If you watch carefully the initial stages of self-learning, 

then in some  (though rare!) cases you still notice another interesting phenomenon. After an object is 

shown at a certain point in the space of input signals - some neurons (very few in general, but hence 

more worthy of our attention) are changing their initial ‘decent’ position. These neurons  reach the 

new location, distant from their initial position, however remaining in the same direction as the input 

object, though much farther from the origins of the coordinate system. As I said before, this 

phenomenon is rather rare because it strongly depends  on the initial distribution of weight 

coefficients (well, not everyone is born a poet...) but if you patiently repeat your experiments, you 

are bound to notice it sooner or later (Fig. 10.28). As a rule, such rebellious neurons  land  outside the 
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borders of the limiting frame and therefore it is possible to observe them mainly because lines will 

appear with no empty square at the end, which suggests that it lies beyond the display area.  

Fig. 9.28 Effect of  neurons escape  in the initial stage of the process of self-learning 

 

Fig. 9.29 Effect of  grandiosity in a little  lower scale, than in the 9.28 picture, but also noticeable 

Neuron suffering 
from the grandiosity

Dotted lines not 

ending with an 

empty square are 

traces of neurons 

beyond the display 

area
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Fig. 9.30 Interpretation of the effect of ‘grandiosity’ 

Neurons running far at the beginning of the self-learning process will be pulled back in consecutive 

stages of the teaching process  to the area associated  with position of the presented standard and, 

finally, they will all find their way back to this area. We wouldn’t worry about them at all if it weren’t 

not for the fact that they illustrate a well- known psychological effect – the effect of grandiosity (Fig. 

9.29). Indeed, such a neuron jumping out beyond the display area  becomes the standard (an internal 

depiction) of the object which has roughly the same features as the model object perceived at the 

beginning of the teaching process - yet with all its features magnified. Such a neural Gulliver. If a lion 

is shown, the image produced after enlarging its perceivable features becomes that of a real 

monster. Thus depicted lion is much larger in size, has huge fangs and claws, more ruffled mane,  its 

roar is more dangerous, its breadth  malodorous. All features are those of a lion, but somehow 

larger. 9.30 fig.. Such exaggerated ideas do not usually last long  as they are reviewed and verified by 

life long experience. But for the naive and quick-tempered Youth just entering the world of new 

experiences, everything  seems huge. We remember that the first Girl is always The Best! I wonder if 

you noticed and appreciated the fact that the neural network invented by me and examined by you 

will do exactly the same?! 

The saddest thing occurs at the end of the self-learning process. The majority of neurons form tight 

clusters gathered near the spots where input objects will turn up (everybody’s  already chosen their 

master and are ready to serve him...). And then, sometimes from beyond the display area, some 

lonely, ill-adjusted points appear and, despite the resistance they put, they are relentlessly pulled 

back to the areas where real appearing objects are recognisable (Fig. 9.31). Their views are different 

from those of the majority. What is even worse, everyday life shows that their views are wrong. And 

yet they prefer to hold on to a beautiful fairy tale instead  of recognising laws of real world where 

different  value still  count...  
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Yeah, but let us leave it and come back to our neural network. After a certain time, rebellious 

neurons are  absorbed by the “mass: forced to adapt to the majority, imported to the right path. 

However, there is something beautiful in their rebellion. It is worthwhile to mention that when 

something new and really unexpected appears in the world that provides the neural network with 

input impressions, those ill-adapted dreamers will get a great chance to win. 

A crowd of perfectly adapted conformists won't succeed in this new situation. A pity that it is such a 

rare occurrence this way - even in neural networks! 

 

Fig. 9.31 Pulling back the neurons which escaped in the initial stage of the process of teaching,  

creating fictional representations of data described higher under the name of  grandiosity 

9.6. Remembering and forgetting 
 (Translation by Weronika Łabaj, weronika.labaj@googlemail.com) 

In this chapter we concentrate on processes such as storing information and gaining knowledge in 

self-learning networks, especially on how are they done. However, you can name another process 

occurring on a daily basis in our lives - I mean forgetting. It is burdensome (especially before an 

important exam) but is essential in terms of biology. Our living environment is changing constantly, 

so what we learned and what was working at some stage of our lives turns out to be outdated (even 

harmful) as we are gaining new experience. Because of that (among other things) we are forced to 

constantly gain new skills and abilities at the same time forgetting previous ones. Otherwise they 

could be easily mixed or confused. 

Use your neural network simulation to observe and analyze that phenomena. It turns out that even 

having only a few self-learning neurons you can notice that new objects appearing in time of 

simulation “divert” neurons from other, not so common classes of objects you could consider well 

learned already. In extreme cases new objects can sort of “kidnap” neurons - neurons which 

Returning 

neurons

Returning 

neurons



228 
 

previously recognized patterns quite well, neurons which were painstakingly taught patterns that 

don't appear any more. See figure 9.32. In this situation neural network quite well recognizes all four 

patterns that were presented to it. Note that pattern no. 1 has a strongest representation (1st 

quarter). At this stage self-learning process is disrupted (on purpose) – all objects are shown but from 

the 1st class. In no time we get to the stage of “kidnapping”. Neurons recognizing objects of class 1 

change their specialization in a hurry. They start specializing in recognition of other classes of objects 

(in our example of class 4 – see Fig.  9.33. left). That way the previously best-recognized class is being 

forgotten. Not completely though. Even a very long learning process leaves a trace in memory. It 

reminds of existence of that class (Fig. 9.33. right). But this trace is really weak (only one neuron) and 

strongly distorted (position of this neuron was significantly altered). 

 

 

Fig. 9.32. First stage of forgetting process occurring during self-learning process. At the moment 

network posses yet “old knowledge” and best recognized class is class number 1. 

 

Fig. 9.33. Gradual forgetting of class number 1 in case when its trace in memory is not enforced 

systematically during consecutive self-learning process 
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Perhaps you realize that similar situation occurs when it comes to your own mind – for instance, on 

holiday you might take up botany and learn names of new plants, how to identify and classify them. 

But if you don’t revise them and solidify your knowledge soon you will forget what you learned; the 

old information will be blurred by new knowledge (e.g. ability to identify new car brands) and as a 

result next summer you will say: What a beautiful meadow! Fantastic flowers! I used to know the 

names of every single one of them… 

9.7. What kind of input data triggers a self-learning process? 
(Translation by Weronika Łabaj, weronika.labaj@googlemail.com) 

Let’s leave aside the sad problem of forgetting and continue our investigation of how a self-learning 
neural network works. During experiments with the application Example 10b you could observe a 
disturbing phenomenon: because of the impulsiveness of the self-learning process the 
representations of some classes might be stronger (that is many neurons detect and recognize 
objects belonging to those classes), while others might have a very weak representation (or none at 
all!). This is a huge shortcoming of the self-learning methods discussed here and we will elaborate on 
it in the section 9.8.  

Now I want to go back a little and show you that the processes of self-organization and self-learning 
occur only when some patterns exist in the input data sequence, patterns that the network can be 
based on. In the experiments with the Application Example 10b the situation was very neat and well 
organized because objects „shown” to the network belonged to a specific number (usually four) of 
well defined classes. Furthermore, those specific classes occupy distinct areas; namely the central 
parts of four quarters of the quarter system. The objects appeared in a random sequence but were 
not located in completely random places. Each time the point presented to the network was located 
(with some deviation) in the central area of the given quarter, so it was an example of a Martian-
male, Marian-female etc. (no necessarily a completely typical example, since the typical one will be 
located exactly in the central point of the quarter). When using that kind of objects representation 
you could observe a familiar phenomenon; the self-learning process caused neurons to form groups, 
more and more specialized in the recognition of exactly those „patterns”: the combination of many 
object representations from one class, slightly varied, variations of the same perfect pattern.  

Let’s consider now how behaves a network when points used during learning are located completely 
randomly. Let’s go back to the example with the space probe sent to Mars. Let’s say that Martians do 
not exist and that the lander receives from its sensors only pictures of random shapes created by a 
wind out of the martian dust.  Thanks to the built-in feature in the Application Example 10b you can 
easily observe it: during learning process activate the RND learning option (check the checkbox since 
this option is disabled by default).  From now on you will not see any more in which quarter the 
learning sample is located (Fig. 9.34) since it is not important (providing that you enable random 
points selection from all quarters – just as in Fig. 9.34) – the sample object will be located here and 
there, just anywhere in the coordinate system, without any order.  
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Fig. 9.34. The self-learning process in the beginning, random input objects 

Because of the lack of order there will be no information in the input data sequence. One time 
neurons will be attracted to the centre of the area, the other time they will be pushed outside (Fig. 
9.35). 

 

Fig. 9.35. Chaotic neuron movements when random objects are shown 

In such a case the self-learning process will not lead to the creation of any visible groups of neurons, 
but neurons will rather form a huge circle, because inside of that circle the mean signal pattern will 
be located. When you watch the self-learning process in this special case for long enough you will 
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presented object from the 

learnig set.  
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notice that the size and location of the circle eventually changes with every next presentation of the 
learning sample (Fig. 9.36), but never will any groups of neurons emerge – because there is not such 
a „grouping” in the input data too. 

 

Fig. 9.36. Advanced stage of chaotic learning 

The conclusion is both optimistic and pessimistic at the same time.  

The optimistic part is that the self-learning process of a neural network may help in finding unknown 
patterns which are present in the input data and users do not have to know what and how many of 
those patterns are present. Sometimes it is also said that the self-learning network can answer 
unasked questions and speaking even more generally one can say that such networks not only 
accumulate knowledge (during learning), but also discover knowledge. This is awesome since in a 
computer science we have many good tools that are capable of providing good answers to good 
questions (such as Internet and database systems). Sometimes we can even obtain a good answer to 
the stupid question - that also happens to be useful. But there are not many tools for finding answers 
to unasked questions. The self-learning neural network has such capabilities and that is a great 
feature. Sometimes the process of finding answers to unasked questions is called Data Mining and is 
used for example in determining customers behaviours in the supermarket or determining 
preferences of mobile phone users. The marketing specialists can make use of even the smallest 
piece of data about repeatable and common customer behaviours, so there is a huge demand for 
that kind of information.  
The pessimistic part is that if the network is self-learning with the data that does not contain any 
valuable information, for example if input values are completely random (devoid of any explicit or 
implicit meaning) then even the longest learning process will not provide any meaningful results.  
Why do I consider this sad? Because that means that the neural network cannot replace us in coming 
up with new ideas that „come out of nowhere”. This is sad. 
Or is it? 

9.8. What do we gain from competition? 
(Translation by Weronika Łabaj, weronika.labaj@googlemail.com) 

Any type of a neural network can be self-learned, however most interesting results can be gained 
from enriching the self-learning process with competition. The competition between neurons should 
not be new for you. In section 4.8 I already described (do you remember? If not go back to the 
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application Example 02) how do networks in which neurons „compete” with each other look like and 
work. As you probably remember, in such competitive networks all neurons receive input signals 
(generally - the same signals, since such networks are usually one-layered), then all neurons calculate 
the sums of those signals (of course, they are multiplied by some weights that vary with each 
neuron).  Then all values calculated by particular neurons are compared and the „winner” is found – 
that is the neuron which produced the strongest output value for the given input. 

As you probably remember, the output value is the higher the better the accordance between the 
input signal and the internal pattern of the neuron. Therefore if you know the weights of the neurons 
you can predict which of them will win in the case of showing samples that lie in the particular areas 
of the input signal space. You could easily make that prediction, because only the neuron which 
internal knowledge is in accordance with the current input signal will win the competition and only 
its output signal will be sent to the output of the whole network. Outputs of all the other neurons 
will be ignored. Of course such a „success” of the neuron is short-lived, because the next moment 
new input data arrives and some other neuron „wins” the competition. There is nothing surprising 
there, because the map showing the arrangement of the weights values determines which neuron 
will be the winner for any given input signal – it will be the very same neuron which weight values 
vector is the most similar to the vector representing input signal.  

There are a few consequences of winning the competition by one of the neurons. Firstly, in most 
networks of this type only one neuron has a non-zero output signal (usually its value is 1). The output 
signals of all other neurons are zeroed, what is known as WTA (Winner Takes All). 

Furthermore, the self-learning process usually concerns only the „winner”. Its (and only its!) weights 
values are altered in such a way that the next time the same input signal is presented the same 
„winning” neuron will produce even more „convincing” output (the output value will be higher). 

Why is that?  

To answer this question let’s examine carefully what exactly happens in a self-learning network with 
a competition. On the input we have the object represented by its input signals. Those signals are 
propagated to all neurons and form a „combined stimulation”. In the simplest case it is just a sum of 
input signal multiplied by the weights values, but we can apply the same rule for neurons with non-
linear characteristics. The more weights values of the neuron are similar to the input signal the 
stronger the „combined stimulation” on the output of this neuron. We have already said that the 
sets of weights values can be treated as input signals „patterns” to which each neuron is particularly 
sensible. Therefore the more input signal is similar to the pattern stored in the neuron the stronger 
the output when this signal is used as an input. So when one of the neurons becomes the „winner” it 
means that its „internal pattern” is the most similar to the particular input signal out of all neurons.  

But why is it similar? 

In the beginning it might be the result of a random weights values initialization. In each network 
initial values of the weights values are random. Those randomly assigned values are more or less 
similar to the input signals used during learning process. Some neurons have – accidentally – an 
„innate bias” towards recognition of some objects and – also accidentally – an „aversion” towards 
others. Later on the learning process forces internal patterns to become more and more similar to 
some kinds of objects with each step of learning. The randomness disappears and neurons specialize 
in the recognition of particular classes of objects.   

At this stage if a neuron „won” during recognition of a letter A it is even more probable that it will 
win once more when a letter A is presented on the input, even if it is slightly different from the 
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previous sample, for example written by another person. In the beginning we always start with 
randomness – neurons themselves decide which of them should recognize a letter A, which B, which 
should signal that particular character is not a letter but - for example – a fingerprint. The self-
learning process always only reinforces and polishes the natural bias (again: randomly assigned 
during initial values generation).  

This happens in every self-learning network so what is the meaning of the competition? 

Thanks to the competition the self-learning process might be more effective and efficient.  

Since initial values of weights are random then it might happen that a few neurons are „biased” 
towards the same class of objects. The normal process lacking the competition will be strengthening 
those „biases” simultaneously in all those neurons. Eventually there will be no variety between 
behaviors of various parts of the network (that is particular neurons), quite the contrary – the various 
parts will become more and more similar. You have seen exactly that phenomenon during 
experiments with the application Example 10b. 

However, when we introduce a competition the situation changes completely. Each time there will 
be some neuron at least slightly more suitable for recognizing currently shown object than its 
„competitors”. The natural consequence is that a neuron which weights values are (accidentally) 
most similar to the currently presented object will become the „winner”. If this neuron (and only this 
one) will „be learning” in this particular step then its „inborn bias” will be - during learning process - 
further developed and strengthened, the „competition” will stay behind and will compete only for 
recognizing other classes of objects.  

 

 

Fig. 9.37. Parameters window and self-learning process visualization in a network with competition – 
before and after eventual success. Application Example 10c. 

You can observe the self-learning process with a competition using the Application Example 10c. In 
this application I used a competitive learning in the task similar to the previous ones from this 
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chapter (recognizing Marian males, females, kids and animals). However, this time the learning 
principle is different so you will observe completely new, different behaviors.  

When started the application will display a window with parameters, where you can (among others) 
specify the number of neurons in the network. I recommend to manipulate only this parameter at 
first, because if you change many parameters it will be too easy to get lost.  

The rules of determining number of neurons are simple: the less neurons (for example 30) the more 
spectacular the self-learning with a competition - you easily observe that all neurons but the winner 
„stay still” and only the winner is learning. I enabled tracing changes of location for learning neurons 
so you can observe their „trajectory”. In the pictures generated by the Application Example 10c the 
neuron is presented as a big red square when it gets to its final location. You can consider it as a sign 
of completion of the learning process for the particular class (Fig. 9.37). 

When the self-learning process starts you will see that only one neuron will be „attracted” to each 
point in which objects belonging to the particular class appear. This neuron will eventually become a 
perfect detector for objects that belong to this class (you will see a big red square in a place where 
objects of that class typically appeared during learning process). If you click Start button again you 
will activate a „step by step” feature – just like in a previous application (if you click Start button and 
hold it then the self-learning process will become automatic). Observing trajectories of moving 
weights values vectors of specific neurons (and reading messages shown in each quarter that inform 
which neuron „wins” in each step) you can notice that in each quarter one neuron is chosen that 
wins every time when samples from a given quarter are presented. Moreover only this neuron 
changes its location, moving towards a presented pattern. Eventually it reaches its final location and 
stops moving (Fig. 9.38). 

 

Fig. 9.38. Self-learning process in a network with competition 

When the number of neurons is huge it is more difficult to observe the self-learning process with 
competition because it has (contrary to the classic self-learning in big networks) a very local 
character (Fig. 9.39). It stems from the fact that with many neurons the distance from the nearest 
neighbor to the winning one is very short and therefore the trajectory of the „winner” is hardly 
visible. 
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Fig. 9.39. Self-learning process with competition in a large network 

On the other hand, with a small number of neurons (say 5) trajectories are spectacular and long, 
moreover, you can notice that thanks to the competition even very weak initial biases towards 
recognizing some classes of objects can be detected and strengthened during learning process – 
providing that „competitors” will have even weaker biases towards recognizing objects of a particular 
class (Fig. 9.40). Because of the visibility of the sequence of changing locations you will notice one 
more, quite interesting and general characteristic of the neural networks - that the learning is fastest 
and location changes are biggest in the beginning of the process. 

 

Fig. 9.40. Self-learning process with competition in a network with a low number of neurons 
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9.9. What kinds of self-learning we gain thanks to the competition? 
(Translation by Weronika Łabaj, weronika.labaj@googlemail.com) 

In the application Example 10c you can activate the parameter Soft competition (in the parameters 

window – Fig. 9.37, left) that enables „softer” competition. I recommend not using it from the very 

start (just leave the default setting). We will experiment with soft competition later, when you learn 

both the advantages and the disadvantages of the „hard” competition.  

Thanks to the „hard” competition in the application Example 10c you could avoid cliques of neurons 

that had exactly the same preferences, just like those formed during experiments with the 

applications Example 10a and Example 10b. If you are lucky (especially in the case of working with 

networks that are composed of many more neurons than there are classes of recognized objects) 

then you could also avoid holes and „dead fields” in representations of input objects formed by 

particular neurons, in other words there were no objects that none of the neurons recognized. When 

competition is used then there is a high probability that in the network won’t be any neuron 

recognizing multiple classes of objects and, at the same time, there won’t be any class of objects not 

recognized by any neuron. Just like in an old proverb: „Every Jack has his Jill8”. 

When learning with a competition is applied then neurons other than the winner do not change their 

location, so they are ready for learning and accepting other patterns. Therefore, if objects from a 

completely new class suddenly appear during the learning process then there will still be some free 

neurons ready for learning objects from this new class and improving in identifying them. You can 

easily see that on your screen, because there is an option in the application Example 10c that allows 

you to demand a new class of objects to appear. To do that during simulation click the new pattern 

button. By clicking the new pattern button a few times you can lead your network to recognizing 

many more classes of objects than 4 types of Martians (do not ask me, however, what those other 

classes represent – my imagination has its limits!). Thanks to the learning with competition each of 

those many classes of input objects gets a private „guardian” - the neuron which from that moment 

on will identify with this class (Fig. 9.41). Usually there will be also some free neurons left, able to 

learn new patterns, if any appears in the future. 

                                                           
8 You know that if not for the WTA competition (that stems from monogamy required in our country, that lacks 

any biological justification) then the intellectual cream of the crop will attract all the girls (that is computer 

scientists). Because of the competition some other guys can also be lucky... 
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Fig. 9.41. The opportunity to teach recognition of multiple patterns in a network with competition  

Unfortunately, the pure self-learning process combined with the „hard” competition may lead to 

some abnormalities. When you initiate the self-learning process with a low number of neurons then 

for each of the classes of objects (four in my sample application) there will be one neuron, that will 

identify with and recognize one class. If new classes of objects will be introduced later (for example 

when you click the new pattern button) then it might happen that the „winner” will be a neuron that 

already has specialized in recognizing some other class! That in turn might lead to the situation in 

which some class of input objects, that gained a strong representation among neurons suddenly 

loses it9! It is a well known situation from our daily lives – new information replaces the old one.   

 

Fig. 9.42. Replacing previously learned skills by new information 

                                                           
9 Continuing our matrimonial analogy it can be said that we are watching the birth of a betrayal and a divorce. 
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In the picture 9.42 is shown an example of such an effect, in this case it is very strong - all previously 

trained neurons recognizing some objects after being shown new objects „re-learned” and started 

recognizing those new objects. It is not a typical situation. Usually there are more neurons than the 

number of recognized classes of objects and the „kidnapping effect” is rather rare – it happens in one 

or two classes out of a dozen (Fig. 3.43). That explains why when using our own neural networks – 

that is our brains – only some, not so many details disappear from our memory, replaced by other, 

more intense memories. Unfortunately, usually things that „get lost” are the most important and 

they get lost right when most needed! 

 

Fig. 9.43. In a network with „hard” competition very few previously learned patterns are lost 

 

During experiments with the application Example 10c you will surely notice further „kidnapping-

related” phenomenon. New objects might „kidnap” neurons that already were in a stable 

„relationship” with some class of objects; it might happen even if there are still many free neurons, if 

those free neurons are more distant. In the sample application the phenomenon gets more intense 

when firstly one class of objects is shown and only when neurons start identifying with this group 

then new classes of objects are shown. Then those new objects sometimes „steal” neurons from 

established classes. If all objects were shown at the same time then a competition will be present, 

showing in „attracting” neurons once to the first group then to the other (you can see that in the 

application Example 10c when you start the self-learning process with a very low number of neurons, 

see Fig. 9.44).  
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Fig. 9.44. „Attracting” a neuron between objects of classes 1. and 4. 

In such a case it is possible that the network will learn nothing, even in a very long self-learning 

process. That also probably sounds familiar; think about school problems when a few exams were 

scheduled for one day - for example mathematics, physics, geography and history - you were 

probably not able to prepare well for any of those subjects! 

The solution to that problem might be „softening” the competition. You can do this when you go 

back to the parameters window (click the Back button). The window is shown in the Figure 9.37, left. 

Find and activate the Soft competition parameter (check the checkbox). From this moment on the 

application will apply softer limited competition, that means that the winning neuron will be chosen 

only if the value of the output signal will be exceptionally high10. That means that neurons will be 

evenly divided between classes of recognized objects. Furthermore, there will be no kidnapping of 

neurons that already belong to some other class.  

Unfortunately – instead of those you will see another worrying phenomenon: under some 

circumstances (especially in networks with a low number of neurons) there might be no winner 

among the neurons when a particular picture is shown11 (Fig. 9.45).  

                                                           
10 One can say that the softer competition is like partners that have to love each other a lot in order to get 

married. Weak and short fascination does not lead to any long-lived consequences (such as marriage).  

11 There is an analogy also for this situation: Surely you know old maids and bachelors. Their existence is exactly 

the effect of combining the effect of the competition (monogamy) with its soft version (a strong affection is 

needed to get married). 
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Fig. 9.45. Omission of some classes in a network with softened competition 

Use the application Example 10c with a soft competition to examine and analyze this phenomenon 

carefully. It will be easy, because with this option the application uses special markers that show the 

location of patterns of classes that are omitted (that is classes for which there is no winner among 

neurons). 

You will discover that when there is no strong competition then such omissions happen very often, 

especially in networks with a small number of neurons. In such cases for most of classes in the 

network – completely voluntarily! - patterns will be created that allow later for an automatic 

recognition of signals that belong to the specific classes, but for the „unlucky” class that no neuron 

want to detect - there will be no specialized detectors. 

- And what?  

- Nothing!  

Have you ever seen a person that has a flair for history, geography and languages but mathematics is 

beyond their abilities? 

9.10. Questions and exercises 
(Translation by Weronika Łabaj, weronika.labaj@googlemail.com) 

1. Could you explain for whom, when and what for the self-learning neural network might be 

useful? 

2. What determines whether points representing neurons in the application Example 10a will 

be blue or red? 

3. Taking into consideration experiments described in this book and your own observations try 

to formulate your own hypothesis on the influence that the inborn talents (represented by 

the initial, randomly organized weights vectors) have for the gained knowledge (represented 

by the self-learning process). Do you think that systems having a small number of neurons 
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(such as primitive animals) are strongly determined by their instincts and inborn qualities, 

while more complex systems with many neurons (such as a human brain) are much stronger 

influenced by the external factors related to the personal experiences and education? Try to 

find arguments for both points of view using self-learning networks of various sizes. 

4. Describe the features of self-learning networks with a very low and a very high value of 

learning factor Etha. Do we observe similar phenomenon in animals brains? When answering 

this question take into account that learning is easier for younger brains and it becomes 

more and more difficult with age (that process is represented by the diminishing values of 

Etha), for example a young puppy has a brain that can be modeled with a network with a 

very high value of Etha and is different from the brain of an old dog (in which case Etha 

might even be close to zero). Try to think about both good and bad sides of this fact. 

5. Do you think that a self-learning network that has „imagination” capabilities described in this 

chapter can come up with a completely new term or idea, that has no representation in a 

real world or - more precisely - in a space of input signals that the network uses during self-

learning process? 

6. Can you imagine a real-life situation that represents the experience described in the section 

9.7? Try to think about such a situation and consider what influence it would have for an 

animal or human brain (especially young kid). 

7. Do you think that the forgetting mechanism caused by „over-learning” described in the 

section 9.6 explains all the issues related with this process? And apart from that – is the 

forgetting of information that is not constantly updated good from a biological point of view 

or not? 

8. Which adverse phenomenon that occur during self-learning of a neural network can be 

eliminated by introducing competition and which will remain? 

9. In networks with competition the WTA rule (Winner Takes All) is sometimes replaced by 

WTM rule (Winner Takes Most). What does it mean? What do you think? Check on the 

Internet what it is. 

10. Let’s say that you want to design a self-learning network that is able to create patterns for 8 

classes. Prepare an experiment to help you determine how many more neurons (more than 

the minimum - 8) should such a network have at the beginning of the self-learning, so no 

class will be omitted and at the same time the number of „free” neurons will be as low as 

possible. 

11. Advanced Modify the Application Example 10b to enable defining how the Etha parameter 

will change over time. Allow also for planning appearance of some objects only in some 

period during the „lifetime” of a network (for example only during „childhood” or only later, 

when a network is already trained and experienced). Run a series of experiments with such a 

„real-life” application, then write down your observations and try to come up with 

conclusions. What observed phenomenon have their representations in a real-life and what 

are only the result of simplifying real neural networks (brains)? 
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12. For advanced readers: Modify the application Example 10c to enable competition with a 

„conscience”. „Conscience” means that the neuron that wins very often gradually gives up 

and lets other neurons win. Compare such a behavior with the „clean, hard competition”. 

What conclusions can you derive? Do those conclusions apply only to the neural networks or 

could they also be related to some real-life processes (for example in economics)? 
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10. Self-organizing neural networks 

10.1. What is the structure of the neural network, at which you will 

create mappings, being result of self-organizing? 
(Translated by: Michał Głamowski, glamowskim@gmail.com ) 

 
Neural network can be taught with a teacher or can learn by itself. You already know that, you did it. 
However, now you are going to get to know networks, which not only learn by themselves (without a 
teacher), but in addition, agree (on the basis of the interaction) functioning of all neurons, that their 
cumulative resultant acting brings some new quality. It is about automatically generated by the 
network complex mapping from a set of input signals into set of output signals. This mapping 
generally cannot be predicted or somehow determined so the networks discussed here are much 
more self-reliant and independent than the networks, with which you had to do before, because 
their properties are only slightly imposed by the creator of the network, while the essence of their 
operation and the final mapping, being result of their work - is mostly determined by mentioned 
process of self-organization. Details of the process will be illustrated in a minute by the next 
program. Before that though, I'd like to briefly tell you, what all that can be used to, so that you 
won't limit your interest only to watching images, but also try to imagine self-organizing networks as 
serious tools for serious purposes. 
 
The mapping is a quite rich and complex mathematical concept, which has - depending on 
circumstances - several specific characteristics and properties. I don't want to bore you with 
information on the theory, so I will try to briefly (but unfortunately, not very strictly) discuss the 
point, without going into important, but tough and complicated details. I do not know if I succeed, so 
let's agree - if you find it too hard (or too boring...) during reading these explanations - you can leave 
without regret all this theory and start reading specific and detailed information on how to build a 
self-organizing network by yourself and how to examine its properties, in the next subsection. 
However, if you decide to make an effort of reading this theoretical introduction - you will learn what 
such self-organizing networks are built for. You can live without it, but you'll get more satisfaction 
later reading and watching what such a network is doing, knowing also - what it might be useful for. 
 
I assume that if you read this, you are eager adventurer, and I can introduce you into more difficult 
things. Remember - you wanted this! 
 
Let's start by saying that in general we very often need to convert the input signals in the output 
signals according to certain rules. For example, building robots, to fulfill certain tasks, we must 
ensure that their control systems will be able to correctly convert the signals received by the sensors 
(video cameras, microphones, touch-replacement contact switches, ultrasonic sensors, 
approximation sensors, etc.) to signals controlling driving mechanisms of legs, graspers, arms, etc. 
(Fig. 10.1) 
 

 

 

mailto:glamowskim@gmail.com
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Fig. 10.1. Functioning of the considered robot is based on the mapping signals X to signals Y 
 
Such conversion of any input signals into correct output signals is exactly what is called mapping. 
 

 

 

 

Fig. 10.2 General representation of the mapping 
  

X 

Y 
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It of course may not be some random mapping, because it would be completely useless. In order to 
robot move correctly, perform meaningful tasks, respond properly to commands - the mapping, that 
binds stimuli recorded by sensors with concrete moves performed with the actuators, must be 
properly selected, programmed in detail, carefully thought out. Design engineer of robot (likewise 
design engineers of many other automatic systems) is hard put to determine a desired mapping, 
which is in fact essential content of a "brain" (controller) of the robot. 
 
If there's only one input signal and only one output signal - this task is quite simple, and the mapping 
you need is a function that you undoubtedly know from school. However, if there are many sensors 
that are senses of robot (and in such cases there is always a lot of them!) and many actuators (and 
there must be many of them, if a robot is about to do something interesting) - the task becomes very 
hard, troublesome and time consuming. While you could "manually" set and describe all necessary 
mappings, in large and complex tasks, it might take the rest of your life. 
 
This is the case that self-organizing neural networks may prove helpful. An example of such a 
network structure is shown in Figure 10.3. 
 

 
 

Fig. 10.3. Structure of the self-organizing neural network 

Self-organizing networks have usually quite a lot of inputs. Figure 10.3 shows in fact only three 
inputs, but this is in order to not complicate the picture - the tangle of connections at thirty inputs 
would be impossible to trace! This type of networks used in practice have typically over a dozen (and 
often tens) of inputs, and their usefulness in the context of various applications is usually higher, the 
more input signals, a network can handle. But what is more important and more difficult: these 
networks tend to have more outputs, as they consist of vast numbers of neurons, forming together 
the so-called topological layer. Here the term "vast numbers of neurons" means at least tens and 
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often hundreds, sometimes even thousands of neurons - so this is really much more than in all the 
networks you have seen so far. How to understand what the network actually represents in this vast 
topological layer as a result of its work? 
 
The concept that has already occurred many times in this book, namely the idea of rivalry and 
identification of the winner neurons, comes to aid here. After providing any specific input signal to 
the network, all the topological layer neurons calculate their output signals, which are their 
responses to this signal. Among these signals one is usually the largest - and the neuron, which 
produced this largest signal becomes the winner (Figure 10.4). 

 

Fig. 10.4. Exemplary distribution of output signal values presented on topological layer of the 
network with selected signal (and neuron) called the winner 

The process of self-organization, which will be thoroughly described in the following subsections, 
results, among others, that there is one and only one winning neuron and causes the predominance 
of "winner" over the "competitors" is very large and clear. Only if the network (after the process of 
self-organization) gets completely abnormal input signal (unlike any signal, which appeared in the 
teaching set) - it becomes difficult to determine the winner, because all the topological layer neurons 
produce very weak (and in fact little varied) signals. However, this is an unusual situation. 
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10.2. What is the self-organization in the network and what it might be 

helpful for? 
(translation by Bartosz Wilczyński; b.wilczynski.89@gmail.com) 

Even this small piece of knowledge you have gained in the previous section, allows you to find out 

what self-organizing networks are able to. They form - totally by their own, solely on the basis of 

observations of input data - certain  representation of the set of input signals into a set of output 

signals, whereby the curve meet certain general criteria (I will discuss it in a moment), but in no way 

determined in advance by the creator of the network or by its user. Structure and properties of 

projection which  we need should arise spontaneously in a coordinated  self-learning process of all 

the elements of the network. Such spontaneous creation of needed signals projection is called self-

organization. From a certain point of view, it is just another form of self-learning, but if you look at its 

effects (and you will see many of these, because the program used in this chapter gives you all the 

interesting pictures), you will probably admit that we are dealing with a clearly higher level of 

adaptation of the network, involving not only optimization of the parameters of each neuron 

separately, but - and this is just a novelty - the coordination of activities of neurons, giving to 

calculations highly desirable effects of grouping and collectivity. 

 Let us explain these concepts. The effect of grouping lies in the fact that the network in the process 

of self-organization is trying to divide the input data, distinguishing among them certain classes of 

similarity. This works so, that among the input objects (described by the input signals) such groups of 

them are detected (completely automatically!), where you can place the signals which are similar to 

each other in their group and which are clearly distinct from the signals assigned to other groups. 

 
Figure 10.5 Network grouping the input signals (components corresponding to the typical coding of 

digital image) in the collections corresponding to different possible colors. 

 Such clustering of data is very useful in many applications, so a number of specialized mathematical 

techniques allowing the analysis and the creation of such groups of them (mostly statistical) were 

developed. Mentioned techniques are known under the English name of the cluster analysis. They 

are quite willingly used in the economy - for example, to detect which companies are similar to each 
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other and can therefore pose a similar return prognosis of investment, either in medicine - for the 

study which symptoms are indicatives of the different varieties of the same disease, and which 

already indicate the presence of new - perhaps not known - disease. 

In Figure 10.5 you have an example of neural network which is able to group the input signals (color 

image pixels coded in the usual manner using the three components of RGB) according to the criteria 

of similarity of their colors. Figure 10.6 shows the effect of the network without self-organization 

process (on the left) and after the process of self-organization (on the right). Figure 10.6 was created 

in such a way that in every place where there is a topological layer neuron, was drawn a box filled 

with such color of the pixel input, which makes this particular neuron able to become a "winner". 

 

 

Figure 10.6. Activity projection of the network from Figure 10.5. On the left - before the process of 

self-organization, right - after the process of self-organization. 

  Grouping of image pixels together, having a similar color, is not a task that could give any special 

benefits, so you can see the figure 10.6 as a curiosity, and then you can shrug and say, "Okay, but 

what do we need that for?" Well, look in Figure 10.7. This figure is showing what was in the 

topological layer of the self-organizing network, which was told to compare data of different 

companies. At the entrance of the network various data was given: type of business, capital owned, 

number of employees, balance data sheet for several recent quarters, reflecting the profits gained or 

losses of the company etc. The network grouped these companies, and so placed the parameters 

that each neuron had a habit to become the "winner" when the information about "his" company 

was shown. Then - after waiting a year - those companies were examined. It turned out that some of 

them fell down or they are threatened with bankruptcy - those whose neurons are indicated on 

Figure 10.7 in red. Others on the contrary, proved to be affected by economic stagnation. Neurons, 

which are assigned to them in the automatic process of self-organization are indicated in Figure 10.7 

with the blue color. And finally was a group of companies that have developed in harmony - you 

guess they are marked on green. 
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Figure 10.7. The effect of clustering in the self-organizing neural network. The description in the text. 

Such a very impressive examples of self-organization, leading to the ordering of certain data, you can 

find plenty on the Internet - just type in Google the term "self-organizing networks" or better - a 

commonly used acronym SOM (Self-Organizing Maps). By doing this very quickly you can find out 

that tasks of grouping the input data described here into classes of similarity are needed and finds 

practical applications. 

 Neural networks engaged in the process of self-organization are therefore a very attractive tool to 

perform the task of grouping the input data and the creation of classes of similarity among them. The 

attractiveness of neural approach to the concerned problem is mainly that the self-organizing 

process can be carried out here absolutely automatically and spontaneously, and the creator of the 

network does not need to give any clues to it because the set of the necessary information is 

contained in the same input data (from which the network itself will extract the observation that 

some are similar to each other, while others do not). In addition, after the network is learnt how to 

cluster the input data, very useful systems arise - "winning" neurons, which specialize in identifying 

specific classes of input signals, so they are detectors and can be used  as their indicators.  

Having talked briefly about what is the effect of clustering in self-organizing neural networks I will tell 

you even in a few words what I have meant by the collectivity of activity of the network. 

Well, the networks in which the self-organization takes place are so organized that what a neuron 

identifies, to a large extent depends also on what other neurons (located in its vicinity) identify. In 

this way, community of neurons (or their collective) could process information in a fuller and richer 

way than each of the individual neurons taken. See Figure 10.8. 
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Figure 10.8. The effect of recognition of geometric figures of self-organizing neural network. The 

description in the text. 

The figure shows the results of my research related to the recognition by the self-organizing neural 

network of simple geometrical figures, shown to it as the images. In places where the network placed 

(totally by its own!) the neurons indicating the different shapes of geometrical figures shown to it - 

there are pictures of the relevant figures. Make with me a brief tour of this map, and you'll find that 

this distribution of neurons is certainly not accidental!  

We start - with red arrows, which I added to the figure - from the neuron, which becomes the 

"winner"  whenever a square is shown to the network. Not far from it there is the neuron indicating 

a pentagon, and a little further - neuron signaling an octagon. Rightly: a pentagon is more similar to a 

square than an octagon! Near the octagon the neuron recognizing a circle was placed. From it short 

path leads to neuron signaling an ellipse, which in turn is not far from the neuron which understands 

a semicircle. Semicircle has a clear affinity for a smaller piece of the circle, called by us a sector, and 

this in turn is clearly similar to the shape of a triangle...  

As you can see, the effect of collective self-organized networks is very interesting. What is more, this 

is the effect, which is  a contribution to the broader considerations: Well system, or just the 

community of appropriately linked and cooperative elements makes it possible to obtain new forms 

of behavior and new forms of actions, much richer than might be expected taking into account each 

of the elements separately. For example, every single insect is quite stupid and primitive animal, and 

yet the community of insects (bee colony, nest, termite mound, etc.) are capable of deliberate, 

complex and undoubtedly intelligent actions. Once I describe my experience that I myself  have 

collected during the computer modeling of bee colony and then I will write about it more - but not in 

this book. 
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 Returning to the networks with self-organization, it is clear that they are quite convenient, useful 

and frequently used tool, and also - perhaps primarily - are very interesting object of research. You 

will learn details of the self-organization process ongoing in neural networks by studying precisely 

the material presented in this chapter and - as usual - doing the experiments with the program 

especially prepared for this purpose. The key to understanding and using of self-organized networks 

is the concept of neighborhood of neurons - and right now we will consider it for a moment. 

10.3. How to implement a neighborhood in a network? 
 (translation Rafał Opiał, oorafal@gmail.com) 

To truly understand the structure (and function!) of self-organizing network, first we try to compare 

its functioning, outlined above, with what a simple self-learning networks were able to do, as 

described in the previous chapter. Well, the result of the overwhelming influence of random initial 

values on the course of a simple self-learning process, described in Chapter 9, is that the creator of 

the ordinary self-learning network has no influence on which neurons what will be learned. 

Sometimes the distribution of neurons (after completing the self-learning) signaling certain events or 

certain phenomena can be very uncomfortable and adverse, but you cannot change it without 

"manual" intervention in the network behavior, which in the general case is quite difficult to do, and 

is also contradictory to adopted principle of self-learning. In turn by the introduction into network of 

competition alone, it may happen that only some (usually quite a few) neurons with large „innate 

abilities“ will be subject to the teaching process, while others remain outside the process and will be 

- from the viewpoint of the purpose for which network was organized - in fact lost. You could observe 

this, for example, in program: Example 10c, which outputted - among other things - information 

about which neurons (specific numbers) become „winners“ for each class and later on become 

detectors of class objects. These numbers appear strongly in a chaotic manner, without any relation 

to the location of detected objects. Whereas, the assignation of specific object detection function to 

a specific neuron, just that, and not to another - could be an important factor for increasing or 

decreasing the utility of a network. If - for example - some of the input signals are somehow similar 

to each other (in any sense), You may care, so that their appearance was signaled by a neighboring 

neurons in the network. In this way worked the self-organizing network, which results of work I 

showed you in Figure 10.8. Yet with „pure“ self-learning networks you do not have any influence for 

that and have to humbly accept what will happen.  

A solution to all these worries is to introduce one more mechanism to self-learning networks: the 

neighborhood. For the first time the neighborhood of neurons in the networks applied (in the 70's)  

Finnish researcher Teuvo Kohonen, and therefore in the literature, networks which make use of the 

neurons neighborhood (and usually also involving competition between neurons) are called Kohonen 

Neural Networks.  

I'll show you now, what this neighborhood is, and then tell you what it gives you. 

So far, you have considered neurons in network as units largely independent of each other. Although 

they were linked together and transferred signals to each other (just like in a network) - but their 

relative position in the layers did not matter at all. At the most, for the ordering purposes there were 

introduced (used also for organizing calculations in programs simulating nets) the numbering of 

neurons - and that's it. Yet, in the self-organizing network which is under consideration here, it is very 



252 
 

important which neurons in the topological layer you consider adjacent, as this will significantly 

influence a behavior of the entire network.  

We, most likely, associate neurons of a topological layer with points of some map, drawn or 

displayed on a computer screen, so typically we consider a two-dimensional neighborhood: neurons 

are considered as if they were placed in nodes of a regular grid composed of rows and columns. In 

such a grid, each neuron has at least four neighbors, two horizontal (left and right) and two vertical 

(top and bottom) - Figure 10.9.  

 

 

Fig.10.9. Simplest case of neuron neighborhood 

If you need to - the neighborhood can be considered more broadly: also allow the neighbors on the 

diagonal (Fig. 10.10), or join into the neighborhood neurons located in further rows or columns 

(Figure 10.11).  



253 
 

Fig. 10.10. More “rich” neighborhood 

 

Fig. 10.11. Neighborhood with longer distance. 

The way you will define a neighborhood is entirely up to you - for example you can describe a 

network, so that a neighborhood will be also one-dimensional neurons will then form a long chain, 

and each neuron will have the neighbors preceding it in the chain and neighbors who follow him - fig 

10.12.  
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Fig. 10.12. One-dimensional neighborhood 

In specialized applications of self-organizing networks can be applied a three-dimensional 

neighborhood (neurons with their neighbors look then just as atoms located in a crystal lattice - you 

have certainly seen some of these pictures already, and I do not want to exert myself and draw here 

anything like it, so imagine it yourself), it happen also to consider a neighborhood four-, five- or more 

dimensional (guess why I will not draw you this?). But definitely the most practical applications have 

networks one- and two- dimensional, this is why we will restrict all the further considerations only to 

them.  

The neighborhood concerns, of course, all the neurons in a network: each neuron has a set of 

neighbors, and he in turn is a neighbor to other neurons. Only neurons located at the edge of the 

network do not have a full set of neighbors, but sometimes this can be remedied by making a special 

agreement (e.g. "closing" the network in such a way that the neurons of the upper edge are treated 

as neighbors to neurons from the lower edge; similarly can be closed left and right edges of the 

network). 

10.4. What follows from the fact that some neurons we consider 

neighbor?  
 (translation Rafał Opiał, oorafal@gmail.com) 

A fact that some neurons are considered to be adjacent (are neighbors) has a very important 

meaning. When, during a teaching process, certain neuron becomes a winner, and is subject to the 

teaching process – it's neighbors are being learnt along with it. Soon I will show you how it happens, 

but before, I'll remind you of how proceeds the teaching of a single neuron in self- learning networks 

(fig. 10.13). 
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Fig. 10.13. Self-learning process for single neuron 

Now, compare fig. 10.14. Notice what follows with it: a winner neuron (marked with navy-blue point) 

is subject to teaching, because its initial weighting factors were similar to components of signal 

shown during the teaching process (green point). Therefore here happens only amplification and 

substantiation of natural, „innate“ preferences of this neuron, you could notice this in other self-

learning networks. On a figure it looks as if „the winner“ was strongly attracted by an input point, 

which caused that exactly this neuron has become a winner – its vector of weights (and a point 

representing this vector on a figure) moves strongly towards the point representing the input signal. 

Neighbors of a winner neuron (yellow points lightly toned in red) are not so lucky – however 

regardless of what their initial weights and following it output signals were, they are taught to have 

tendency to recognize exactly this input signal, for which the „remarkably talented“ neighbor turned 

out to be winner! But to be justly – neighbors are taught slightly less intensively than the winner 

(arrows indicating magnitudes of their displacements are visibly shorter). One of the important 

parameters defining characteristics of networks with neighborhood is exactly the coefficient 

specifying how much less the neighbors should be taught than the winner itself. Please notice that 

neurons (yellow points), which parameters many times much better predestined them to be taught 

(they were much closer to the input point) – didn't undergo any teaching during this step. 
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Fig 10.14. Self-learning of the winning neuron and its neighbors 

What will be the result of such a strange teaching method? 

Well, if the input signals for the network will come in a such manner that there will be clearly existing 

clusters of them, then the individual neurons will endeavor to occupy (by its vectors of weights) 

positions in the centers of these clusters, whereas the adjacent neurons will „cover“ the neighboring 

clusters. Such situation is presented on the fig. 10.15, on which green dots represent input signals 

whereas red stars correspond with the location (in the same coordinate system) of vectors of weights 

of the individual neurons.  

 

Fig. 10.15. Result of self-learning – clustering of the input data 
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A much worse situation will occur when input signals will be equally distributed in some area of input 

signal space, as it is shown in fig. 10.16. Then, neurons of the network will have tendency to “share” 

the function of recognizing these signals, so that each subset of signals will have its “guardian angel” 

in the form of neuron, which will detect and recognize all signals from one subarea, another will 

detect signals from another subarea, etc. Fig. 10.17 illustrates this. 

 

Fig. 10.16. Self-learning using uniform distribution of input data present difficult task for neural 

network 

 

Fig. 10.17. Localization of weight vectors of self-learning neurons (bigger circles) in points of input 

space, where such neurons can represent some sub-sets of input signals (small circles) in the same 

color. 

While looking at it there is necessary – as it seems – one comment. Well, not immediately may be 

obvious for you that in case of randomly appearing set of points from some area and systematically 

conducted teaching – the location occupied by the point representing neuron's weights will be the 

central location in the set. But that's how it actually is, as it may be seen in fig. 10.18. 
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Fig. 10.18. Mutual compensation of pulling from different input vectors, reacting with weight vector 

of self-learning neuron when it is located in center of data cluster 

As seen from this figure, when neuron (represented, as usual, by its vector of weights) occupies the 

location in the centre of the “nebula” of points which it is meant to recognize, therefore the further 

course of teaching is not able to move it from this location for permanent, because different points 

that appear in the teaching sequence cause displacements that compensate each other. To reduce 

the neuron's “yawing” around its final location, in the Kohonen's networks is often applied a principle 

of teaching with decreasing teaching coefficient, therefore the essential movements associated with 

each neuron finding its proper location happens mostly at the beginning of teaching (when the 

teaching coefficient is still large). While points being shown at the end of teaching process very 

weakly influence the position of neuron which, after some time, fixes its location and does not 

change it anymore. 

Besides this process of weakening consecutive corrections, during the teaching of network there also 

occurs another process: the range of neighborhood systematically decreases. On the beginning the 

changes following from the neighborhood concerns, by every step of teaching, many neurons, 

gradually the neighborhood restricts and tightens so that on the end each neuron is lone and devoid 

of neighbors (fig. 10.19). 
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Fig. 10.19. Decreasing of neighborhood area during self-learning process 

If you think about all the above information, notice one thing, that after the teaching finishes 

neurons of the topological layer will portion the input signal space between each other so that each 

area of this space will be signalized by another neuron. And what more, as a consequence of 

influence of neighborhood these neurons which you regarded to be adjacent – will demonstrate 

ability to recognize close – that means similar to oneself input objects. It will turn out to be very 

convenient and useful because this kind of self-organization is the key to remarkably intelligent 

applications of networks as self-organizing representations. We were considering this at the 

particular examples in the first sub-chapters of this chapter. 

When presenting the results of teaching of Kohonen's network you will come upon one more 

difficulty, which is worth discussing, before you contact with a real results of simulations, so that 

everything was completely clear later. Well, when presenting results (in the form of, occurring during 

teaching, location change of points corresponding to individual neurons) you must have possibility to 

watch also what happens with the adjacent neurons. In the figure 10.14 you could easily correlate 

what happened to the “winner” neuron and its neighbors, because there were just a few points and 

identifying neighbors on the basis of the changed color was easy and convenient. During the 

simulations you will sometimes have to deal with hundreds of neurons and such technique of 

presentation is impossible to maintain. Therefore when presenting the activity of Kohonen's 

networks there is a commonly practiced technique of drawing “map” of neurons positions with 

marked relation of neighborhood – as in the figure 10.20. 
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Fig. 10.20. One step of the Kohonen’s network learning 

In the figure you can notice that points corresponding to the adjacent neurons are presented as 

connected with lines. If, as a result of teaching process, the points shift – also shift the corresponding 

lines. Of course this should concern all the neurons and all the relations of neighborhood, but in the 

figure 10.20. for a maximum clarity I showed only those lines, which referred to the “winner” neuron 

and its neighbors, while I omitted all other connections. In detail for the full network you will see this, 

in a while, on the example of program Example 11, which I prepared for you. 

10.5. What can Kohonen networks do? 
Rafał Opiał - oorafal@gmail.com 

The program Example 11 depicts the working of a Kohonen network. But, to let you know how to use 

it, first a few general comments. 

Just after its start, a window will show, where you can set the dimensions of a network: horizontal 

(Net size X) and vertical (Net size Y) – figure 10.21. The network size, which you choose depends, 

naturally, only on you, but to obtain more clear results start the play from not very big networks – 

e.g. a good idea is to choose a net of size 5 x 5 neurons. Such network is rather primitive and there 

will be no big use of it when dealing with more complex tasks, but instead, it will learn fast enough so 

that in a while you will see what is it all about. Then will come the time for networks of greater sizes. 

In the program code itself, there are no specific limitations for a network size, however the range of 

inputting these parameters is restricted from 1 to 100. During the teaching of big networks on a less 

efficient computer you must sometimes reveal patience, since from previous experiments you know 

that for finalizing teaching of a bigger network it is necessary to perform from few to over a dozen 

thousand steps. Besides setting the both network dimensions, in the initial window (fig. 10.21), you 
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can also determine the range of numbers from which there will be drawn the initial values of the 

weight coefficients (Range of initial random weights). For a start I propose you to accept the 

defaults while in your further experiments you can safely and curiously experiment with another 

(bigger) numbers since this will show you how the “inborn” abilities of neurons forming the network 

affect its activity. 

 

Fig. 10.21. Initial interaction with program Example 11 

After determining the network dimensions and the range of initial values, by using the Next button 

you will proceed to the next window (fig. 10.22) where you will follow the progress of a teaching 

process.  In this window the location of each neuron in the input signals space will be marked with 

blue circle while the red lines connecting one circle to another will signalize that these neurons are 

“neighbors” (according to the assumed rules of binding them together – fig. 10.20).  

 

Here you can set network 

dimensions: horizontal (Net 

size X) an vertical (Net size Y). 

 

Here you can set range of 

values, limiting random 

values of initial weight 

coefficients.  
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Fig. 10.22. Structure of the Example 11 working screen 

In the point of input signal space, where such circle is located, there is a neuron recognizing and 

signalizing appearance of a signal from this particular point (and its close neighborhood because the 

neural networks always tend to generalize the acquired knowledge). During the experiments with 

Kohonen networks usually there are randomly shown points from a certain subspace of an input 

signals space. As a result, the blue circles will consequently disperse and spread over the whole input 

signals space – to be more exact over this particular piece from which will be coming the teaching 

signals that will be showing during the teaching process. On the other hand these points of input 

signal space, which will not be shown during the teaching, will not “attract” any neurons. To 

demonstrate this effect, in the program Example 11 I prepared three options of presenting the 

training series: points that teach a network may come from the whole visible area of the input space 

(this option is called “square”), but them may be taken also from the subarea in the shape of a cross 

or a triangle. Thanks to this you will be able to become convinced that, truly, a network finds 

representations of only these input signals that are really shown – in the areas that does not undergo 

teaching there will not appear (generally) even one circle that represents neuron "lying in wait" in 

that place! 

After determining the number of steps that program must perform (parameter: Iterations) you can 

use a combo box “Figure”, in a group of training parameters, to determine the shape of an area from 

which will come the points “recruited” to be shown to a network in consecutive phases of the 

teaching process. In the group: “training parameters” you will find also other parameters of the self-

teaching process, but for a start I propose you to accept the defaults. 

Now it's enough just to press the “Start” button to initialize and proceed the network teaching 

process. In the window placed in the lower left corner (in the figure it's marked with a green frame) 

there will consecutively appear nets of points (their count you determined previously in the 

Iterations parameter). All them have the same color because, naturally, there is no teacher that 

Initial 

localization 

of neurons  

weight 

vectors 

Learning set 

presentation 

area 

Frames 

showing 

consecutive 

steps of 

learning 

process 
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could somehow classify the input points. But you may notice from which subspace of an input signals 

space came the signals and it's worth to compare it with the result of teaching displayed at the end. 

After pursuing the number of steps, that you selected, the program will display a new map showing 

the distribution of points symbolizing neurons (as well as their neighborhood relations according to 

the net topology) on the background of the whole input signals space. Because the previous map is 

also visible (the program displays on one screen the results of few last steps of teaching process) you 

can precisely see the progress that the network does during the teaching. The result of the last 

training step can be easily identified by the red color of the frame. This is necessary when after many 

steps of the teaching process all of the frames will be taken and the space on the screen will be used 

“rotational”. 

At the beginning, before the teaching process will bring some order into it, neurons have rather 

accidental positions in the input signals space, so the blue circles are scattered with no order and the 

lines connecting the neighbors toss without rhyme or reason (fig. 10.23). 

 

Fig. 10.23. Example of initial neuron weight distribution 

As I have claimed in the previous paragraph – the process of setting the initial values randomly, 

generates the values from the range that you choose. I recommended you to use small initial values 

of weight coefficients in your experiments (e.g. the one that suggests the program: 0,01), so usually 

the unordered cluster of blue circles symbolizing neurons will occupy the densely filled central area 

of the input signal space and it will be difficult to see (as it is for example in the figure 10.22). But 

since I wanted you to see closely how does the initial network state look like before starting the 

teaching process – before the simulation for which the initial state is shown in the figure 10.23 I have 

set up a great value for a scope of random initial weights (concretely: 7). I knew that later it will be 

rather difficult to teach such a network, but I wanted you to see on your own eyes that the initial 

state of a network (particularly an initial location of lines representing the neighborhood) is 

absolutely chaotic. 

After every display of the neurons location, the program may change the number of steps that must 

be done before you see a new map of points layout. At the beginning you may use the defaults, and 

then, when you will “empathize” well with the program working – you may change on your own the 

number of steps between the consecutive presentations of the teaching results. View the teaching 

progress on a more impressive way (big steps consisting of few dozens or several hundreds of 

teaching steps resulting in major changes in the display of network working) or more exact (small 

steps). At the end of the teaching process, when the “progress” that does the network which is being 
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taught become really small, it will be expedient to use very big “jumps” (e.g. 100 or 300 steps of 

teaching) – but remember, in case of a bigger size network you will have to wait a longer while 

before you will see results! 

Our goal is to observe and examine the process of self-organizing in Kohonen Network. First let's 

investigate how this process goes with a simple cases. If you start a teaching process and a modeling 

program will start to generate and show to the network points originating from different places of an 

input signal space (you can follow the process, because in the lower left corner of a program window 

will be visible an area, where points that are being shown to the network will be displayed – see Fig. 

10.22), soon you will observe the move of a blue circles representing weights of neurons. These 

circles, at the beginning disposed completely chaotic, little by little will be moving to positions 

equally distributed in the extrapolated area of an input signal space. And what's more there will be 

an impact on their location coming from the neighborhood relations. You will see that by looking at 

the red lines showing which neurons are neighbors, that they form a regular mesh. It will look as if 

the mesh, which consists of nodes (individual neurons) and connections (indicating the 

neighborhood) is a subject to extension. As a result of it, the vectors of weights of neurons from a 

topological layer will move to such positions so that each of them will take the position which is a 

centroid (a pattern) for some fragment of an input signal space. This process is exactly described with 

so called “Voronoy mosaic”, but for the accuracy required in this popular book one can assume that 

different neurons, forming a net, step by step specialize in detecting and signalizing different groups 

of input signals. As a result, after some time, for every input signal that appears often enough, there 

will be exactly one neuron existing in the net that specializes in detecting, signalizing and recognizing 

it. In the initial stage (Fig. 10.24) dominates the process in which the random distribution of points 

and lines is superseded by initial order of points. 

 

Fig. 10.24. Initial stages of self-organizing process performed in Kohonen’s network 

Then the learning process becomes more subtle and tend to make the points distribution maximally 

regular. The important is that the network creates the inner representations (in the form of adequate 

distributions of the values of weight coefficients) – only for the subarea of the input signal space, 

from which origin the points presented to it. And so, you can observe, that in case the input signals 

come from limited area of input signals (on the figure such area has a square form) – then the 

Kohonen's network tries to “cover” with the neurons just this square. It happens either if you deal 

with a network having a little neurons (Fig. 10.25) or for the network (slowly working) with a big 

number of neurons (Fig. 10.26), as well as in case when the initial distribution of neurons is located 

on a big area of weights space (Fig. 10.27). 
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Fig. 10.25. Consecutive steps of self-organization process in relatively small network 

 

Fig. 10.26. Self-organizing in big Kohonen network 

 

Fig. 10.27. Self-organizing in case wide distribution of neuron weights initial values 
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Remember that the goal of the self organization process always is to have an individual neuron in the 

network that detects the appearing of a specific point of the input signal space – even if such a point 

was never presented during the teaching process (Fig. 10.28)! 

 

Fig. 10.28. Effect of self-organization. Looking at this picture read comments on yellow balloons first, 

and blue ones next (from left to right). 

10.6. What will Kohonen Networks do in case of a more difficult data? 
Rafał Opiał - oorafal@gmail.com 

The program Example 11 has a very rich capabilities that will give you an opportunity to perform – as 

long as you use your imagination – different interesting experiments. You can, for example, study 

how the network behavior and self organization processes that happen within it will be influenced by 

the manner of showing an input data. By using the options offered by the program you will quickly 

see that if the subspace of the input signal space from which will be coming the values showing to 

the network, will be limited even more than in case of the square then the self organization process 

will trend to not create excessive (needless) representations of input data. You can observe it by 

providing to the network that is being taught the input signals coming only from some chosen 

subspace of input signal space e.g.: the shape of a triangle (my program gives you such means). You 

will see then, that all neurons will position themselves to recognize all the points inside this triangle 

(Fig. 10.29) – no neuron will specialize in recognizing input signals from the space beyond the triangle 

– because such points weren't shown during teaching, so probably they do not exist and there is no 

need to recognize them! 

... are recognized 

by this neuron.  

Signals from this region of 

input space … 

... are recognized by this 

neighbor neuron.  

 

And signals from this 

near region … 
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Fig. 10.29. Self-organization in case, when data presented during learning process are taken from 

sub-area of input space (e.g. triangle sub-area). 

A little more difficult for the network is to fulfill similar task in case when chosen subspace of input 

signal space has more complex form – for example a cross. In such case it may happen that on the 

beginning of a teaching process the network will not manage to find the proper distribution of 

neurons (Fig. 10.30). 

 

Fig. 10.30. Not very satisfactory result of self-organizing process when input data are randomly taken 

from input sub-space having form of cross 

But usually a tenacious teaching can lead to success also in such case (Fig. 10.31), although this is 

easier to achieve if the teaching is conducted in a network consisting of bigger number of neurons 

(Fig. 10.32). 
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Fig. 10.31. Better (than presented on fig. 10.30) result of self-organization 

 

Fig. 10.32. Example of successful self-organization in case of network having many neurons 

10.7. What happens in a network with excessively wide range of initial 

weights? 
Rafał Opiał - oorafal@gmail.com 

Big initial spread of weight coefficients of modeled neurons is a factor that definitely is not favorable 

for getting good results of self organization (Fig. 10.33). In such cases often it is being observed a 

phenomenon of omitting and – despite of long teaching – consequently ignoring by the self 

organizing network a certain fragments of active areas of input signal space (notice the bottom right 

corner of the triangle in Fig. 10.34).  
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Fig. 10.34. Example of ignoring (by the network) some input data (right lower part of the input space) 

when spread of initial values of neuron weights is too big. 

After you saw the „healthy” functioning of a network, I encourage you much to initiate teaching 

process with very big values of initial random weights (e.g. equal 5) for some uncomplicated case 

(desirably for a small network, for example 5x5 neurons, to quickly see the result). Very likely that 

you will see an interesting phenomenon occurring sometimes in such initially overstocked Kohonen 

Networks, which is „collapsing” or „twisting” of the network (it is hard to describe – best is to see it 

by yourself in Figures 10.35, 10.36 and 10.37). 

 

Fig. 10.35. Example of failure during self-organization process. 
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Fig. 10.36. Another example of “twisted” Kohonen network 

 

Fig. 10.37. Rare case of “twisted” network learning on data recruited from subspace in cross form 

In a free time you may consider what may be the cause of occurring such defect and why the self 

learning process cannot lead out the network from such a „dead end”?  

10.8. Can I change the form of self-organization in the course of a 

network self-learning? 
Rafał Opiał - oorafal@gmail.com 

Interesting experiments you may perform with the program Example 11, because it allows to change 

„on the fly” the shape of a subarea of an input signal space for selecting the input data. For example, 

you are able to start a teaching process with a rectangular shape of a subarea from which come the 

teaching data, and when the network will almost reach the desired state you may change the 

subarea shape to a triangle. In the Fig. 10.38 you can see the result of this experiment. 
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Fig. 10.38. Change of learning goal during the self-learning process 

Not always you will manage to perform such experiment in painless way. Sometimes in a final 

arrangement of a network there will be visible relicts of a previously taught figure. It can be observed 

in Fig. 10.39, where I have exemplified a course of an especially perverse teaching: at first the 

network has adjusted to the triangular subarea, then it was forced to recognize an arrangement in a 

rectangular shape, and eventually, a triangular again. 

 

Fig. 10.39. Result of self-learning process with visible relicts of changing goals during the learning 

process. 

As you may learn from the mentioned examples, neurons in a Kohonen network learn (completely by 

themselves, without any intervention of a teacher!) to map in their internal memory, which is 

represented by weight coefficients, typically shown patterns of external (input) signals. 

10.9. Alright, but what it all might be useful for? 
Rafał Opiał - oorafal@gmail.com 

I think that by now you have a notion of what Kohonen's Network is capable doing. But still there is 

an important and actual question – what for can it be practically used? At the beginning of this 
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chapter I told you already about mappings – for example in robotics – which a Kohonen Network 

could spontaneously create. By now, knowing how the network works, you can closely analyze this 

example. So imagine a robot, which has two sensors (because networks that you have already 

studied always had only two input signals). Let one of these sensors provide information about an 

illumination brightness, and the other – about sound volume. This way every point of the input signal 

space will correspond to a one particular environment with a specific set of characteristics – some 

will be bright and quiet, others dark and loud, etc. 

- Say what? Does it remind you of something? 

- And very well, exactly it has to remind you! 

Now, a robot equipped with a Kohonen Network starts its functioning from observing the 

surroundings. Sometimes it is bright, sometimes dark, sometimes loud, sometimes quiet – but it 

turns out that some combinations of input signals occur in the robot's surroundings – and others 

don't. The robot unhurriedly classifies incoming data, accumulates knowledge about them, 

specializes its neurons – and after some time it has already trained its Kohonen Network, in which 

with every practically occurring situation corresponds a neuron that identifies and detects it. 

It is worth to think a while, what does it mean. Indeed this what arises in a Kohonen Network that 

fulfills function of robot's “brain” - is an internal model of the external world. You have such model 

too. In it, there is a neuron that recognizes Your Mother's face, a neuron related to identification of a 

way back to your home, a neuron that recognizes your favorite cookies and one that signals a 

presence of hated neighbor's dog, which has bitten you twice already. For every sensory perception 

that you recognize, for every situation that you know – you have a model in your brain that detects 

and recognizes it. An outstanding polish neurophysiologist professor Konorski has associated these 

internal models of particular fragments of the outside world with separated parts of human brain 

and called them gnostic units. 

Practically whole your perception, whole ability to know and recognize the condition of a 

surrounding world is based on fact, that in your brain during years of communing with different 

situations, you have created a ready patterns of appropriate perceptions –  exactly these gnostic 

units. Signals that are provided by your eyes, ears, nose and the other senses serve in this situation 

usually to activate a proper gnostic unit, that means to select and run the exactly one of thousands 

models stored in your brain, that corresponds to the encountered sensation or situation that you are. 

Thanks to that – and as it turns out – only because of that, your ability to recognize sensual 

expressions is so fast, efficient and reliable. But if your brain lacks such ready, prepared earlier 

model, then the perceptual situation becomes difficult, and orientation in the new situation is often 

very delayed and often unreliable. 

There exists a hundreds of evidences for that. To not extend this topic too long and let You as soon as 

possible play again with a neural network – I'll mention only three. The most important evidences 

that the shown above internal models of the external world really exist and are indispensable, were 

gathered while performing experiments on animals. It was performed, for example, deprivation of 

young cats1. 
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It consists in that when a young cat starts seeing (as is well known – kittens born blind and start 

seeing after few days) – the researcher let them to see only some given geometrical pattern – e.g. 

vertical lines. On every occasions when a cat could see anything else (e.g. during feeding) – light is 

being turned off. After a month of such training a cat was returned to live in a normal world. It turns 

out that a cat having healthy and fit eyes – behaves like a blind. He is not able to notice an obstacle, 

bowl with milk or even a human. His brain  holds only models of single geometrical figures, it does 

not have patterns of a chair, bowl or other cat. His perception is completely disrupted and it needs a 

long time of learning so that the cat regain the ability to see normally. 

About the fact that similar phenomenon occur also to humans show information of anthropologists 

who described tales of Pygmies. This is a tribe of African midgets which the natural habitat is a dense 

jungle, where there is not possible to see far away. Now, when these people were led to an open 

space, they completely lost the sense of direction. The simplest phenomenon related to looking far, 

trivial for each of us, such as changing a perspective related to e.g. approaching of some animal – 

were treated as a result of an unintelligible and powerful magic (yet a while ago the zebra was 

smaller than a dog and now it has grown to the size of a horse!). In their brains lacked models 

regarding the perception of visual phenomenon on an open space. 

Sometimes about the meaning of internal models of objects from a world recognizable by you, you 

can see on your own example – if you pay attention to simple and apparently obvious phenomenon. 

For example you easily read news in your mother tongue, and since you are an computer expert, 

probably in English as well, or maybe in German, French, Spanish or another. With each of these 

languages, if you know it well enough, you need just glance – and in your brain the letters turn into 

words, from the words form notions, from the notions knowledge... It occurs because in your brain 

for many years of learning were formed models of letters, words, sentences and whole pieces of 

information, because of that while reading you just recall them and they appear immediately – ready 

to use. 

Different situation appears when you encounter an unknown word in a text, or even you try to read a 

message in an unknown language. This time with a much effort you syllabize the text and it takes you 

a lot of time to spell it, saying not about the total inability to understand a meaning contained in the 

given statements. Easiness and fastness of reading disappear irrevocably, because in your brain there 

are no ready patterns, there are no models for these words, sentences and messages. 

I could extend this thread and show that in case of inscriptions formulated in an unknown language 

(e.g. Hungarian), but using a well known alphabet – it is possible to utilize models of letters existing in 

brain, thanks to that you can remember an unknown inscription and when you meet a translator you 

can ask him to translate it for you. However if in your model of the outside world you do not even 

have patterns for letters (e.g. if you encounter an unknown inscription in Japanese or Iranian) – then 

you will not even fail to understand the matter of it, but you'll even have much difficulties to 

remember it and ask for help your familiar translator. Simply, your brain in this case will not have any 

useful gnostic units. 
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Fig. 10.40. Internal representation in the brain somatosensory stimuli regions and motion control 

regions (source: http://ionphysiology.com/homunculus1.jpg, taken may 2012) 

¬In your brain there is also another representation which creates a map of all your body on the 

surface of cerebral cortex in the area of ganglions called gyrus postcentralis (Fig. 10.40). What's 

interesting: the map does not resemble exactly the shape and proportions of your body! On the 

surface of a brain, for example palms and face occupies much more space than a whole trunk with 

limbs (Fig. 10.41)! 

It results exactly from the fact I mentioned above in the context of artificial self organizing neural 

networks: controlling the moves of palms and face (mimic, speech), and also reception of sensory 

stimuli involves more brain cells because it is done often. 
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Fig. 10.41. Homunculus  (Image courtesy: www.gmail.com ). Each area of body has proportionate 

sensory neural area. 

Excuse me that I wrote at length on the examples. I cared, though, that you understand and 

remember how great and important meaning have patterns of assimilated sensations early prepared 

in brain in the course of seeing (or any other perception like: hearing, taste or even touch). And such 

patterns are being created fully spontaneously in neural networks during the process of self 

organizing. 

Let's come back now to the example with the robot which I started few sentences earlier. Every 

neuron in this robot's Kohonen's Network, recognizing one of the occurring (and only the occurring!) 

states of an external world, serves the same function as, the described above, gnostic unit in your 

brain. Therefore the self learning process of a Kohonen's Network creates a specific set of gnostic 

units inside the robot's controller, which are a set of models for every situation in which the robot 

may be. Such model is very important because having a model one can classify every input situation 

(following from the signals provided by sensors). Whereas after classified an actual situation to one 

of prior defined classes the robot may adequately adjust its behavior. In the simplest case you may 

define what a robot must do in specified situations – e.g. you may state that if a situation is normal 

(quiet and not very loud) the robot must continue moving forward, if light is turned off it must stop, 

and when it hears a noise it shall step back, etc. The important thing is that you do not have to state 

a detailed directions what the robot must do in every situation. Based on a neighborhood of neurons 

detecting similar situations, you may stop after giving a clues for some selected situations, and the 

trained Kohonen Network in the robot's brain will figure out itself what to do. Simply, if it finds that 

for some specific perceived situation, it does not have a ready recipe for how to behave, it will figure 

out by itself (based on the neighborhood structure in a neural network) that, from a set of different 

states of a network, for which there was a proper behavior defined, the closest is some specified 
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another situation. If for this situation it was saved in a memory that some action is necessary – then 

for currently recognized similar situation it is advisable to do the same or something similar. For 

example if for the respective analogical situation it was advised to quickly go forward – in all not 

defined by the user “neighboring” situations there can be applied “go forward” but with a reduced 

speed. 

By that means, if for just few model situations you will define what and when to do – a robot will be 

able (better or worse) to behave in every possible situation. It is worth noting that it refers not only 

to the objects that occurred during the self learning of a network. During self learning of a Kohonen's 

Network, you deal – as it is usually with neural networks – with an averaging and generalization 

process. 

Regarding to the averaging process, it is worth to note another fact. Well, during the teaching, there 

may be shown objects (environments) that slightly differ one from another, that means they will be 

characterized by a certain dispersion – and yet it will be remembered for them (in a form of a set of 

weight coefficients for certain neurons) certain resultant, averaged pattern of a “typical input signal” 

which the network will designate to itself (completely by its own!) during teaching. There will, of 

course, exist many of these typical sample signals (and sample environments related to them)  – 

exactly that many as many neurons is contained within a network. However there will be much lesser 

of them, than possible environments, because with freely changing parameters that characterize 

situation in which a robot can find itself – number of possible environments is infinite! 

However, thanks to generalization, during the “exam” (that is during a normal exploitation of a 

robot) the network may find itself in an environment characterized with such parameters that have 

never been shown during teaching. But every neuron of a network, even if it contacts for the first 

time with some signals, tries to qualify them to such a group, for which a pattern created during 

teaching is the most similar to the actually considered signal. It causes that knowledge gained by the 

network during a learning process is automatically generalized during exploitation – which very often 

gives a perfect results. 

The example with a robot, described above, that, thanks to a Kohonen Network adapts its behavior 

to an environment appealed to your imagination (I hope!). But on a daily basis people do not need to 

many intelligent mobile robots, so if you had to live from building Kohonen Networks for such robots 

– you would not afford a villa with a swimming pool and an exclusive car – which you certainly 

deserve. Unfortunately it often happens that even the most brilliant technical systems does not earn 

money to their creators – if there is no buyers that will to utilize them. Maybe you already created in 

your brain a model of this situation? If so, then let's think – who and for what reason could possibly 

use a Kohonen Network in reality? 

I will not summarize all the possible ideas here, because there is too many of them, but some of the 

most interesting ones I will – just to give you a starting point for your own conceptions. The previous 

paragraph talked about money. And money, as it is known, is in banks, and banks sometimes are 

robbed... 

No, I am not convincing you to build a mobile robot controlled with a Kohonen Network, which when 

were in front of a cash deck will say with a metallic voice: Hands up! This is a robbery! Give me a 

dough! I induce you, though, to think about a possibilities that lie in Kohonen Networks regarding the 
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protecting banks against a theft. But not against a theft as seen in movies – with a masked bandits, a 

shooting and an escape in a car, a very fast car on winding streets. Such thefts occurs (fortunately) 

rarely, and Police have its methods to prevent them. However a true problem of banks, are 

nowadays thefts done in a white gloves – for example by extorting credits and not paying them off. 

Bank lends money to exist, so it cannot throw out the door everybody who comes with a credit 

application – although it would guarantee a hundred percent security. However some borrowers do 

not redeem money they borrowed – it generates losses, usually much bigger than famed armed 

robberies. 

How recognize to whom money may be safely lent and to whom not? 

It is simple – you need to have a model of a honest entrepreneur who will build a fair prospering 

company for a borrowed money and will pay off the credit and interest, and also you need a model 

of a trickster who wants only to rake in and hit the road with money. Unfortunately people are very 

different and different are life and economical situations, so there must be thousands of models of a 

honest businessman, and at least the same number (or maybe more?) of tricksters and embezzlers. 

No man will manage to complete such a task. 

But what for are the abilities of a neural network? Enough to think over well, what data to introduce 

to it, and how to perform self learning, how to interpret then results – and after selling this brilliant 

system to few banks you can go for a deserved vacations on a sunny beaches of Caribbean. 

- What? To little information? Shall I describe more accurately how to do that? 

But do you know what a crowd would be on a coral beaches of Puerto Rico if I gave here all details 

and everybody who reads this book would become a millionaire? You shall use your head a little on 

your own… 

10.10. How the network can serve as a tool for transformation of an 

input space dimension? 
(Translation by Rafał Opiał, rafal.opial@op.pl) 

After that short trip to blue seas and humming palms, lets now come back to next scientific problem. 

An unique characteristic of Kohonen Network is that within its responses there exists a topological 

representation of an input signal space. Of course it applies for neighborhood and its consequences. 

In figures that you saw above, and on those you will see during your own usage of the described 

program, there are blue dots representing neurons, connected to each other with red lines. These 

lines, as you know, connect neurons considered as adjacent. At the beginning these lines – similarly 

as dots itself – are distributed randomly. During teaching you will notice thou that a network during 

learning will develop a regular net consisted of red lines. What, in fact, the net represents? Well, it is 

an expression of rule consisting in that adjacent neurons will tend to signal and detect adjacent 

points from an input signal space! This way the order coming out of the fact that some points 

representing input signals are close together will be transposed to a network in which adjacent 

points will be signaled only by adjacent neurons. 
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In all the figures seen so far, two notions: closeness (similarity) of input signals and adjacency 

(neighborhood) of neurons in a network could be easily associated because input signal space (and of 

course weights space) was two dimensional (as in Fig. 10.13 or 10.16) and during that time also a 

network topology was two dimensional (as in Fig. 10.9 or 10.11). So, there existed natural 

correspondence between such notions as “an input signal lying higher than the previous signal” (in 

this sense it had a higher value of a second component) and “an input neuron lying higher than the 

previous neuron” (in this sense that it lies, according to agreed numbering – in the previous row (Fig. 

10.42). 

 

Fig. 10.42. Example of same dimension of network topology and data space  

Such situation is not the only one possible. One can easily imagine a one dimensional network which 

will learn to recognize two dimensional signals (Fig. 10.43). 

 

Fig. 10.43. Example of different dimension of network topology and data space 

You may study how behaves a network that makes such a conversion of two dimensional input signal 

space to one dimensional structure of a network, because my program allows you to create one 

dimensional networks (chains of neurons). 

Such untypical structure of a network you may obtain by giving one dimension of a network (the best 

the first one) equal 1. The second dimension is then worth to define rather big, for example 100, 
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because then the network behaves in an interesting way. It learns though pretty fast, so there is no 

need to limit yourself (in this case).  

 

Fig. 10.44. Mapping of two-dimensional input space into one dimensional neural topology 

 

Fig. 10.45. More complicated example of mapping of two-dimensional input space into one 

dimensional neural topology  

 

Fig. 10.46. Yet another example of mapping of two-dimensional input space into one dimensional 

neural topology 
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Take a look at figures 10.44, 10.45 and 10.46. It looks from them that one dimensional network 

pretty reasonably fits in a highlighted area of an input signal space – this guarantees two pretty 

important advantages. 

 Firstly, a chain of neurons being a one dimensional network fills (better or worse) the whole 

selected area of an input signal space. It means that for every point of two dimensional input 

signal space there is a representative in a one dimensional neural network that will indicate 

its occurrence. There are no points or areas in the multidimensional input space that are 

„orphaned”.  

 Secondly, for the objects in an input signal space that lie close to each other (that is they are 

in some way similar one to another) – correspond adjacent neurons in the one dimensional 

chain of neurons. Unfortunately, it is likely so, but it is not always, so you should expect 

errors (fig. 10.47), but still in most cases, the fact that some two states of an input signal 

space are being represented by two adjacent neurons implies that they are similar states.  

 

Fig. 10.47. Example of proper and non proper representation of similarity of input signal  

in neural network topology  

Let's together consider what meaning may it have. Now in a great number of tasks related to 

informatics we encounter a similar and a very difficult problem. For getting the knowledge related to 

some phenomenon and some processes there are being gathered enormous quantities of data. E. g. 

to figure out the current state of a nuclear reactor in a big power plant it is necessary to measure and 

evaluate hundreds different parameters. The same refers to a blast furnace in a steelworks, a multi-

engine aircraft during takeoff and also to a big company which we would like to effectively manage. 

An actual state of each of these big systems is described with hundreds and thousands of numerical 

parameters, we may imagine it then as a point in a space of great number of dimensions. This 

multidimensional space is necessary, because a result of each measurement, an effect of each 

observation, a state of each signaling device – should be put on a separate axis. As certain processes 

evolve, values of every parameter change and a point corresponding to a state of the considered 
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system changes its position. Therefore for full estimation of a plane safety, stability of a reactor, 

effectiveness of a blast furnace or a company profitability – all the time it is needed to evaluate 

position of a point in a multidimensional space. Specifically – the thing is about a position of such 

point that represents an actual state relative to areas for which we may assign a particular practical 

meaning: stable activity of a reactor – or a symptoms of overheating, good quality of produced pig 

iron – or its defective composition, favorable growth of a company – or a specter of bankruptcy.  

In order to control and inspect a considered process we must have a current and certain information 

about its state, what is a trend of change and where it heads for. When trying to solve this kind of 

problems, in contemporary engineering, generally we use solutions where all original data is 

gathered and passed to a person which makes decisions. As an effect of that we can often find giant 

control rooms with many indicators and blinking lights, as the ones from nuclear power plants, that 

you may know from movies, or cabins of supersonic jets where every square centimeter is filled with 

some devices, meters and indicators, as well as kilometers long printouts containing many numbers 

and charts of economic rates on which businessmen rack their brains. 

Such solutions though are fatally ineffective in practice. This mainly comes out of the fact that no 

man is capable of effective inspect, control and analyze of thousands of input data. In addition an 

operator of nuclear power plant, pilot of an aircraft or a chief executive of a company does not need 

such detailed data. He needs a synthetic global information: everything goes right or – there is 

happening something wrong. Such an information may be produced by a Kohonen Network. 

Imagine that you have built a network where to its every neuron come few hundreds or even a few 

thousands of signals related to every collected measurement data. Such network is not necessarily 

more difficult to program than a network with two inputs, but it will require more space in 

computer's memory and more time during simulation of its working. Imagine that such network 

predicts two dimensional proximity of neurons, which you use so that an input signal of every neuron 

you will display in some (predetermined) point on a screen, and signals of neighbors you will display 

in neighboring rows and columns in order to visualize their relation. After teaching the network with 

using a Kohonen method you will obtain a tool making a specific “mapping” of multidimensional, 

difficult to evaluate, data, to a plane of one screen, which can be easily looked over, evaluated and 

interpreted. Image on a screen will provide data that can be interpreted as following: 

 Every practically occurring combination of input signals will be represented by exactly one 

neuron (“winner”), which will detect and signal occurrence of this exact situation. If you will 

depict on a screen only an input signal of this particular neuron, you will obtain an image of a 

luminous point moving on a screen. If, based on previous studies, you will remember, which 

areas of screen correspond to good states of a supervised process and which to dangerous 

states – then by observing where actually the luminous point lies and where is it going – you 

can obtain a synthetic evaluation of situation from a perspective of the supervised process. 

 On a screen you can also display output signals of neurons without making a discrimination 

following from usage of a principle of competition. You can make an agreement so that 

different values of output signals will be displayed in different colors and then a change in a 

supervised process will be displayed as a colorful mosaic. It carries much more information 

about a state of a supervised process and after obtaining some practice lets deep and 

accurate reasoning about observed trends, however at first sight is pretty illegible. 
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Ways for depicting results of Kohonen network working can be more. But yet, note on one common 

feature of them: they are always two dimensional images, convenient of being looked over with a 

glance and relatively easy to interpret. These images do not carry information about detailed values 

of particular data (they can be easily reached out when needed), but they show synthetic, overall 

image which is so very necessary to person that makes decisions and evaluates results. These images 

lower a detail level of the data being analyzed, but thanks to averaging and generalization described 

above, this way may be obtained very good results. 

10.11. Control questions and self-study tasks 
(Translation by Rafał Opiał, rafal.opial@op.pl) 

1. What is the difference between self learning and self organization? 

2. Kohonen Networks very often are called: tools that let „take a look into multidimensional spaces 
of data”. Can you give reasons for such designation? 

3. One of possible applications of Kohonen Networks is using them as a „novelty detector”. A 
network in such application should signal a fact that here occurred a set of input signals that had 
never occurred before (neither in an identical form nor any similar). Automatic signaling of such 
situation may have essential meaning e.g. for detecting a theft of a credit card or a cell phone – 
thief usually use it in a different way than an owner. What do you think – in what way a Kohonen 
Network signalizes that it encountered a signal having character of „novelty”? 

4. Study a course of a self organization process after a change of sub area of an input signal space 
from which come random input signals and which is filled with „grid” created by a network. 
Program lets you choose one of three shapes of a sub area: square, triangle or a cross. Analyze 
consequences of this choice. If you are advanced in programming, you may work a little on a 
program and add some another shapes from yourself. 

5. Study what impact has a coefficient of learning of a neuron, named Alpha0 in the program. 
Changes of this coefficient cause acceleration of learning (when it is increased) or „calming” of a 
process when it is decreased. The coefficient is step by step automatically decreasing (see below), 
which effects in that a learning process – fast and dynamic at the beginning, becomes more stable 
as time elapses. You can also change this, and then analyze observed results. 

6. Study what impact on a self organization process have changes of a coefficient of learning of 
neurons being neighbors of a winner neuron. The coefficient is called Alpha1 in the program. The 
higher the value of this coefficient the more visible the effect of „pulling” neighbors along the 
winner neuron. Analyze and describe results of changes of the coefficient value (as well as ratio 
Alpha0/Alpha1) and their impact on the network behavior. 

7. Study what impact have different values of neighborhood range on a network's behavior and the 
self organization process. This number states how many neurons count into a neighborhood, i.e. 
how many neurons undergo forced teaching when a „winner neuron” is self learning. This number 
should depend on a network size, and exactly this is the way it is set by default in this program. 
However I suggest, as an exercise, careful examination of its impact on a network behavior. It is 
worth note that bigger numbers of neighborhood range visibly slow down the learning process. 

8. Study what impact on a self organization process have changing of the EpsAlpha coefficient which 
controls the decreasing of coefficients Alpha0 and Alpha1 in every iteration. Note that the smaller 
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the coefficient is the faster will be decrease of learning coefficients and the faster the learning 
process will stabilize. You can – if you want – set a value 1 to this coefficient, then the learning 
coefficients will not decrease, or you can even set a value slightly bigger than 1 which will result in 
more „brutal” learning in every next step (see what will be happening!). 

9. Study what impact on a network behavior and a learning process will have changing the range of a 
neighborhood. You can change coefficient EpsNeighb which controls the process of narrowing (in 
consecutive iterations) a range of neighborhood. Try comparing effects of its changing to effects 
you've observed regarding the EpsAlpha coefficient. 

10.  Study what effects cause attempts to "over teach" a network, which at the beginning learns to fill 
e.g. cross shaped subarea of an input signal space, then changed to rectangular or a triangular. 
Remember that in experiments regarding "over teaching", after a sub area change you need to 
increase values of Alpha0 and Alpha1 coefficients and a range of a neighborhood. 

11.  Advanced exercise: Modify the program so that it will be capable of modeling tasks where 
Kohonen Network deals with a phenomenon of highly irregular probability of occurrence of points 
coming from different regions of an input signal space. Conduct a self learning and notice that, in 
a taught network, much more neurons will specialize in recognizing signals coming from regions 
more often represented in a teaching set. Compare the effect with a structure of a map of a 
cerebral cortex presented in Fig. 10.40. What conclusions can you draw from this exercise? 

12.  Advanced exorcise: Write a program simulating behavior of a robot depicted in chapter 10.9. 
Conduct attempts to simulate gaining skills of associating the sensory stimulates describing a state 
of environment with behaviors favorable for a robot (causing beneficial changes in its 
environment). Study what kind of representation of a knowledge about a surroundings (simulated 
environment of a robot) will be achieved and used by a self organizing neural network being its 
„brain”. By changing the environmental conditions (which you stimulate, so you can impose any 
possible laws in it), study, which of the conditions robot can „discover” in its self organizing 
network and which turn out to be too difficult? 
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11. Recurrent networks 

11.1. What is recurrent neural network? 
(Translation: Artur Gorski, gorski.artur@onet.eu ) 

Owing to examples shown in previous chapters, you already know how the teaching of neural 

network is conducted – single or multilayer, linear or nonlinear, taught by supervisor or gaining 

knowledge on their own, briefly – almost free to choose. 

Almost because you have not thought of recurrent networks yet, which include feedbacks. Feedback 

is a joint that recycles signals from further neurons to neurons from input layer or to previous hidden 

layers. (Fig. 11.1). Against all appearances it is really relevant and significant innovation. As you will 

see, network with feedback has essentially more upgradable abilities and computing capabilities then 

classical network, which permits only one-way signals flow – from input to output.  

 

Fig. 11.1. Example of recurrent network structure. Feedback connections are distinguished by red 

color. 

 

In networks with feedbacks will occur phenomena and processes, which you cannot find in one-way 

networks. Once stimulated network with feedback is able to generate thorough sequence of signals 

and phenomena, because signals from output (that are results of signal processing in certain ‘n’ 

iteration) while going back to neurons` input cause production of new signals, mostly completely 

different signals in ‘n+1’ iteration. 

Specific phenomena and processes occur in recurrent networks because of complicated signals 

circulations – e.g. vibrations varying between alternate extremes rapid rise – equally rapid signals 

suppressing or mystifying chaotic roaming (which looks completely like undetermined progress). 
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Because recurrent networks with feedbacks are rather difficult to analysis, they are less popular. 

These difficulties come from the fact that signals can circulate through a network (from input to 

output than from output to input what again changes output etc.) therefore neural network 

responds to every input signal, even to signal given in short term, before all essential signals will be 

established, it goes through long sequences of various intermediate states. 

Consider how it works using simple example. Imagine network which consist of only one neuron 

(linear for simplicity). It has two inputs – enter input signal by means of first one, than signal from 

output enter into the second input. Thus you will create a feedback (Fig. 11.2). It`s easy, isn`t it ?  

Output signal 

 

Input signal   feedback signal 

Fig. 11.2. The easiest network structure with feedback. 

Now, check how this network works. For easiness Example 12a, in which you can determine 

network`s parameters on your own. Weight factor (feedback weight) by means of which signal from 

feedback will be entered into neuron, and also input signal (input signal strength), which runs 

network. In addition you can decide (by activating single_input_impuls or not), if input signal has to 

enter input continuously or temporarily (once), only at the beginning of simulation. This program will 

compute signals going around network, step by step, demonstrating network`s behavior (Fig. 11.3).  
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Fig. 11.3. This example shows complicated operation even with very simple input situation in system 

with feedback. 

You`ll easily notice few regularities : 

- This described network displays combined dynamics forms: after entering single (pulse) 

signal to the input – in the output sustains long-lasting process, during which output signal 

alters many times before it will reach state of equilibrium – as far as it`ll reach at all. (Fig. 

11.3) 

- Equilibrium in this simple network could be achieved (without output signal which lasts 

during whole simulation), only if a constant product of a certain output after multiplying by 

weight of a proper input, will give us output signal precisely equal with signal from feedback; 

that is needed to create output signal (signals at both neuron`s inputs will balance 

themselves out). 

- Output signal, which complies with this condition, is called attractor. We will soon explain 

this definition thoroughly. 

- Attractor location depends on network`s parameters. For network, which value of feedback 

weight factor is 1, every point is an attractor. While for any other network we can achieve 

state of equilibrium only when value of output signal is zero (Fig. 11.4). This feature is 

distinctive for this simple linear network. For nonlinear networks there could be more 

attractors and we will smartly make use of it. 
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11.4. Two ways of achieving state of equilibrium in linear network: zero signals  

(on the left) or single feedback amplification, without input signal simultaneously  

(on the right). 

- If value of synaptic weight factor in feedback circuit is positive (it is called positive feedback) 

– progresses display aperiodic characteristic, in other words non-oscillating (Fig. 11.5). It is 

worth to notice that in this kind of the system, there could be process, which proceeds either 

through positive values (on the left side) of signals or negative (on the right side). While the 

time is passing, positive values are becoming more and more positive, the same happens to 

negative values. Whereas there are not any processes, in which signals would change from 

positive to negative and vice versa. 
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11.5 –  Typical progresses in system with positive feedback. 

- If value of synaptic weight factor in feedback circuit is negative (it is called negative 

feedback) – progresses display periodic character, in other words oscillating (Fig. 11.6). 

 

Fig. 11.6 –  Typical progresses in system with negative feedback. 
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- In system with negative feedback, oscillating character depends on network`s parameters. 

Sometimes vibrations increase rapidly, network tosses between huge negative values and 

even more tremendous positive values and then generates bigger negative value etc. This 

network must result in catastrophe, because her behavior closely resembles behavior of 

human`s brain, which suffer from epilepsy or space rocket, which is taking off then is losing 

stabilization and finally is going to crush. However, vibrations sometimes lead up to zero, 

network is being stabilized – in this way work correctly conducted automatics systems. 

- While observing behavior of systems with feedback you will see, that even small difference in 

parameters values will result in different (sometimes extremely) effects. Systems without 

feedback do not result in such differences, thus it`s recurrent neural network`s distinctive 

feature. (and other recurrent systems). 

- Now let`s analyze described phenomena quantitatively. After few simulations you will notice, 

that if absolute value of weight factor in feedback is bigger than certain established value, 

called as stabilization point, then in system with negative feedback, as well as in system with 

positive feedback occur signals, which absolute values continuously increase (Fig. 11.5 and 

Fig. 11.6). These phenomena is known as unstable behavior. 

- However, if absolute value of weight factor in feedback is smaller than established value – 

then circuit either with positive or negative feedback aim at state of equilibrium. (Fig. 11.7) 

 

Fig. 11.7 –  Stable progresses in system with feedback after decreasing value of weight factor highly 

below stabilization point. 

Input signal could be also given for all the duration of simulation (just unmark checkbox 

single_input_impulse – Fig. 11.8). In this case state of equilibrium could be also achieved, but value of 

output signal (then network is stabilizing for this signal) is different and depends on value of input 

signal. 
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Fig. 11.8. Behavior of a system with feedback when established value of input signal is given 

permanently. 

 11.2. What features have network with feedback? 
 (Translation:  Artur Górski; gorski.artur@onet.eu) 

Let‘s summarize and draw conclusions from some conducted researchers, which you will find useful 

in your next steps. 

Processing of input signals in network with feedback can display two different variability: if value of 

weight factor in feedback is positive (so-called positive feedback), signal changes aperiodically (in 

one-way), but when value of weight factor in feedback is negative (negative feedback, also called 

regulation), in network occurs oscillations (value of output signal alternates with smaller and bigger 

values, frequently with positive and negative. If neuron is nonlinear, system will be able to behave in 

a third way – chaotic signals roaming together with the greatest marvels of modern chaos theory 

(‘butterfly effect’, strange attractors, fractals, Mandelbrot‘s sets etc.) – but this is a different story. 

However, if you are willing to immerse yourself in these subjects – just Google it ! It‘s really worth !  

Apart from dividing network behavior into two sections: aperiodical and periodical, you presumably 

noticed, that in networks with feedback, we can identify stable behaviors (signals have value 

restraints and usually after few iterations converge into certain established final value) and unstable 

behaviors – absolute values of successive output signals are bigger and bigger and finally they go 

If you unmark this 

checkbox, signal will 

be given  to system 

input permanently 
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beyond acceptable values. Then in computer simulation will occur mathematical error (so-called 

floating-point overflow), but in electronic or mechanical systems something will very probably get 

burnt or explode! 

Maybe it will be quite interesting for you, that in real neural networks these kind of phenomena 

happen every day, but probably you have not considered them in this point of view yet.  

Positive feedback means that the more you think about something the more it is fascinating for you, 

so it takes you more and more time and finally it absorbs you completely. Surely, it has crossed your 

path many times, hasn‘t it ? And this is typical amplification effect of positive values of signals in 

system with positive feedback, just the same as one shown on the left side of Figure 11.5. 

Similarly, you have also noticed inverse effect: if you have negative attitude towards something (e.g., 

school subjects, some entertainments etc.), then successive experiences confirm yourself in the 

belief, that it is foolish, not interesting and completely not for your taste. Point out that this situation 

is very similar to the process shown on the right side of  Figure 11.5. If this closed circuit of positive 

feedback is not disconnected, it can result in psychic disturbances. It is especially dangerous when 

you strengthen in this way your attitude to someone. In case of amplifying negative it is called 

maniac psychosis, and when positive values are being amplified – in the ‘head over heels in love’ 

state and for no obvious reasons it is not treated.   

Note that in real nervous system also occurs (fortunately rarely) non-stability phenomenon. It is 

called epileptic seizure by neurologists, and disease in which occurs this phenomenon – epilepsy. 

Epilepsy is a grave illness, characterized by a brief disturbance of electrical activity in the brain (it is 

possible to detect them by means of registering electrical signal on cranium‘s surface caused by 

working brain, so-called EEG – monitoring), which activated result in rapid muscular contraction, they 

entail uncontrolled and vehement body‘s convulsions. In the past this illness inspired people with 

feeling of fear, or it was regarded as a sign of haunted either by evil spirit or good spirit (‘Saint Vitus 

Dance’). Supposedly Julius Cesar suffered from this disease, so from tomorrow you could tell your 

friends that you simulate Julius Cesar‘s brain on your own computer, what should totally petrify them 

(factors of synaptic weight are equal zero). 

I propose you to try by means of experiments implemented on your computer to think up or detect, 

what is the stabilization limit for this simple system with feedback. Try to discover on your own, 

which factors cause stable or unstable behavior. Because in next sentence I am going to comment it 

– I suggest you to hold on reading and experiment with program Example12a, and then compare 

what you have discovered with omniscient theory. 

Undoubtedly while conducting researches with this program, you have noticed, that output signal 

alternations mainly depend on factors values; whereas input signal has weaker influence – even if 

signal will be given continually – not only in the first moment when program will start. While 

elaborating network behavior (or thinking over algorithm), you will easily see, that really important is 

whether absolute value of weight factor for feedback signal is bigger or smaller than 1. For factors 

smaller than 1 you permanently deal with stable process – aperiodic for positive values and 

oscillating for negative values. For factors bigger than 1 process is always unstable. While value of 

factor is precisely equal 1 and feedback is positive (positive feedback) you have a brush with strange 
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situation – all input signals turn out to be network attractor, and with negative feedback you deal 

with continual, neither rising nor suppressing oscillations. We call this state as stabilization limit.  

In more complex networks, stabilization conditions are more complicated, so in case of calculating 

stabilization limit we have to use very advanced mathematical methods (Hurwitz‘s determinants, 

Nyquist‘s diagram, Lyapunow‘s theorem etc.) theory of neural networks with feedback has been for 

many years a great field for all kind of theorists, who zero on complex dynamics systems.  

11.3. Who needs this kind of networks ‘with loops’ ? 
(translation by Artur Górski gorski.artur@onet.eu ) 

Situation in network, which consists of only one neuron is cozily simple and easy to predict, so it 

relatively gives few occasions to observe interesting practical applications. That is why from program 

Example12a it is not possible to obtain any results that will associate with any useful effects. Only 

bigger networks with feedback, which include several or several dozens of neurons (especially 

nonlinear) could display really interesting and really complex behaviors, what is the key for their 

practical application. However, it is worth to know, that in this networks with bigger amount of 

neurons, which transfer output signals to each other by means of feedback, there is a possibility of 

more complex situations than stable and unstable behavior of simple single neuron, above described 

by mine conducted researches and (hopefully) also by yours. In this complex network, states of 

equilibrium could be achieved by different values of output signals (not necessarily this not 

interesting value 0), but it is possible to select certain joints structure and certain network 

parameters, that this achieved states of equilibrium will equal solution to certain problems.  

It is the key for the most of nontrivial networks application. For instance, there are networks in which 

state of equilibrium is the solution of optimization problem (searching for the most beneficial 

decisions, which will ensure the highest profit or minimum loss by taking restraints into account – for 

example limited capital expenditure). In this group of networks, there are some, which by means of 

this method solve well-known traveling salesman problem (I have described it thoroughly in my book 

‘Neural Networks’, which is available on the Internet), there were also conducted researches 

connected with optimal division of finite resources (e.g. water). My co-workers, students for the 

master’s and doctor’s degree made attempts (some very successful) to use networks for optimal 

structure selection, so-called portfolio selection while speculating on the stock exchange. Some 

researchers were also conducted personally. However, I am not going to write about it, because I 

would like you to improve your mind on getting to know secrets of neural networks functioning, and 

not endanger your wallet while speculating on stock exchange, where even with intelligent neural 

networks you will lost more often than win.  

That is why in this chapter I am going to represent you another example, in which solution of a 

certain important and useful computer problem could be interpreted as achieving one among many 

states of equilibrium by network – so called associative memory.  

This kind of memory has been a desire for most computer scientists for a long time, who are tired of 

current methods connected with searching for information in typical data bases, which are primitive. 

Let’s look at this kind of memory and try to find it out how it works. 
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You definitely know that storing even millions records, which include some important information 

could be done effortlessly. But when it comes to find it very quickly, we could encounter some 

problems and delay. The task is simple when you know keyword, code word, specific value of record 

or anything else what differs this record from others. Computer will find it out and provide access to 

this information, in addition it could be done quickly and efficiently if base is indexed and 

constructed in an appropriate way. Undoubtedly you were doing it many times, while googling 

various enquiries and receiving answers (not always correct).  

But it does not look so simple, when you do not know keywords or any other information identifying 

your request. However, you have general concept for which subject you need this information. 

Because you do not know how this desired information is exactly described – typical information 

search systems, which are included in databases or on the Internet, turn out to be unreliable and not 

effective. They pepper you with plenty of unnecessary information or they are just not able to find it 

out, in spite of the fact that your enquiry is available and could have been delivered. Excessive 

number of information is of course the lesser of two evils; among them there is required data, but 

how to dig them out? Most of you would describe it as a drudgery. 

Though your brain works differently. Usually you need just a scrap of information to recollect 

anything you want effortlessly. Sometimes you need just one word, image, picture, conception, idea 

or formula and instantly you have complete set of information, references, suggestions and 

conclusions. Sometimes piece of fragrance, maybe even melody, sunset or specific place is enough to 

recollect series of memories, feelings and senses …  

So based on a piece of information or by means of other information – somehow connected with this 

requested one, your memory is able to find it out. Our computers do not know how to do it, yet. 

What about neural networks?  

Check it and you will see. 

 

This task will be thoroughly described below, so you will become acquainted with details within few 

minutes. But before it happened, I have to tell you something. Associative memory issues are just a 

scrap of branch of knowledge so called cognitive science. It has awakened increasing absorption 

recently, especially among philosophers, pedagogues, psychologists, but also many specialists are 

passionately fond of this subject, especially physicists, who normally work with theoretical 

description of simple physical system (e.g. elementary particle) or specialized in describing system, 

composed of many particles, which interact each one (statistical thermodynamics). If you grub 

around library or the Internet, you will notice, that the number of physicists, who elaborated and set 

down lot of mathematically ambitious researches, is amazingly huge. These researches are strongly 

connected with behavior of network with feedback and processes, which lead to more beneficial 

direction of this behavior. Inter alia, that is how so called Boltzmann`s machines were developed 

(which operate by analogy to processes that occur in neural networks with thermodynamic 

phenomena, described by means of Boltzmann`s distribution) and algorithms of ‘simulated 

annealing’, but we will look at them next time. In USA professor Jacek Zurada from University of 
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Louisville and in Poland professor Leszek Rutkowski from Czestochowa University of mainly engage 

cognitive science and simulation of neural network. I have the honor to be a friend of this both highly 

talented scientists, I am willing to set down that they contributed the lion`s share to develop this 

theory, but ‘amicus Plato, sed magnis amica veritas’ – thus I have to admit, that the biggest share to 

the theory of networks with feedback was contributed by American John Hopfield. 

11.4. How Hopfield`s network is constructed? 
(Translation: Artur Gorski, gorski.artur@onet.eu ) 

Undoubtedly, Hopfield`s networks are the most important and most often adapted subclass of 

recurrent neural network used in practice, that is why you should get to know them. If I had to 

generally typify them, I would claim that they are exact opposite to ‘feedforward’ network, i.e. 

completely unpredictable with feedbacks, which were described in all earlier chapters. Networks in 

which feedbacks are allowed (so called recurrent networks), are able to contain certain number of 

feedbacks, however, an amount of them could be bigger or smaller. Whereas in Hopfield`s network 

feedbacks are just a principle. (Fig. 11.9)  

Fig. 11.9. Structure of simple Hopfield`s network 

All joints, which occur in this network are feedbacks, all output signals are employed as inputs and all 

inputs transport feedback`s signals to all neurons. In Hopfield`s network each neuron is connected 

with all other neurons within entire network, this connection is based on two-sided feedback rule, 

thus network works and looks like a one feedback. Hopfield`s network is an exact opposite to all 

earlier described networks, which without exception were feedforward networks, and any feedback 

was forbidden. 

Hopfield`s networks are so important because, all processes which occur in them are always stable, 

so they can be used safely as a tool to solve many various tasks without anxiety that everything could 

suddenly explode.  

In Hopfield`s network processes` stableness was achieved by dint of application of three simple 

things: 

- very regular (and easy to put into practice not only in the form of computer program, but 

also in the form of specialized electronic or optoelectronic circuits) internal structure of 

network was introduced, which based on the fact that within entire network neurons are 
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connected in the ‘everyone with everyone’ way. Try to recall that the same simple (but 

costly!) principle of shaping connections in network was also used in other earlier described 

networks e.g. network which was taught by backpropagation method; where connections 

between neurons from hidden layer and neurons from output layer were organized in the 

same ‘everyone with everyone’ way. Thus Hopfield`s network uses tested models, but there 

is one significant difference – connected neurons works not only as information transmitter, 

but also as information transceiver, and they define one collectivity (see Fig. 11.10), not 

separate layers.   

- feedbacks that consist of one neuron are forbidden.  

It means, that output signal cannot be given directly to his input, what as you can see is obeyed in 

network`s structure in the Figure 11.9. Notice that it does not rule out situation, in which output 

signal from certain neuron influences his own value in future, because it is possible to feedback by 

means of other ‘intercalary’ neurons, however, influence of this additional ‘intercalary’ neurons is 

definitely stabilizing; 

Fig. 11.10. Scheme of Hopfield`s network, which emphasizes equality of rights of each neuron and 

symmetry of connections. 

- entered weight factors have to be symmetrical – it means that if connection from neuron ‘x’ 

to neuron ‘y’ is defined by certain weight factor ‘w’, then weight factor which defines 

connection from neuron ‘y’ to neuron ‘x’ has the same value – ‘w’ (Fig. 11.11). 

 

Fig. 11.11 – Obligatory rule of symmetry in Hopfield`s network. 
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We can fulfill all of these conditions effortlessly. The first two describe regular and very easy to 

achieve scheme of connections in network; if you choose Hebb`s method (described in chapter 9) to 

teach your network then the last one condition is automatically fulfilled. 

Easiness of structure and application of Hopfield`s network results in very high popularity. They are 

numerously employed in various applications e.g. optimization tasks (described earlier) and also in 

generating certain sequences of signals, which follow one by one in certain (modifiable) rotation. By 

means of these networks it is possible to generate and forward control signals to various objects. 

Basing on this rule we control legs permuting in walking machines that stand on two, four or six legs 

(Fig. 11.12). 

 

Fig. 11.12 – Example of treading robot, which legs are controlled by periodical signals – generated by 

‘brain’ (Hopfield`s network). 

‘Brain’ that control movements of this artificial machine always includes feedback network, then 

machine is able to periodically generate control signals on its own. Notice, that apart from number of 

legs, treading is always a periodical process, in which each leg is (in order) : lifted up, moved forward, 

lowered till the moment when the contact with surface is stable and moved back so as to transport 

‘body’ of treading machine forward, afterwards, during some time, it performs a role of support, 

while driving force is provided by other limbs. Because treading on a rough surface requires not only 

periodical generating above described movements, but additionally mechanism, which will adjust 

machine for changeable situations (e.g. when one of the legs would get exposed in a crack), then as a 

‘brain’ of a treading robot we have to use a tool that is able to: generate periodical behaviors, learn 
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and adapt for changeable situations. This conditions are thoroughly fulfilled by Hopfield`s network. 

So in most cases we use this kind of network or its simple modification.     

These intelligently learning and treading robots are very interesting and will have in future huge 

application in exploring surfaces of remote planets, caves` interiors or oceans` floors, but for the time 

being we will skip it. In the following subsection I am going to show you, how we can make the best 

use of Hopfield`s network. In this case we will together construct associative memory. 

11.5. How does the neural network work as an associative memory? 
(Translation: Marcin Ptak, ornithion@gmail.com)  

Program Example12b contains the Hopfield network model; its task will be to store and reproduce 

simple images. The whole “flavor” of this memory, however, lies in the fact that it is able to 

reproduce the message (image) on the basis of strongly distorted or disturbed input signal, so it 

works in a way that usually is called autoassociation12. Thanks to autoassociation Hopfield network 

can automatically fill out incomplete information. Figure 11.13 shows reprinted many times in 

various books and reproduced on the Internet (here downloaded from www.cs.pomona.edu website 

and also available on the eduai.hacker.lt) image showing how efficient the Hopfield network can be 

in removing interference from input signal and in complete data recovering in cases where there 

were provided only some excerpts.  

 

Fig. 11.13. Examples of Hopfield network working as associative memory. Description in text. 

                                                           
12 Autoassociation—means the working mode of the network, so that a specific message is associated with 

itself. Thanks to autoassociation application of even small fragments of stored information makes this 

information (for example, images) is reproduced in the memory in its entirety and with all the details. An 

alternative to autoassociation is heteroassociation, which consists in the fact that one message (for example, 

photographs of Grandma) brings memories of other information (for example, the taste of jam, which 

Grandma did). Hopfield network can work either as autoassociative memory or as heteroassociative, but the 

former one is simpler, and therefore we'll focus now on it. 
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The next three lines of this figure show each time on the left side a picture, which was provided as an 

input to the network, the middle column shows the transition state when the network searches its 

memory for the proper pattern, and - on the right side - the end result, that is the result of 

“reproducing” the proper pattern. Of course, before we could obtain here presented images of 

“remembering” by the network of relevant information (images) - first they had to be fixed in the 

learning process. During learning, the network was shown exemplary image of a spider, two bottles 

and a dog’s “face” and the network has memorized the patterns and prepared to reproduce them. 

However, once the network has been trained - it could do really cool stuff. When showing her very 

“noisy” picture of a spider (the top row of Figure 11.13)  -  it reconstructed the image of the spider 

without noise. When shown the picture of a bottle  -  it remembered that during the learning process 

a picture of two bottles was presented. Finally, it was sufficient to show to the network the dog's ear 

only - to reconstitute the whole picture.  

Pictures shown in Figure 11.13 are nice, but reproducing them is not associated with any important 

practical task. However autoassociative memory can be used for many useful and practical purposes. 

The network, for example, can reproduce a full silhouette of an incoming aircraft at a time when the 

camera recorded a picture of an incomplete machine due to the fact that the clouds obscured the full 

outline of the machine. This fact plays an important role in the defense systems, when the most 

crucial issue is the fast recognition of the problem, “friend - enemy”. Network employed as an 

autoassociative memory can also fill out an incomplete inquiry addressed to some type of 

information system such as database. As it's commonly known, such database can provide many 

useful information, on the condition however, that a question is asked correctly. If the question to 

the network will be managed by untrained or careless user and do not correspond to preconceived 

models, then the database does not know how to answer it. Autoassociative memory can be helpful 

in “working things out” with the database management program, so finding the searched 

information will be done correctly even in case of imprecise (but clear) user's query. The network 

itself will be able to figure out all the missing details, that scatty (or untrained) user has not entered - 

although he should do that. Autoassociative Hopfield network then mediates between the user and 

the database, like a wise librarian in the school library, which is able to understand, what book the 

student asks for, wishing to lend a school lecture, and he has forgotten the author, the title and any 

other details, but he knows what this book is about.  

Autoassociative network may be used in other numerous ways; in particular, it can remove noise and 

distortion from different signals - even when the level of “noisiness” of the input makes impossible 

practical use of any other methods of signal filtration. The extraordinary effectiveness of Hopfield 

networks in such cases comes from the fact that the network, in fact, reproduces the form of a signal 

(usually a picture) from its storage resources, and provided a distorted input image is only a starting 

point, “some idea on the trail of” the proper image—among all the images that may come into 

question.  

But I think that's enough of this theory and it is time to go to practical exercises using the program 

Example12b. Due to clearness and readability, the program will show you the Hopfield network 

performance using the pictures, but remember that it is absolutely not the only possibility - these 

networks can just memorize and reproduce any other information, on the condition that we will 

arrange the way, the information is mapped and represented in the network.  
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Fig. 11.14. This sample image presents the distribution of the output signals of neuronal networks. 

So let us explain first the relationship between the modeled Hopfield network and the pictures 

presented by a program. We're connecting each neuron of the network with a single point (pixel) of 

an image. If the neuron output signal is +1, a corresponding pixel is black. If the output neuron signal 

is  - 1, corresponding pixel is white. Other possibilities than +1 and  - 1 we do not expect, because 

neurons the Hopfield network is build from, are highly nonlinear and can only be distinguished in 

these two states (+1 or  - 1), but they cannot take any other values. Considered network contains 96 

neurons that - only for the presentation of results - I put in order in the form of matrix of dimensions 

12 rows and 8 items in each row. Therefore, each specific network state (understood as a set of 

output signals produced by the network) can be seen as a monochrome image with the dimensions 

12 x 8 pixels, such as it is shown in Figure 11.14.  

Considered pictures could be chosen entirely arbitrary, but for the convenience of creating a set of 

tasks for the network I decided that they will be images of letters (because it will be easy to write 

them using the keyboard), or completely abstract pictures produced by the program itself according 

to certain criteria in mathematics (I'll describe it more extensively further in text).  

The program will remember some number of these images (provided by you or generated 

automatically) and then lists them itself (without your participation!) as patterns for later 

reproducing. In Figure 11.15 you can see, how such a ready - to - remember set of patterns may look 

like. Of course, a set of patterns memorized by the network may include any other letters or 

numbers that you can generate with the same keyboard, so a set given in Figure 11.15 should be 

considered as one of many possible examples. 

Here is given the 

output signal from 

neuron No.1 

Here is given the 

output signal from 

neuron No.2 

Here is given the 

output signal from 

neuron No.8 

 

Here is given the output 

signal from neuron 

No.16 

 

Here is given the 

output signal 

from neuron No.9 

Here is given the output 

signal from neuron No.96 

Here given signal 

have value +1 

Here given signal 

have value -1 
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Fig. 11.15. A set of patterns prepared to memorize in the Hopfield network. 

In a moment I will explain, how you can introduce more patterns to the program, but at the 

beginning I would like you to be focused on what this program is doing and what are the 

consequences - and the time for technical details will come shortly. 

After the introduction (or generating) all the patterns, program Example12b sets the parameters 

(weight factors) of all neurons in the network, so that these images have become for the network 

points of equilibrium (attractors). What’s the rule behind that process and how these setting of the 

weights are done - all this you can read in my book titled “Neural Networks”. I cannot describe it at 

this time, because the theory of Hopfield network learning process is quite difficult and full of 

mathematics, and I promised you not to use such difficult mathematical considerations in this book. 

You do not need to know the details, after the introduction of new patterns into the memory; you 

simply click the button Hebbian learning shown in the Figure 11.16. This will automatically launch the 

learning process, after which the network will be able to recall patterns stored in it. As it’s clear from 

the inscription on the button—the learning of this network is realized by Hebb’s method, which you 

are already familiarized with, but at this time we won’t be looking at the details of the learning 

process. For now just remember that during this learning process, there are produced the values of 

weights in the whole network, to be able to reach equilibrium state when on its output appear 

images matching to a stored pattern. 

 

Fig. 11.16. Patterns to memorizing in network are entered into the Add pattern. 
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After learning process the network is ready to “test”. You can perform it yourself. For this purpose, 

first point (click the mouse) the pattern, the level of control you want to check for. Patterns and their 

numbers are currently visible in the Input pattern(s) for teaching or recalling window, so you can 

choose the one that the network has to remember. Selection (i.e. clicking the mouse) of any of these 

patterns will make its enlarged image appears in the window titled Enlarged selected input, and the 

chosen measure of its similarity to all other models will be visible directly under the miniature images 

of all the patterns in the window Input pattern(s) for teaching or recalling (see Figure 11.16). The 

level of similarity between images can be measured in two ways, that’s why beneath the window 

Input pattern(s) for teaching or recalling there are two boxes to choose from, described 

respectively: DP - the dot product, or H - the Hamming distance. What exactly does this mean I will 

describe you a little bit further, now just remember, that the DP measures the level of similarity 

between two pictures, so the high value of DP at any pattern indicates that this particular pattern 

can be easily confused with that one, you currently have selected. The Hamming distance is (as is 

also the name suggests), a measure of the difference between two images. So, if some pattern 

produces a high value of H measure, this pattern is safely distant from the one currently selected by 

you, while the low value of H measure indicates that this pattern could be confused with the current 

image of your choice.  

Once you have selected the image that memorizing by the network you want to examine - then you 

can “torture” its pattern, because it is not difficult to recall a picture based on his ideal vision, but 

another thing is, when the picture is randomly distorted! Oh, that's when the network must 

demonstrate its associative skills - and that's what it’s all about.  

Simply type in the box on the right, marked with the symbol %, the percentage of points the program 

is going to change in the pattern before it is shown to the network, so it can try to remind it. In the 

window marked % you can specify any number from 0 to 99 and that will be the percentage of points 

of the pattern the testing program will (randomly) change before it starts the test. But to enter this 

number into the pattern, you have to press the Noise button (i.e. noise or distortion). To make it 

even more difficult - you can enter additionally reversed (negative) image by pressing the Inverse 

button.  

Selected and intentionally distorted pattern appears in the Enlarged selected input window. Look at 

it: would you be able to guess what pattern this picture was made from? Additionally, you can see if 

your modified pattern does not become after all these changes more similar to one of the 

'competitive' images? Assessing the situation you will find useful measures of its “affinity” with 

different patterns, which will be presented in the form of numbers, located below the thumbnail 

images of all the patterns in the window Input pattern(s) for teaching or recalling. 

I advise you: Do not set at the beginning to large deformations of the image, because it will be 

difficult to recognize from the massacred pattern its original shape - not just for the network, but 

also for you. From my experience I can suggest that the network is doing well with distortion not 

exceeding 10%. Good results are achieved when a - seemingly paradoxically - there is a very large 

number of changed points. This is the result of the fact that when large number of points is changed, 

the image retains its shape, but there is the exchange of point’s colors - white on black and vice 

versa. For example, if you choose the number 99 as a percentage of the points to change, the image 

changes into its perfectly accurate negative. Meanwhile, negative, is actually the same information, 
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which can be easily traced in the modeled network. When changing the number of points a bit less 

than 99% formed image is as well recognized for the network - it is a negative, with minor changes 

and the network also “remembers” a familiar image without any difficulties. However, very poor 

results are achieved when attempting to reproduce the original pattern with distortions ranging from 

30% to 70% - network recalls something, but usually the pattern is reproduced after a long period of 

time (network needs many iterations before the image is fully recovered), and the reconstruction of 

the pattern occurs in a deficient way (still a lot of distortions).  

So at the beginning of the exam you create an image of slightly (for example, look at Fig. 11.17, on 

the left) or strongly distorted pattern (Fig. 11.17, on the right), which becomes the starting point of 

the process of remembering the pattern by the network.  

 

 

Fig. 11.17.  Patterns, which the process of recalling messages stored on the network begins from: less 

distorted pattern of the letter “B” (on the left) and strongly distorted pattern of the letter “B” (on the 

right). 

The process of remembering the memorized pattern is that the network output signals are given on 

the entry, and there (by the neurons) are transformed into new outputs, which, in turn, by feedback 

inputs are directed to a network, etc. This process is automatically stopped, when in one of the next 

iteration no longer occurs any change in the output signals (it means the network “remembered” the 

image). Usually this remembered picture is an image of a perfect pattern, which distorted version 

you applied the network - but, unfortunately, it not always goes this way.  

If the image, which the process of “remembering” starts from, is only slightly different from the 

pattern - a recollection may occur almost immediately. This is illustrated in Figure 11.18, that shows, 

how network recalled the correct shape of the letter B, starting from a much distorted pattern shown 

in Figure 11.17 on the left. Subsequent images in Figure 11.18 (and in all further in this chapter) show 

sequentially (in order from the left to the right) sets of the output signals from the tested network, 

calculated and deducted from the model. Figure 11.18 shows that the output of the network has 

reached the desired state (the ideal reproduction of the pattern) after only one iteration.  
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Fig. 11.18. Fast reproduction of distorted pattern in Hopfield network working as associative 

memory. 

Slightly more complex processes were merged in the tested network while reproducing a highly 

distorted pattern, shown in Figure 11.17 on the right. In this case the network needed two iterations 

to achieve success (Figure 11.19).  

 

Fig. 11.19. Reproduction of highly distorted pattern in Hopfield network. 

One of the interesting characteristics of the Hopfield network, you will learn when you will do 

yourself some experiments with the program, is its ability to store both the original signals of 

successive patterns, as well as signals that are the negatives of stored patterns. It can be proved 

mathematically that this is happening always. Each stage in the learning process of the network, 

which leads to memorizing a pattern, automatically causes the creation of an attractor corresponding 

to negative of the same pattern. Therefore, the pattern recovery process can be completed either by 

finding the original signal - or finding its negative. Since the negative contains exactly the same 

information as the original signal (the only difference is that in places where the original signal has a 

value 1, in the negative is  - 1, and vice versa), therefore, finding by the network a negative of 

distorted pattern is considered also as a success. For example, in Figure 11.20, you can see the 

process of reproducing a heavily distorted pattern of the letter B, which has ended with finding a 

negative of this letter.  
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Fig. 11.20. Associative memory reproducing the negative of remembered pattern. 

11.6. How works program for investigating Hopfield network by 

yourself discovery?  

Not translated yet … 

11.7. A few interesting examples  

Not translated yet … 

11.8. How and why we can use automatic patterns generation Hopfield 

network? 

Not translated yet … 

11.9. What studies can be performed on the associative memory? 
(translation by Beata Słomińska; slominska.beata@gmail.com) 

With use of the program Example12b you can conduct a series of studies, which will help you to 

understand the nature of associative memory constructed with the Hopfield network. I have shown 

you already how to inscribe information into the memory and how is the information reproduced. 

Now we will try to describe the capacity of the associative memory constructed with use of the 

neural networks.  

In a standard RAM or ROM memory installed in your computer, capacity of the memory is restricted. 

This is due to the fact that every single information in this memory is inscribed in different location. 

You acquire access to certain location by typing – directly or indirectly – its address. The same follows 

for hard disk and CD. This implies that amount of information, which you can inscribe in every type of 

memory presented above is precisely defined by an amount of the addressed locations designed for 

storage. That is why an answer to a question on the amount of space in the memory is given 

immediately and precisely.    



305 
 

A memory constructed in the Hopfield network follows a different pattern. There are no separate 

locations designed for storage of particular information, as in the process of memorization – the 

same applies to recall – all neurons are engaged in learning of a given pattern. This implies that in 

particular neurons the patterns must overlap, what in turn causes problems (do you remember the 

“overhearing”?). What is more, a method of information recall (reading) from the neural memory 

differs from the one applied in computers. Instead of indicating name of a particular variable which 

contains certain information or indicating file name (both methods refer to the addresses of a 

message; their synonyms are the names of variables or files) – in the associative memory you are 

giving information as such – even incomplete or distorted. Thus, it is extremely hard to examine what 

is the upper limit of messages that you can introduce into the neural network.      

Obviously, we dispose a precise theory, which explains all these issues in detail. If you ever needed 

this theory, you may find it in my book Neural networks, which I have cited here repeatedly.  

However the aim of this book is to introduce elementary ideas and concepts on the neural networks 

by experimenting with them. By conducting experiments with networks we will try to answer the 

question on capacity of the neural networks. This path will be appropriate for us to deliver you the 

most precise information on the neural networks; but this information you will discover yourself by 

experimenting, what in result will give you truly understanding of the neural networks.  

First and the most important factor deciding on simplicity and reliability of recalling the memorized 

signals is the amount of data recorded in the network; it takes a form of memory traces. After 

memorizing relatively small amount of patterns, for example 3 patterns, recall of information is 

reliable even in case of relatively significant distortions (Fig. 11.43).   

 

Fig. 11.43. Reliable recall of information for small amount of patterns 

 However the effect of recall depends also upon the difference between memorized information. On 

the figure 11.44 you will find results of an experiment conducted on a network with small number of 
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patterns but with high degree of their similarity. The latter is the reason of improper recall of the 

patterns.  

 

Fig. 11.44. Failure observed when number of number of patterns is rather small and patterns are very 

similar 

 

Fig. 11.45. Proper reconstruction of very destructed input signal when maximal number of 

pseudorandom patterns are used   

Therefore if you intend to examine the maximum extent of network capacity you should operate 

with highly differentiated signals, mostly desirable with orthogonal or pseudorandom signals. Only 
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then you can achieve good results even with maximal number of patterns, that is in case of this 

program 20 (Fig. 11.45).  

 

Fig. 11.46.  Success obtained when big number of non exactly orthogonal patters are remembered  

 

Fig. 11.47. Overhearing appearing when input signals are have destroyed by noises 

With non-perfect orthogonal patterns, for example pseudorandom patterns, which emerge if you 

start running a process of automatic generation after giving two signals selected by you, results may 

appear still pretty good. It will happen only if you select highly different initial signals and with 
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relatively small distortions of initial images (image 11.46). Application of more distorted entrance in 

this case will expose existence of strong overhearing in the networks (image 11.47).   

Proper recall of patterns in a system with generated by the program orthogonal or nearly orthogonal 

signals may be covered up by the fact that in case of a large number of memorized signals difficulties 

in recalling the entrance images are far greater than in case of low number of memorized signals. 

Even though you may notice that on the image 11.48 where slightly higher number of patterns is 

non-orthogonal, even with the rest of patterns being orthogonal, the network produces truly nasty 

overhearing; it happens even in case of insignificant deformations of the entrance signal.     

 

Fig. 11.48. Big overhearing observed also for minimal destroyed input signal when remembered 

patterns are not orthogonal. 

11.10. What more it is worth observe in associative memory?  

Not translated yet … 

11.11. Control questions and self-study tasks  

Not translated yet … 


