Teoria sterowania 1

Temat ćwiczenia nr 7: Synteza parametryczna układów regulacji.

Celem ćwiczenia jest korekcja zadanego układu regulacji wykorzystując następujące metody:

- kryterium amplitudy rezonansowej,
- metodę Zieglera-Nicholsa,
- przybornik NCD w pakiecie Matlab.

7.1. Analiza właściwości eksploatacyjnych układu zadanego.

Używając Simulink'a w pakiecie MATLAB, zasymulować układ z rysunku 7.1.

Tworząc układ z rysunku 7.1. należy uwzględnić:

- wymuszenie $W(s) = \frac{1}{s}$,
- transmitancja obiektu $G_O(s) = \frac{5.6}{(s+1)(5s+1)(10s+1)} = G_{O1}G_{O2}G_{O3}$ gdzie:
- $\bullet \quad G_{O1}(s) = \frac{5.6}{s+1}$

•
$$G_{O2}(s) = \frac{1}{5s+1}$$
,

•
$$G_{O3}(s) = \frac{1}{10s+1}$$
,

• czas symulacji przyjąć około 70 s.

Na podstawie analizy przebiegów sygnałów: wymuszającego W(s) oraz wyjściowego Y(s), należy wyznaczyć dla zasymulowanego układu regulacji :

- uchyb statyczny ε_s ,
- przeregulowanie względne κ,
- czas regulacji t_r dla zadanego odchylenia regulacji Δr ,

7.2. Określenie celu syntezy parametrycznej układu regulacji.

Przykładowe cele cząstkowe wynikające z analizy i wymagań użytkownika:

- 1. likwidacja błędu statycznego,
- 2. zmniejszenie przeregulowania do 10%,
- 3. zmniejszenie przeregulowania do 15%,
- 4. zmniejszenie przeregulowania do 20%,
- 5. zmniejszenie przeregulowania do 25%,
- 6. zmniejszenie przeregulowania do 30%,
- 7. czas regulacji może znacznie wzrosnąć,
- 8. czas regulacji nie powinien ulec dużym zmianom,
- 9. skrócenie czasu regulacji.

Uwaga: Wszystkie podkreślone cele powinny być zrealizowane jednocześnie (przez jeden, odpowiedni regulator).

7.3. Wybór typu regulatora.

Wybór funkcji przejścia regulatora należy zrealizować korzystając z tabeli 7.1.

Tabela 7.1

Przewidywane działanie regulatora	Regulator
Zmiana uchybu statycznego, zmiana przeregulowania, zmiana czasu regulacji	Р
Likwidacja lub zmniejszenie uchybu statycznego, zmiana przeregulowania, wydłużenie	PI
czasu regulacji	
Skrócenie czasu regulacji, zmiana uchybu statycznego, zmiana przeregulowania	PD
Likwidacja lub zmniejszenie uchybu statycznego, zmiana przeregulowania, nieduża	PID
zmiana lub skrócenie czasu regulacji	

7.4. Dobór nastaw regulatora.

7.4.1. Wykorzystanie metody dominujących stałych czasowych regulatora oraz kryterium amplitudy rezonansowej.

Stałe czasowe wybranego regulatora wyznaczyć w oparciu o metodę dominujących stałych czasowych w następujący sposób:

- dla regulatora PI należy przyjąć, że T_i=T_{max mianownika transmitancji obiektu} •
- dla regulatora PD należy przyjąć, że T_d=T_{max mianownika transmitancji obiektu}
- dla regulatora PID należy przyjąć, że 3.62T_d=T_{max mianownika transmitancji objektu}, T_i=5T_d •

Wymagane wzmocnienie regulatora wyznaczyć korzystając z kryterium amplitudy rezonansowej. W tym celu należy uruchomić funkcję synteza. Komenda help synteza wyświetla podstawowe informacje o funkcji np. sposób zakodowania transmitancji obiektu. Po wyborze odpowiedniego typu regulatora (punkt 7.3), oraz odpowiedniej wartości amplitudy rezonansowej M_r (zgodnie z tabelą 7.2) należy metodą prób i błędów, poprzez zmiane wartości wzmocnienia Kr doprowadzić do sytuacji, w której charakterystyka amplitudowo-fazowa układu otwartego (złożonego z wybranego regulatora i zadanego obiektu) będzie styczna do nomogramu Halla dla wybranej amplitudy rezonansowej Mr. Tak wyznaczone wzmocnienie Kr jest szukanym wzmocnieniem regulatora.

Uwaga: Otrzymane nastawy regulatora zapisać w tabeli 7.4.

tabela 7.2. Zależność pomiędzy amplitudą rezonansową M_r a przeregulowaniem κ						
M _r	1,1	1,16	1,27	1,36	1,5	
к %	10	15	20	25	30	

7.4.2. Dobór nastaw metoda Zieglera-Nicholsa

Używając Simulink'a w pakiecie MATLAB, zasymulować układ z rysunku 7.4.

Rys.7.4. Schemat blokowy układu regulacji wykorzystany w metodzie Zieglera-Nicholsa.

Tworząc układ z rysunku 7.4. należy uwzględnić:

- wymuszenie $W(s) = \frac{1}{s}$,
- transmitancja obiektu $G_O(s) = \frac{5.6}{(s+1)(5s+1)(10s+1)} = G_{O1}G_{O2}G_{O3}$ gdzie:
- $G_{O1}(s) = \frac{5.6}{s+1}$
- $G_{O2}(s) = \frac{1}{5s+1}$,

- $G_{O3}(s) = \frac{1}{10s+1},$ ٠
- trójkąt jest symbolem wzmacniacza (w Simulinku, w Math Operations, element Gain) •
- czas symulacji przyjąć około 70 s.

Metoda ta polega na doprowadzeniu układu do granic stabilności (oscylacje niegasnące) poprzez zwiększanie wzmocnienia K (rys.7.4.). Wzmocnienie K, dla którego układ znajdzie się na granicy stabilności nazywa się wzmocnieniem krytycznym Kkr. Nastawy regulatora oblicza się w omawianej metodzie w oparciu o wzmocnienie krytyczne K_{kr} oraz okres oscylacji T_{osc} otrzymanej odpowiedzi dla K_{kr} według tabeli 7.3.

tabela 7.3. Nastawy regulatorow wg Zieglera-Nicholsa (K_r , I_i , I_d)					
Regulator	K _r	T _i	T _d		
Р	$0,5K_{\rm kr}$	-	-		
PI	0,45K _{kr}	0,83T _{osc}	-		
PID	0,6K _{kr}	$0,5T_{\rm osc}$	0,125T _{osc}		

tabela 7.3 Nastawa regulatorów wa Zieglera-Nicholsa (K. T. T.)

Obliczone nastawy umieścić w tabeli 7.4.

7.4.3. Dobór nastaw regulatora za pomocą przybornika NCD

Używając Simulink'a w pakiecie MATLAB, zasymulować układ z rysunku 7.5.

Tworząc układ z rysunku 7.5. należy uwzględnić:

- wymuszenie $W(s) = \frac{1}{s}$,
- transmitancja obiektu $G_O(s) = \frac{5.6}{(s+1)(5s+1)(10s+1)} = G_{O1}G_{O2}G_{O3}$ gdzie:
- $G_{O1}(s) = \frac{5.6}{s+1}$
- $G_{O2}(s) = \frac{1}{5s+1},$

$$\bullet \quad G_{O3}(s) = \frac{1}{10s+1}$$

- jako regulator należy wykorzystać element PID Controller dostępny w Simulinku, w NCD Blockset. Element ten ma trzy parametry:
 - Proportional: K_r (wzmocnienie regulatora),
 - Integral: K_r/T_i -
 - Derivative: K_r*T_d _

Parametry startowe należy wpisać symbolicznie w oknie parametrów elementu PID Controller w następujący sposób:

- w Proportional: P
- w Integral: I lub 0 jeżeli chcemy mieć regulator PD
- w Derivative: D lub 0 jeżeli chcemy mieć regulator PI

Następnie w formie liczbowej w głównym oknie komend Matlab'a np.

P=1

I=1/10

D=10

lub nastawy regulatora np. z punktu 7.4.1.

Uruchomić symulacje i dobrać odpowiednio parametry symulacji (czas symulacji, tolerancje zmniejszyć do e⁻⁶). Następnie na wyjście układu regulacji zbudowanego wg schematu z rys. 7.5 (zamiast Scope) podłaczyć NCD Outport (element dostępny w Simulinku, w NCD Blockset), otworzyć ten blok, w menu wybrać opcję Parameters i w zmiennych decyzyjnych (Tunable Variables) wpisać (oddzielone spacjami) symbole poszukiwanych parametrów: P I D. Krok dyskretyzacji (Discretization interval) ustawić na 0,05. Pozostałe parametry nie zmieniać. Następnie uruchomić dostrajanie regulatora (przycisk Start). Po zakończeniu optymalizacji odświeżyć ekran za pomocą polecenia Options/Refresh, odczytać wyznaczone parametry w przestrzeni komend Matlab'a oraz wyliczyć z nich nastawy regulatora: K_r, T_i i T_d.

Obliczone nastawy umieścić w tabeli 7.4.

7.5. Analiza właściwości eksploatacyjnych układu skorygowanego.

Używając Simulink'a w pakiecie MATLAB, zasymulować układ z rysunku 7.5.

Wyznaczyć własności eksploatacyjne układów skorygowanych (regulatorami dobranymi w punkcie 7.4) i zapisać je w tabeli 7.4.

7.6. Opracowanie wyników.

Rezultaty wykonanej syntezy powinny zostać zapisane w tabeli 7.4. Odchylenie regulacji Ar dla wszystkich rozważanych przypadków przyjąć na poziomie 3% z wartości ustalonej odpowiedzi.

tabela 7.4.							
cel syntezy:							
typ regulatora	a (transmitancj	a):					
metoda	nastawy regulatora		własności eksploatacyjne				
	K _r	T _i	T _d	ε _s	к%	Δr	t _r
układ zadany	_	_	_				
kryterium ampl. rezon.							
metoda Z-N							
przybornik NCD							