Mechatronic Engineering

Object Oriented Programing and Software Engineering
Laboratory instruction 12
C++ introduction

AGH Krakow, 2020

Materials created for educational purposes.

Dedicated for students attending Software Engineering course.

Author would apreaciate any feedback regarding errors of any kind found in
the instruction script.

Please report those to the following email address: danielt@agh.edu.pl

Contents

1 Object oriented design
1.1 Programing techniques
1.1.1 linear programing
1.1.2 Procedural programing
1.1.3 Programming with data hiding
1.1.4 Object based design
1.1.5 Object oriented programing
1.2 Designing an object oriented program
1.2.1 Designing stepso
1.3 Implementation

2 Task

1 Object oriented design

As you may have noticed through the years, there are many approaches
to programming. Depending on an used language, programer should choose
the right one to meet the key points of the approached problem. If it comes
to creating high complexity programs object oriented projecting and pro-
graming comes in handy. It is because the use of objects and classes allows
you to create software models corresponding to the reality.

The following section shows also the steps of evolution in programing
methods.

1.1 Programing techniques

In this paragraph T’ll briefly explain basic programing techniques, their
principles and limitations.

1.1.1 linear programing

The principal of linear programing is to write the code so that individual
instructions are implemented one after another. Programs writen is such
way usually use global variables. Frequent use of go to instructions makes
the program less readable to other programmers.

1.1.2 Procedural programing

This technique provided programers with a very efective tool: functions.
Implementing functions into programing allowed the programer to use addi-
tional variables called local variables. The general idea of procedural pro-
graming is to divide the target problem into simple solvable tasks. Tasks are
solved by the created functions.

1.1.3 Programming with data hiding

This is a tehnique that allows programmer to use data modules. General
idea is to pack different data into one module. Such data can be treated
as a group. It comes down to the use of structures (in C++ it can be also
achieved by using classes to store only public data). The main difference to
previous method is that structures can be used to send all the necesary data
at once to a function.

1.1.4 Object based design

This tehnique adds member functions (methods) to the previously grouped
data. The main principle is that the data structuralized into a module (ob-
ject) doesn’t know how to do something, but it knows what to do. Member
functions are responsible for knowing how to do something.

1.1.5 Object oriented programing

object oriented programming has some features that distinguish them
from other programming techniques:

e Reusability — enables the secondary use of previously written code. It
is possible by implementing of inheritance into programming

e Extensibility — facilitates subsequent modifications of the program.

e Real world modeling — Object oriented programing allows to transfer
of real life models into software representations.

1.2 Designing an object oriented program

Designing an object oriented program requires to follow a plan. You could
compare it to building a house. It is possible, to build a house ad hoc, it
will even fullfill the basic functionality of a house, but if you plan your house
earlier, building it will be easier. When it comes to comlicated systems it is
far more efficient to plan your work before you start programming.

Planing steps:

1. Problem research — Fragment of reality that the program is supposed to
address is called a system. The main idea is to recognise the propperties
of a considered system before you start coding. In this step you get to
know what should your program do.

2. Program designing — In this step you need to figure out how to realize
tasks that your program should do.

3. Implementation — After you created your theoretical plan it is time to
do the codding

4. Testing — In this steps all the errors and misbehavings of our program
should be found. This step doesn’t finish the planing process. It often
leads to some corrections in the planing and/or coding.

5

Table 1: System behaviors scenarios [1]
Who Action Whom Result
Player Throws Dice Random number from 1 - 6

1.2.1 Designing steps

1. Identification of system behaviors

2. Identification of objects in the system

3. Objects classification

4. determination of the mutual dependencies of object classes

5. Assemling the model

1.2.1.1 Identification of system behaviors

This step is responsible for systematization of knowledge about the prob-
lem. The whole knoledge about the system should be written in the form of
scenarios. It’s not obligatory to arrange all the scenarios in a chronological
order, but it will save you a lot of work when determining the sequence of
objects and theit life cycles.

Scenarios should be prepared in a simplest possible form, for example in
a table (tab. 1)

1.2.1.2 Identification of objects in the system

In this step, you need to find objects that work in the system that you
want to program. Programmer needs to find objects that naturally reflect
real system behavior. It can be easily obtained by going through the table
1 and pick columns Who and Whom. Those columns contain information
about names of the classes for the objects of our system.

Modeling cards are a very usefull tool when it comes to object iden-
tification in the system. Modeling cards store information about objects
properties.

Note, that in this step we are only identifying objects and their depen-
dencies, implementation details ar not yet important.

Table 2: Modeling cards for object identification in the system
Class (class name)

Duties: Asociates:

Visable propperties:

Table 3: Example of modeling cards for object identification in the system

Class Dishwasher

Duties: Asociates:
spining sprinklers motors
drying heater
water pumping water pump

Visable propperties: ongoing program
water level
humidity level

1.2.1.3 Objects classification

The next step is to analyze the previously developed classes and objects.
The next task of the programmer is to check and find cinnections (inher-
itances) between the designed classes and determine their hierarchy. This
step is crucial to see if there is a chance for reusability of the designed set of
classes and objects.

Firstly a programer should proceed with prioritization of designed classes
— it is crucial to properly define abstract classes to reuse it by other classes
of the system. One method to propperly build inheritances into designed
program is to declare a statement: class A object is a special type of
a class B object. For example: a barn is a special type of a building. If
its true it means that class A is a derived class to class B. To check if there
are classes including objects of other classes a statement should be declared:
The object of the A class consists, among others, of an object of
the B class. For example: a barn consists, among others, of a gate.

1.2.1.4 Mutual dependencies of classes

In this step is it necessary to decide the way your classes corelate to each
other. There are two tools to help a programer to achive that. First one

Table 4: Example of a list of relations for a dishwasher system
Object Dependency Whom?

previous object

forces to open water valve
dishwasher programmer forces to shutdown water valve
checks if cover is locked cover sensor

next object

Figure 1: Example of a graph of object cooperations.On the left a propperly
designed system. On the right an overcomplicated system [1].

X N e g A

@ s 1

need to make a list of the relations between the objects and secondly draws a
graph of object cooperations. The list can be easily prepared with the use of
scenarios (tab. 1) and modeling cards (tab. 3). Example of a list of relations
in table 4

Graph of object cooperations is a tool that clearly presents comunication
lines between objects. Each rectangle on a graph is an object and lines
represent dependecies between objects. Another useful thing that can be
clearly seen by looking at the graph is the comlpicicity of designed sytem.
There are many aproaches, but one object shouldnt directly cooperate with
more than three objects (fig. 1).

Graph can also be a usefool tool to easily divide designed system into
subsystems. Subsystem is a group of classes dealing with the fulfillment of
one, very generally understood role.

1.2.1.5 Determining the sequence of objects and theit life cycles

After splitting the system into subsystems, you can go to the next stage.
It is the assembly of the model. To this end, the scenario of our system should
be used (tabela 1). The next step is to determine the sequence of actions of
the objects of each class. To do this, you can use the following wording: As
soon as object A receives a signal to do it - it issues the following command
to object B and ...
The result of this step will be useful when defining the bodies of individual
member functions of a given class.

1.3 Implementation

Implementation is to create a class definition. In this step, you should
first develop: visible class properties - constituting member data and class
behaviors - which will be treated as member functions. Methods should be
created as declarations first. Definitions should be made when the whole
system is sufficiently designed and all necessary elements are declared.

2 Task

Go through your program built for puproses of previous laboratories and
check if u have propperly build it to meet the object oriented standard.
Correct your program if its necessary.

Bibliography

[1] J. Grebosz, Symfonia C++ standard ISO, 2014.

