
Mechatronic Engineering

Object Oriented Programing and Software Engineering
Laboratory instruction 4
Git - distributed version control system - Part 1

AGH Kraków, 2020

1

Materials created for educational purposes.
Dedicated for students attending Software Engineering course.
Author would apreaciate any feedback regarding errors of any kind found in
the instruction script.
Please report those to the following email address: danielt@agh.edu.pl

2

Spis treści

1 Git - a distributed version-control system 4

2 Getting started 4

3 Creating new repository 4

4 Adding files to the repository 5

5 File exclusion 5

6 Removing files 6

7 Changing file name 6

8 Withdrawal of modifications from the index 6

9 Displaying changes log 7

10 Approving changes 7

11 Cloning repositories 7

12 Pushing repositories to a remote location 8
12.1 Pushing to AGH SSH workaround 8

3

1 Git - a distributed version-control system

Git is a tool for tracking changes made over time to a set of files. This
is the so-called version control system. It is most often used to coordinate
the teamwork of a group of programmers. Git does not have a central server
where the project is saved. Users work on their own copy of the repository
independently of each other, which is why it is a distributed system. For more
detailed information use git manual by typing in the terminal man git or git
--help for help.

2 Getting started

Before one starts working with git, several configuration parameters must
be set. Command git config is used to load and manipulate git settings (local
for single repository, global for all user repositories, and system level). Git
settings are stored in ∼/.gitconfig. It is a standard text file that can be edited
by any text editor. One changes parameter values by typing the following
command in the terminal:

$ git config --{local,global,system} parameter value

When using Git it is important to identify the person who made changes
to the repository, especially when one works on a big project that involves
many people. That is why first parameters to change should be the user name
and email address. One can do it by typing into terminal:

$ git config --global user.name "username"
$ git config --global user.email email@address

Run above commands to set your personal data into your git config file.

3 Creating new repository

To create a new repository one needs to type the command:

$ git init folder_name

if there was no folder named folder name it will be created with .git folder
inside. Git stores the new empty repository in .git folder. In case in which
folder name does not exist it will be created.

4 Adding files to the repository

To add files stored in folder name to your repository one needs to use
command:

$ git add file_name

Where file name is the name of the file one want to add to the repository.
To add all files stored in folder name to your repository one needs to type in
the terminal:

$ git add .

5 File exclusion

There are file types that don’t require to be added to the repository.
Those files are binaries, compilation artefacts, all automatically generated
configuration tools, etc. Examples are listed bellow:

object code: *.o, *.so, *.a, *.dll, *.exe
byte code: *.jar, *.elc, *.pyc
compilation system artefacts: config.log, config.status, aclocal.m4, Makefile.in

Generally files that don’t suppose to be a part of a repository are files that
don’t require revisions or version control. There are three methods to exclude
files from repositories.

• Firstly, one can list excluded file names in file .gitignore in the work
tree. From git perspective, .gitignore is a standard text file, so it is
possible to add it to the repository. .gitignore can also be listed in
.gitignore.

• Secondly, one can list excluded files in file .git/info/exclude. The diffe-
rence from previous method is that it cant be synced via repository.

• Thirdly one can list excluded file names in configuration variable co-
re.excludes by command:

$ git config --global core.excludefile ~/.gitignore

above example bases on the assumption, that home directory is not a
part of repository.

5

Form more detailed description and file structure type in the command line
man gitignore.

6 Removing files

To remove file from the project command git rm should be used:

$ git rm file_name

This command makes two operations:
Removes entry from the index (this change s applied in next approval)
Delets file from the work tree (with the use of rm file name) as in Linux
console

7 Changing file name

To change file name in the project command git mv should be used:

$ git mv original_file_name new_file_name

Above command works as set of commands: To remove file from the project
command git rm should be used:

$ mv original_file_name new_file_name
$ git add new_file_name

8 Withdrawal of modifications from the in-
dex

There is a possibility to withdraw changes made to repository by the use
of:

$ git reset

It will reser all changes in the project to last approved state. Additionally
git will display the list of changes that will be withdrawn.

6

9 Displaying changes log

To display the full log of changes made to the project one needs to use:

$ git log --stat

10 Approving changes

This section provides information on how to approve changes made to
your project into the repository. Command git commit is used for approving
changes to the repository. When one types the command without any addi-
tional arguments all changes are accepted. To approve only specific files one
needs to use:

$ git commit -{flag} {option} file_name

Comand git commit creates a new object of repository tree, capturing the
current state of the index and change approval object with the text of the
comment and the author’s data, date, etc.

$ git commit -m ’your_message’

If flag -m will be omitted, no message will be attached. Command git commit
has many helpful flags, to display detailed description of it type git commit
--help into terminal. Before one approves changes it is helpful to veryfi the
changes made to the project by using:

$ git status

and

$ git diff

The presented commands are used to display the awaiting changes status (git
status) and differences between modified and lastly accepted file (git diff).

11 Cloning repositories

To use an existing repository on ones computer it has to be cloned. Com-
mand git clone is responsible for creation of new clone. The original repo-
sitory will be called remote repository. The URL provided to the command
can origin from multiple online protocols like HTTP, FTP and SSH.

7

$ git clone remote_repository_adres

Method for cloning repositories through SSH will be presented for the
purpose of this instruction. It will simplify the proces of uploading your code
to the AGH SSH account from your home computer.
To clone repository from AGH SSH one needs to input git clone with a
propper formating:

$ git clone ssh://user@student.agh.edu.pl:/your/repository/location

To obtain propper path to the repository one can type pwd while the
prompt is in the repository directory.
WARNING! The path to the repository must be specified in the full form
(egz. /home/imirgrp/user/localRepoDir.git). In case in wich repository is not
recognised try the path without .git.

To update your clone one needs to use git pull command:

$ git pull

12 Pushing repositories to a remote location

Pushing repositories is required when one wants to upload approved chan-
ges in their local project to a remote repository. To do it git push command
has to be used.

$ git push

The above command will push all the approved changes into origin location
of the repository (if the repository was a clone the push will be performed to
the remote location). One can also push the repository to a custom addressed
repository. It can be used to create a new remote repository for our project
to be cloned by other project users:

$ git push repo_url

12.1 Pushing to AGH SSH workaround

In some cases pushing your local copy to the remote repository on AGH
servers generates an error:

8

$ git push
user@student.agh.edu.pl’s password:
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 227 bytes | 227.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: error: refusing to update checked out branch:
refs/heads/master

remote: error: By default, updating the current branch in a
non-bare repository

remote: is denied, because it will make the index and work tree
inconsistent

remote: with what you pushed, and will require ’git reset --hard’
to match

remote: the work tree to HEAD.
remote:
remote: You can set the ’receive.denyCurrentBranch’ configuration
variable

remote: to ’ignore’ or ’warn’ in the remote repository to allow
pushing into

remote: its current branch; however, this is not recommended
unless you

remote: arranged to update its work tree to match what you pushed
in some

remote: other way.
remote:
remote: To squelch this message and still keep the default
behaviour, set

remote: ’receive.denyCurrentBranch’ configuration variable to
’refuse’.

To ssh://user@student.agh.edu.pl:/your/repository/location
! [remote rejected] master -> master (branch is currently checked
out)

error: failed to push some refs to
’ssh://user@student.agh.edu.pl:/your/repository/location’

There is a workaround to resolve this issue. Git operates on branches,
while not going into details, the error forbids the user from pushing to master
branch. The worarround is to create a new branch (on your local machine)
for the project and work on your local machine with usage of this branch:

git checkout -b localRepo

9

The git checkout command lets you navigate between the branches cre-
ated by git branch . Checking out a branch updates the files in the working
directory to match the version stored in that branch, and it tells Git to record
all new commits on that branch [1].
After creating a new branch one can push the local repository to the remote.
Now our local files are stored on remote repository, but the changes are not
made to the master branch, so the next step will be merging our localRepo
branch with master. Before you do that please check the output of following
command:

$ git log --graph --all

The result will display the graph of our changes to the repository.
The merging must be performed on the server machine. To merge localRepo
branch with master one needs to type the following:

$ git merge localRepo

WARNING! Be aware that the presented method is shown due to the
need for remote work in the current crisis and should not be considered as
acting in accordance with the art. Also if changes are made to the files on
remote repository (that checkouts master) it can generate trouble. In this
workarround it is preffered to work with the code only on your personal
computers and use the server to merge the branch with master. It is possible
to mix work (local/server) but it requires additional knowledge on working
with branches. You do it at your own risk.

Task

For the purpose of this laboratory create a git repository of your software
prepared for previous classes and upload it to a remote repository on your
SSH account. The file structure of your repo should contain all the laboratory
tasks in separate folders (lab01, lab02 etc.).

Bibliography

[1] https://www.atlassian.com/git/tutorials/using-branches/git-checkout
[2]R. Silverman, Git Pocket Guide, helion, 2014.
[3] W. Gajda, Git Rozproszony system kontroli wersji, helion, 2014.

10

