
Mechatronic Engineering

Object Oriented Programing and Software Engineering
Laboratory instruction 3
C++ introduction

AGH Kraków, 2020

1



Materials created for educational purposes.
Dedicated for students attending Software Engineering course.
Author would apreaciate any feedback regarding errors of any kind found in
the instruction script.
Please report those to the following email address: danielt@agh.edu.pl

2



Spis treści

1 Inheritance. 4

2 Header files. 6

3



1 Inheritance.

Inheritance allows one class to inherit an element from another class. The
inheritance class is called the derived class, while the class from which the
element is inherited, the base class.
Why use inheritance? Assume that the classes we created for the program
have the same functions or variables. Instead of writing several times the
same code, it is enough to apply inheritance. It will shorten our code and
make the program more transparent.

Incheritance definition:

class Base {
//class body

};
class Derived : inheritance_type Base {
//class body

};

There are three types of inheritance. Public, protected and private. The dif-
ferences relate to the access rights to the inherited components.

Public (public) – Public base components of the base class are inherited
as public, and protected components are protected;
Protected (protected) – Public components are inherited as protected and
protected components are protected;
Private (private) – Private inheritance is the default (when no inheritance
type is specified). Public constituents are inherited as private and protected
as private;

Components that have the private attribute are always inherited as private,
and the derived class does not have access to them. Access is only possible
through friendly classes.
The inherited components can be used just like those defined directly in a
derived class.

Example:

#include <iostream>
using namespace std;

class hero {



int str, dex, vit, int, cha;
public:
void przyp_atr (int x) {
str = x; dex = x; vit = x; int = x;
cha = x;

}

void wysw_atr() {
cout<<"\t\t\tHero stats:"<<endl;
cout<<"\tStrength: "<<str<<endl;
cout<<"\tDexterity: "<<dex<<endl;
cout<<"\tInteligence: "<<int<<endl;
cout<<"\tVitality: "<<vit<<endl;
cout<<"\tCharisma: "<<cha<<endl;

}
};

class knight : public hero {
public:
knight (int l){
przyp_atr(l);
wysw_atr();

}
};

main() {
int b;
do {
if (b > 9) {
cout<<"Learn to read! the number supposed to be "
<<"from 0 to 9"<<endl;

}
cout << "Your knight is being created. "
<< "Enter a number from 0 to 9: "<<endl;
cin>>b;

} while (b>9);

knight r1(b);

return 0;
}

5



2 Header files.

You can use header files for better organization of the code. These are
external source files where class and their members declarations are stored.
This will store only main function in the main source file. Headers have *.h or
* .hpp extensions. For the header file to be properly attached to the program
use the directive:

#include "name_of_header_file"

Task

Based on the informations provided in this manual, please improve the sim-
ple RPG caracter creation program.

Program requirements:
1. Add option to generate a list of monsters to the program (Five monsters
per program cycle).
2. Equip the program with „monsters” class, wich will inherit member ele-
ments from the main hero class (the one with the atributes).
3. Monster stats are randomly generated in the range of 1 to 10
4. Once you generate a new list of monsters, you can save it to a new text file.

6


