
Mechatronic Engineering

Object Oriented Programing and Software Engineering
Laboratory instruction 10
C++ introduction

AGH Kraków, 2020

1

Materials created for educational purposes.
Dedicated for students attending Software Engineering course.
Author would apreaciate any feedback regarding errors of any kind found in
the instruction script.
Please report those to the following email address: danielt@agh.edu.pl

2

Contents

1 Virtual functions 4

2 Abstrac classes 6

3 Virtual destructor 9

4 Programs composed of several files 9

3

1 Virtual functions

Polymorphism is a feature of object-oriented programming that allows
different behavior of the same virtual functions while running the program.
Virtual functiom must be a class member.When using pointers or references
in the program, the use of virtual methods may be useful for full control of
the program.

Example:

1 #include <iostream>

2

3 using namespace std;

4

5 class base {

6 public:

7 void hat() {

8 cout << "Random empty hat" << endl;

9 }

10 };

11

12 class derived

13 : public base {

14 public:

15 void hat() { /hiding base class method

16 cout << "Hat with magical rabbit inside!" << endl;

17 }

18 };

19

20 int main() {

21 base empty;

22 derivative full;

23

24 empty.hat();

25 full.hat();

26

27 base * ptr = & full;

28 ptr->hat();

29 }

The above program presents the situation without the use of virtual meth-
ods.After the execution of the program, we can observe that the last pointer,
despite pointing to the derived class object, uses the base class method. This

is because the pointer is of the base class type.

Example:

1 #include <iostream>

2

3 using namespace std;

4

5 class base {

6 public:

7 virtual void hat() {

8 cout << "Random empty hat" << endl;

9 }

10 };

11

12 class derived

13 : public base {

14 public:

15 virtual void hat() { /hiding base class method

16 cout << "Hat with magical rabbit inside!" << endl;

17 }

18 };

19

20 int main() {

21 base empty;

22 derivative full;

23

24 empty.hat();

25 full.hat();

26

27 base * ptr = & full;

28 ptr->hat();

29 }

As we can see from the way this program works, using virtual methods allows
you to use the functions from the pointed object class, regardless of the type
of pointer used.

Only a method can be a virtual function. It is associated with inheri-
tance, which is a class attribute. Another important information is the need
to use the word virtual only in the function declaration. In the definition it
is not required, the compiler automatically guesses that it is dealing with a
virtual function.

5

Method Names Arguments Range
Virtual same same varies (members of different classes)
Overloaded same varies same (members of one class)

Table 1: Source: J. Grebosz, Symfonia C++ Standard

The virtual function calling mechanism should not be confused with func-
tion overloading. The following table summarizes the differences between
these two features of the function:

2 Abstrac classes

An abstract class is a class with purely virtual functions. Such functions
have only declarations, and the class itself is used as a template for inheriting
classes. The virtual methods should be pure virtual method. To declare a
pure virtual method one must use following syntax:

1 virtual function_type function_name(arg_type arg_name) = 0;

Bellow a practical example od an abstract class usage:

1 #include<iostream>

2 #include<string>

3

4 using namespace std;

5

6 class vehicle{

7 protected:

8 int wheels;

9 float engineCapacity;

10 string engineType;

11 string vehicleName;

12

13 public:

14 virtual ~vehicle(){};

15 virtual void engineStart()=0;

16 virtual void engineStop()=0;

17 virtual void displayStats()=0;

18

19

20 };

21

6

22 class car: public vehicle{

23 float trunkCapacity;

24 public:

25 car(int w, float ec, float tc, string et, string vn){

26 wheels = w;

27 engineCapacity = ec;

28 engineType = et;

29 vehicleName = vn;

30 trunkCapacity = tc;

31

32 }

33 ~car(){

34 cout<<"Car destroyed!"<<endl;

35 }

36 void engineStart(){

37 cout<< "Checking engine..."<<endl;

38 cout << engineCapacity <<"L "<< engineType << " roars

loudly!"<<endl;

39 }

40 void engineStop(){

41 cout<< engineType << " modestly stops"<<endl;

42 }

43 void displayStats(){

44 cout << "Car name: " <<vehicleName << endl;

45 cout << "Engine type: "<<engineType<<", capacity:

"<<engineCapacity<<"L"<<endl;

46 cout << "Trunc capacity: "<<trunkCapacity<<endl;

47 cout << "This vehicle has "<<wheels<<" wheels"<<endl;

48 }

49 void car_Name(){

50 cout<< vehicleName;

51 }

52 };

53

54 class motobike: public vehicle{

55

56 public:

57 motobike(int w, float ec, string et, string vn){

58 wheels = w;

59 engineCapacity = ec;

60 engineType = et;

61 vehicleName = vn;

62

7

63 }

64 ~motobike(){

65 cout<<"Bike destroyed!"<<endl;

66 }

67 void engineStart(){

68 cout << "Engine roars loudly!"<<endl;

69 }

70 void engineStop(){

71 cout<< "Engine modestly stops"<<endl;

72 }

73 void displayStats(){

74 cout << "Bike name: " <<vehicleName << endl;

75 cout << "Engine type: "<<engineType<<", capacity:

"<<engineCapacity<<"L"<<endl;

76 cout << "This vehicle has "<<wheels<<" wheels"<<endl;

77 }

78 void bike_Name(){

79 cout<< vehicleName;

80 }

81

82 };

83

84 int main(){

85 car camaro(4,6.5,257.68,"L78 V8","1969 Camaro SS 396’");

86 motobike rocket(2,2.3,"In-line three, four-stroke", "Triumph

Rocket III Roadster");

87

88 int a;

89 vehicle *choice;

90

91 do{

92 cout<<"Pick your ride: "<<endl<<"1.

";camaro.car_Name();cout<<"."<<endl;

93 cout<< "2. ";rocket.bike_Name();cout<<"."<<endl;

94 cin>>a;

95 }while (a!=1&&a!=2);

96

97 if (a==1)choice=&camaro;

98 else choice=&rocket;

99

100 cout <<"You have chosen your ride!"<<endl;

101 choice->displayStats();

102 choice->engineStart();

8

103 cout<<"Shame it’s just a virual vehicle :("<<endl;

104 choice->engineStop();

105

106

107 return 0;

108 }

3 Virtual destructor

In order to prevent the launch of the wrong destructor so-called Virtual
destructor is used. With its use, the destructor will be run from the object’s
origin class rather than the pointer-type class. To declare a virtual destructor:

1 class random {

2 public:

3 virtual ~random(){};

4 };

4 Programs composed of several files

In the previous instruction, the header files were mentioned. They are
very useful when it comes to organizing function and class declarations in
ones code. This section presents a method of practical use of header files
to create multi-source source code. You might ask why split the source
code of the program into many files, isn’t this an unnecessary complication?
Sometimes, however, it is useful to complicate your work to some extent to
be able to simplify your further work.
Below are examples of several header files containing class declarations, the
definitions of which are contained in the corresponding cpp files (filenames
are presented as comments in first line of each code:

1 //class.hpp

2 #ifndef class_hpp

3 #define class_hpp

4

5 class figure {

6 public:

7 virtual double area()=0;

8 virtual double circumference()=0;

9 virtual ~figure(){};

9

10

11 };

12

13 #endif

14

15 //circle.hpp

16 #ifndef circle_hpp

17 #define circle_hpp

18

19 #include "class.hpp"

20

21 class circle : public figure {

22 public:

23 circle(double);

24 ~circle();

25 double area();

26 double circumference();

27 private:

28 double radius;

29 };

30

31 #endif

32

33 //rectangle.hpp

34 #ifndef rectangle_hpp

35 #define rectangle_hpp

36

37 #include "class.hpp"

38

39 class rectangle : public figure {

40 public:

41 rectangle(double, double);

42 ~rectangle();

43 double area();

44 double circumference();

45 private:

46 double side_a, side_b;

47 };

48

49 #endif

50

51 //square.hpp

52 #ifndef square_hpp

10

53 #define square_hpp

54

55 #include "class.hpp"

56

57 class square : public figure {

58 public:

59 square(double);

60 ~square();

61 double area();

62 double circumference();

63 private:

64 double side_a;

65 };

66

67 #endif

68

69

70

71 //circle.cpp

72 #include <iostream>

73 #include "circle.hpp"

74 const float pi = 3.14159;

75

76 circle::circle(double r){

77 radius=r;

78 }

79 circle::~circle(){

80 std::cout <<"circle destroyed"<<std::endl;

81 }

82 double circle::area(){

83 return (pi*radius*radius);

84 }

85 double circle::circumference(){

86 return (pi*radius*2);

87 }

88

89 //rectangle.cpp

90 #include <iostream>

91 #include "rectangle.hpp"

92

93 rectangle::rectangle(double a, double b){

94 side_a=a; side_b=b;

95 }

11

96 rectangle::~rectangle(){

97 std::cout <<"rectangle destroyed"<<std::endl;

98 }

99 double rectangle::area(){

100 return (side_a*side_b);

101 }

102 double rectangle::circumference(){

103 return ((2*side_a) +(2*side_b));

104 }

105

106 //square.cpp

107 #include <iostream>

108 #include "square.hpp"

109

110 square::square(double a){

111 side_a=a;

112 }

113 square::~square(){

114 std::cout <<"rectangle destroyed"<<std::endl;

115 }

116 double square::area(){

117 return (side_a*side_a);

118 }

119 double square::circumference(){

120 return (4*side_a);

121 }

122

123 //main.cpp

124 #include <iostream>

125 #include "class.hpp"

126 #include "circle.hpp"

127 #include "rectangle.hpp"

128 #include "square.hpp"

129 using namespace std;

130

131 int main() {

132 int i;

133 do {

134 cout <<"\t\t\t\tChoose operation:" << endl << "1. Calculate

area of a circle. \n2. Calculate circumference of a circle.

\n3. Calculate area of a rectangle. \n";

135 cout <<"4. Calculate circumference of a rectangle. \n5.

Calculate area of a square. \n6. Calculate circumference of

12

a square.\n 0. Exit\n";

136 cin >> i;

137 if(i >6 || i < 0) continue;

138 switch(i){

139 case 0: cout << "ending program"; break;

140 case 1: {

141 double r; cout << "What is the radius?: "; cin >> r;

circle c1(r);

142 cout << endl << "Area of a circle (radius = " << r <<")

equals: " << c1.area() << endl; break;}

143 case 2: {

144 double r; cout << "What is the radius?: "; cin >> r;

circle c1(r);

145 cout << endl << "Circumference of a circle (radius = " <<

r <<") equals: " << c1.circumference() << endl; break;}

146 case 3: {

147 double a,b; cout << "How long is the side a?: "; cin >>

a; cout <<endl<< "How long is the side b?: "; cin >> b;

148 rectangle r1(a,b); cout << endl << "Area of a rectangle

(a = " << a <<", b = " << b <<") equals: " <<

r1.area() << endl; break;}

149 case 4: {

150 double a,b; cout << "How long is the side a?: "; cin >>

a; cout <<endl<< "How long is the side b?: "; cin >> b;

151 rectangle r1(a,b); cout << endl << "Circumference of a

rectangle (a = " << a <<", b = " << b <<") equals: "

<< r1.circumference() << endl; break;}

152 case 5: {

153 double a; cout << "How long is the side a?: "; cin >> a;

square s1(a);

154 cout << endl << "Area of a square (a = " << a <<")

equals: " << s1.area() << endl; break;}

155 case 6: {

156 double a; cout << "How long is the side a?: "; cin >> a;

square s1(a);

157 cout << endl << "Circumference of a square (a = " << a

<<") equals: " << s1.circumference() << endl; break;}

158 }

159 }while(i!=0);

160 return 0;

161 }

13

To compile the above code into a fully functional program, it will be impor-
tant to compile with the -c flag:

1 g++ -c file_name.cpp

Information about what the -c flag does, copied from the compiler manual
(man g ++):

[...] (g++) -c Compile or assemble the source files, but do not
link. The linking stage simply is not done. The ultimate output
is in the form of an object file for each source file. By default, the
object file name for a source file is made by replacing the suffix
.c, .i, .s, etc., with .o. Unrecognized input files, not requiring
compilation or assembly, are ignored. [...]

To combine individual .o files, use the -o option and name all files compiled
with the -c option:

1 g++ -o output_file_name input1_name.o input2_name.o input3_name.o

The compilation process can of course be accelerated with the use of a bash
script:

1 #!/bin/bash

2 clear

3 g++ -c main.cpp

4 g++ -c circle.cpp

5 g++ -c rectangle.cpp

6 g++ -c square.cpp

7 g++ -o binary_file main.o circle.o rectangle.o square.o

8 echo ’compilation proces finished!’

One might ask why bother and why is this a simplification? By dividing the
code into smaller batches, you can compile those parts that have changed and
combine them with the intact previously compiled fragments. In addition, it
simplifies group work on the code, allowing you to divide individual fragments
between project participants without worrying about accidental changes in
the code that are already working.

Task

Based on the informations provided in this manual, please improve the sim-
ple RPG caracter creation program.

14

Program requirements:
1. Create an abstract class interface that will store all the atributes that will
be inherited by the hero and monster class.
2. Create an abstract class interface that will store the necessary methods
that will be inherited by your profession classes.
3. Divide your code into sepparate files (one for templates, one for hero
managing, one for monsters managing and one for main function)
4. Upload all previously created programs (including examples from the in-
structions)placed in appropriate folders (excercises, lab01, lab02, lab03 etc.)
into your git repository.

15

