
 

 

#include The #include directive instructs the C Preprocessor (a non interactive editor 

which will be discussed later) to find the text file “stdio.h”. The name itself 

means “standard input and output” and the “.h” means it is a header file rather 

than a C source file (which have the “.c” suffix). It is a text file and may be 

viewed with any text editor. 

comments Comments are placed within /* and */ character sequences. 

main The main function is most important. This defines the point at which your 

program starts to execute. If you do not write a main function your program 

will not run (it will have no starting point). In fact, it won’t even compile. 

braces C uses the brace character “{” to mean “begin” and “}” to mean “end”. They are 

much easier to type and, after a while, a lot easier to read. 

printf The printf function is the standard way of producing output. The function is 

defined within the Standard Library, thus it will always be there and always 

work in the same way. 



\n The sequence of two characters “\” followed by “n” is how C handles new lines. 

When printed it moves the cursor to the start of the next line. 

return return causes the value, here 0, to be passed back to the operating system. 

How the operating system handles this information is up to it. MS-DOS, for 

instance, stores it in the ERRORLEVEL variable. The UNIX Bourne and Korn shells 

store it in a temporary variable, $?, which may be used within shell scripts. 

“Tradition” says that 0 means success. A value of 1, 2, 3 etc. indicates failure. All 

operating systems support values up to 255. Some support values up to 65535, 

although if portability is important to you, only values of 0 through 255 should 

be used. 

scanf The scanf function is the “opposite” of printf. Whereas printf produces output 

on the screen, scanf reads from the keyboard. The sequence “%i” instructs 

scanf to read an integer from the keyboard. Because “%i %i” is used two 

integers will be read. The first value typed placed into the variable “a”, the 

second into the variable “b”. The space between the two “%i”s in “%i %i” is 

important: it instructs scanf that the two numbers typed at the keyboard may 

be separated by spaces. If “%i,%i” had been used instead the user would have 

been forced to type a comma between the two numbers. 
 

 


