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Lecture 3.
Independence and total 

probability rule

Introduction to theory of probability 
and statistics
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Outline:

● Independence of random events

● Total probability

● Problems using the material covered-

presentation of solutions 

● Bayes’ theorem
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Multiplication rule

can be rewritten to provide a general expression for 
the probability of the intersection of events:
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( ) ( )
( )AP

BAP=A|BP ∩
Definition of conditional probability:

( ) ( ) ( ) ( ) ( )BPB|AP=APA|BPBAP =∩

This formula is referred to as a multiplication rule 
for probabilities.



Multiplication rule

The probability that an automobile battery subject to 
high engine compartment temperature suffers low 
charging current is 0.7. The probability that a battery is 
subject to high engine compartment temperature is 0.05.
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Example 3.1:

( ) ( ) ( ) 035.005.07.0 =×=∩ =TPT|CPTCP

Solution to example 3.1:
Let C denote the event that a battery suffers low 
charging current, and let T denote the event that a 
battery is subject to high engine compartment 
temperature. The probability that a battery is subject to 
low charging current and high engine compartment 
temperature is:



Independence

If P(B|A) = P(B) than the outcome of A has no 
influence on B.

Events A and B can be treated as independent.
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( ) ( ) ( )BPAP=BAP ⋅∩

( ) ( )
( )AP

BAP=A|BP ∩

From a definition of conditional probability

For two independent events we have:

in a special case we get the following.



Suppose a day’s production of 850 manufactured parts 
contains 50 parts that do not meet customer requirements. 
Suppose two parts are selected from a batch, but the first 
part is replaced before the second part is selected 
(sampling with replacement). Calculate the probability of 
an event  B, that the second part is defective given that the 
first part is defective (denoted as A). The probability needed 
can be expressed as P(B|A).
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Example 3.2:

Independence



Because the first part is replaced prior to selecting the 
second part, the batch still contains 850 parts, of which 50 
are defective. Therefore, the probability of B does not 
depend on whether or not the first part was defective. That 
is,
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( )
850
50)(| =BPABP =

Solution to example 3.2:

Also, the probability that both parts are defective is

0035,0)()()()|()( 850
50

850
50 =⋅=⋅=∩ APABPBAP

Independence



Similarly to example 3.2, a day’s production of 850 
manufactured parts contains 50 parts that do not meet 
customer requirements. Suppose two parts are selected from a 
batch, but the first part is not replaced before the second part 
is selected (sampling without (w/o) replacement). 
Calculate the probability of an event B, that the second part is 
defective given that the first part is defective (denoted as A). 
The probability needed can be expressed as P(B|A).
We suspect that these two events are not independent because 
the knowledge that the first part is defective suggests that it is 
less likely that the second part selected is defective. 

But how to find the unconditional probability P(B)? 
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Example 3.3:

Independent events?



Because of the specific type of sampling (w/o replacement), 
during the second attempt the set from which we draw 
elements contains 849 elements only, including 49 defective 
ones (the first element was defective). Thus the probability:

Introduction to theory of probability and statistics, Lecture 3 9

( )
849
49| =ABP

Solution to example 3.3:

Probability of event B depends on whether the first 
element was defective (event A) or not (event A’):

849
50)'|( =ABP

In order to prove that A and B are not independent, we 
have to calculate the unconditional probability P(B)

Independent events?



Total probability rule
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Multiplication rule:

( ) ( ) ( ) ( ) ( )BPB|AP=APA|BPBAP =∩

is useful for determining the probability of an event that depends 
on other events. 

Example 3.4: Suppose that in semiconductor manufacturing 
the probability is 0.10 that a chip that is subjected to high 
levels of contamination during manufacturing causes a product 
failure. The probability is 0.005 that a chip that is not subjected 
to high contamination levels during manufacturing causes a 
product failure. In a particular production run, 20% of the chips 
are subject to high levels of contaminations. What is the 
probability that a product using one of these chips fails?



For any event B:
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)'()'|()()|(
)'()()(

APABPAPABP
ABPABPBP
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=∩+∩=

A 'A

AB∩

B
'AB∩

)'()( ABABB ∩∪∩=

Total probability rule

Venn diagram
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( ) 10.0=H|FP

Solution to problem 3.4: Let F denote the event that the 
product fails, and H denote the event that the chip is 
exposed to high levels of contamination. The information 
provided can be represented as

and ( ) 005.0' =H|FP

( ) 20.0=HP ( ) 80.0' =HPand

The requested probability P(F) can be calculated as:

)'()'|()()|()( HPHFPHPHFPFP +=
024.0)80.0(005.0)20.0(10.0)( =+=FP

which can be interpreted as the weighted average of the two 
probabilities of failure.

Total probability rule



Assume E1 , E2 , ... , Ek are k mutually exclusive and
exhaustive sets. Then, probability of event B:
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Total probability rule (multiple 
events)
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Solution to problem 3.3 (cont.): We have found that probability 
of event B that consists in drawing a defective element in a second 
attempt depends on the result of the first because it is carried out 
without replacement (event  A – defective element in the first 
attempt; event A’ - good element in the first attempt)

( )
849
49| =ABP ( )

849
50'| =ABP

Are A and B independent? 

)'()'|()()|()( APABPAPABPBP +=

Finding the unconditional P(B) is somewhat difficult because the 
possible values of the first selection need to be considered

)(
850
50)

850
800)(

849
50()

850
50()

849
49()( ABPBP ≠=+=

Answer:  events A and B are not independent!

Independent events?
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Probability of Failure Level of 
contamination

Percentage of 
elements

contaminated
0,1 High 20% (H)
0,01 Medium 30% (M)
0,001 Low 50% (L)

Total probability rule – problem 
for individual work
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0.95

0.95

Example 3.5: The following circuit operates only if there is a path 
of functional devices from left  (a) to right (b). The probability that 
each device functions is shown on the graph. Assume that devices 
fail independently. What is a probability that the circuit operates?  

( ) [ ])'(1)( BTPBTP=BorTP ∪−=∪

Problems to solve

T-event that top 
element operates

B-event that bottom 
element operates

probability of the complement of events
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Solution to problem 3.5: To solve this problem we have to apply 
DeMorgan’s laws:

'')'( BTBT ∩=∪

0.95

0.95

Events  B’ and T’ are independent, then:

'')'( BTBT ∪=∩

( ) [ ] )''(1)'(1)( BTPBTPBTP=BorTP ∩−=∪−=∪

( ) 22 05.0)95.01()'()'()''('' =−==∩ BPTPBTP=BandTP
Answer: Probability that the circuit operates is:

( ) 9975.005.01)''(1 2 =−=∩−= BTPBorTP

Problems to solve



Problem 3.6: Calculate the probability that the circuit 
operates?

Introduction to theory of probability and statistics, Lecture 3 18

0.9

0.9

0.9 0.95

0.95
0.99

Problems to solve at home



Solution to 3.6:

In the first column:
1 – (1 – 0,9)3 = 1 – (0,1)3

Second column:
1 – (1 – 0,95)2 = 1 – (0,05)2

Probability that the circuit operates:
( 1 – (0,1)2 )( 1 – (0,05)3 )(0,99) = 0,987
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Problems to solve at home



Bayes’ theorem

Simple transformation of a definition of the conditional 
probability leads to :

and then:
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( ) ( )
( ) 0)(,)(|

>
⋅ BPfor

BP
APABP=B|AP

( ) )()|()()()|( APABPABPBPBAP=BAP =∩=∩

It could be useful in the following example (3.7) if the full
table is unknown.



Problem 3.7

Surface flaw:
Yes (F) No (F’) Total

Defective Yes (D) 10 28 38

No (D’) 30 332 362
Total 40 360 400
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Data in table are complete and gives the number of thin
films with surface flaws as well as those that are
defective. We can conclude that:

Event D denotes that a part is defective; F means that a thin 
film has a surface flaw

( ) 25.0
40
10| ==FDP 1.0

400
40)( ==FP 095.0

400
38)( ==DP
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When the table is complete then one can find directly:

( )
38
10| =DFP

If not, P(F/D) has to be calculated from Bayes’ theorem as:

( ) ( )
( )DP

FPFDP=D|FP )(| ⋅

( )
38
10

400
38

400
40

40
10

=
⋅

=D|FP

Problem 3.7
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0)( >BPfor

If E1 , E2 , ... , Ek are k mutually exclusive and exhaustive
events and B is any event,
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Bayes’ theorem
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Problem 3.8

Because a new medical procedure has been shown to be effective 
in the early detection of an illness, a medical screening of the 
population is proposed. The probability that the test correctly 
identifies someone with the illness as positive is P(S/D)=0.99, and 
the probability that the test correctly identifies someone without 
illness as negative is P(S’/D’)=0.95. The incidence of the illness in 
the general population is P(D)=0,0001. 

You take a test, and the result is positive. What is a probability that 
you have the illness?

Solution to problem 3.8: D-event that you are ill; S-event that 
the test signals positive; requested probability is P(D/S).

The probability that the test correctly signals someone without 
illness as negative is P(S’/D’)=0.95. Consequently, the probability 
of a positive test without illness P(S/D’)=1-P(S’/D’)=0,05
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P(S/D)=0,99; P(S’/D’)=0,95; P(D)=0,0001

P(S/D’)=1-P(S’/D’)=0,05

( ) ( )
( ) )'()'/()(|

)(|
DPDSPDPDSP

DPDSP=S|DP
+⋅
⋅

From Bayes’ theorem

( ) 002,0
)0001,01(05,00001,099,0

0001,099,0
=

−⋅+⋅
⋅=S|DP

Surprisingly, even though the test is effective, in the sense that 
P(S/D) is high and P(S/D’) is low, because the incidence of the 
illness in the general population is low, the chances are quite small 
that you actually have the disease even if the test is positive.

Problem 3.8


