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Lecture 3.

Probability and elements of 
combinatorics

Introduction to theory of 
probability and statistics
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Outline:

● Definitions of probability

● Random and elementary events; sample space

● Relation of events

● Introduction to combinatorics and counting 

problems 

● Conditional probability
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Definitions of probability

● Classical 

● Geometric

● Frequency (von Mises)

● Axiomatic (Kołmogorow)
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Classical definition of probability

 
N

n
=AP a

First (classical) definition of probability was formulated 
by P.S. Laplace in 1812. 
Consider random experiment that results always in 
exactly one of N equally possible results.
Probability of event A is given as a ratio of 
number na of outcomes favorable to A to the 
number of all possible outcomes N

A is a subset of a sure event Ω. ΩA
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Geometric definition of probability

Introduced in order to treat the cases of infinite 
number of outcomes. 
Consider that in r-dimensional space where there 
exists a region G that contains a smaller region g. A 
random experiment consists in a random choice of a 
point in G assuming that all points are equally 
probable.
Probability of event A that randomly chosen 
point will be found in a region g  is given as
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Bertrand paradox
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In a given circle one draws at random a chord.

Calculate a probability that it will be longer than a side 
of equilateral triangle inscribed in a circle? 

There exist three possible solutions and three possible 
answers: ½, 1/3, ¼.

The source of paradox lies in the lack of precision. 
What does it mean random way in this case? 



The "random radius" method: Choose a radius of the circle, 
choose a point on the radius and construct the chord through this 
point and perpendicular to the radius. To calculate the probability 
in question imagine the triangle rotated so a side is perpendicular 
to the radius. The chord is longer than a side of the triangle if the 
chosen point is nearer the center of the circle than the point 
where the side of the triangle intersects the radius. The side of 
the triangle bisects the radius, therefore the probability a random 
chord is longer than a side of the inscribed triangle is 1/2.
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The "random endpoints" method: Choose two random
points on the circumference of the circle and draw the chord 
joining them. To calculate the probability in question imagine 
the triangle rotated so its vertex coincides with one of the chord 
endpoints. Observe that if the other chord endpoint lies on the 
arc between the endpoints of the triangle side opposite the first 
point, the chord is longer than a side of the triangle. The length 
of the arc is one third of the circumference of the circle, 
therefore the probability that a random chord is longer than a 
side of the inscribed triangle is 1/3.
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Bertrand paradox
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The "random midpoint" method: Choose a point anywhere 
within the circle and construct a chord with the chosen point as 
its midpoint. The chord is longer than a side of the inscribed 
triangle if the chosen point falls within a concentric circle of 
radius 1/2 the radius of the larger circle. The area of the smaller 
circle is one fourth the area of the larger circle, therefore the 
probability a random chord is longer than a side of the inscribed 
triangle is 1/4.
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Frequency definition of probability

Proposed by R. von Mises in 1931. Has no drawbacks 
of classical nor geometric definition. Is intuitive and 
agrees with the observed laws concerning frequency. 
However, it is unacceptable as a definition of 
mathematical quantity ( a posteriori).

Probability of event A is a limit of frequency of 
this event when the number of experiments n 
tends to infinity 
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Axiomatic definition of probability

  1=ΩP

To each random event A we ascribe a number P(A), named a 
probability of this event that satisfies the following axioms: 

1. 0 ≤ P(A) ≤ 1.

2. Probability of a sure event equals to 1

3. (countable additivity of probability) Probability of an 
alternative of countable disjoint (mutually exclusive) 
events is equal to the sum of probabilities of these events: 
if A1, A2, …Є M, while for each pair of i, j (i≠j) the following 
condition is fulfilled Ai  Aj =Ø, then
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Consequences of axioms

Probability of sum of the mutually exclusive random events  
A i B equals to the sum of probabilities of these events

(Kołmogorov, 1933)

       =BAwhere,BP+AP=BAP
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Random or elementary events

Among all random events we can distinguish some 
simple,  irreducible  ones that are characterized by a 
single outcome. These are elementary events.
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For each random experiment we consider a set of its all 
possible outcomes, i.e., sample space Ω . These 
outcomes are called random events.

Example:

All sets {k}, where k N if objects are being counted and 
the sample space is S = {0, 1, 2, 3, ...} (the natural 
numbers). 



Example of a random event

A coin is tossed twice. Possible outcomes are as follows:
● (T, T) – both tails
● (H, T) – head first, tail next
● (T, H) – tail first, head next
● (H, H) – both heads

Ω={(T, T); (H, T) ; (T, H); (H, H)} is a set of elementary 
events, i.e., the sample space

If the set of elementary events contains n-
elements then the number of all random events 
is 2n
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Here we have 24 random events.

For instance:

A = {(T,T); (T,H); (H,T)} – at least one tail T
B = {(T,H); (T,T)} – tail in the first two essays
G = {(T,T)} – both tails 
H = {(T,H); (H,T)} – exactly one tail
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Example of a random event



Example for individual study

Count all random events (including sure and 
impossible ones) in the experiment that consists in 
throwing a dice. Determine the space of events. 
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Relations of events – Venn 
diagrams

Sum of events– when  at least one of events A or B 
takes place (union of sets) 

Product of events– both A and B happen (intersection
of sets) 

A∪ B

A∩B
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Complementary event– event A does not take place

Event A incites B (subset A is totally included in B) 

Events A and B are mutually exclusive

A'

 =BA
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Relations of events
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Introduction to combinatorics and 
counting problems 

Combinatorics concerns itself with finite collections of  
discrete objects. With the growth of digital devices, 
especially digital computers, discrete mathematics has 
become more and more important.

Counting problems arise when the combinatorial 
problem is to count the number of different arrangements 
of collections of objects of a particular kind. Such 
counting problems arise frequently when we want to 
calculate probabilities and so they are of wider application 
than might appear at first sight. Some counting problems 
are very easy, others are extremely difficult.

Alan Slomson, An Introduction to Combinatorics, Chapman and Hall 
Mathematics,  1991
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Introduction to combinatorics and 
counting problems 

Problem I A café has the following menu
Tomato soup
Fruit juice
---
Lamb chops
Baked cod
Nut roll
---
Apple pie
Strawberry ice

How many different three course meals could you order?
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Introduction to combinatorics and 
counting problems 

Solution to problem I

soup juice

chops cod         roll chops cod       roll

pie ice pie ice pie ice pie ice pie ice pie ice

We would obtain 2x3x2=12 as the total of possible meals.
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Introduction to combinatorics and 
counting problems 

Problem II In a race with 20 horses, in how many ways 
the first three places can be filled?

Solution
There are 20 horses that can come first. Whichever horse 
comes first, there are 19 horses left that can come 
second. So there are 20x19=380 ways in which the first 
two places can be filled. In each of these 380 cases there 
are 18 horses which can come third. So there are:
20x19x18=380x18=6840 ways in which the first three 
positions can be filled. 

What is a difference between these two problems?
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In many situations it is necessary to determine the 
number of elements of the set under considerations. 
We use simple arithmetic methods:
●sum rule
●product rule

coin toss
dice throw 

drawing cards from a deck
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Introduction to combinatorics and 
counting problems 



Sum Rule

If two events are mutually exclusive, that is, they 
cannot occur at the same time, then we must apply 
the sum rule

Theorem:
If an event e1 can be realized in n1 ways, 
an event e2 in n2 ways, and
e1 and e2 are mutually exclusive
then the number of ways of both events occurring is 

n1+ n2
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There is a natural generalization to any sequence
of m tasks; namely the number of ways m 
mutually exclusive events can occur

n1 + n2 + … + nm-1 + nm

We can give another formulation in terms of sets.  
Let A1, A2, …, Am be pairwise disjoint sets. Then

|A1  A2  …  Am | = |A1|  |A2|  …  |Am|
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Sum Rule



Principle of Inclusion-Exclusion 
(PIE)

Say there are two events, e1 and e2, for which there are 
n1 and n2 possible outcomes respectively.

Now, say that only one event can occur, not both
In this situation, we cannot apply the sum rule. Why?

… because we would be overcounting the number of 
possible outcomes.

• Instead we have to count the number of possible 
outcomes of e1 and e2 minus the number of possible 
outcomes in common to both; i.e., the number of 
ways to do both tasks

• If again we think of them as sets, we have
|A1  A2| =|A1| + |A2| - |A1 A2|
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Product Rule

If two events are not mutually exclusive (that is 
we do them separately), then we apply the 
product rule

Theorem: 

Suppose a procedure can be accomplished with 
two disjoint subtasks.  If there are
n1 ways of doing the first task and 
n2 ways of doing the second task, 
then there are n1.n2 ways of doing the overall 

procedure
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Application of sum and product 
rules

There are two towers at the entrance to the castle,. The 
first is protected by a two-digits „even” code while the 
second by a two-digits „odd” code. It is sufficient to break 
one code in order to enter. How many ways there are to 
the castle?

Even code.
Possible tens: 2,4,6,8
Possible units: 0,2,4,6,8
Product rule: 5×4=20
Odd code.
Possible tens: 1,3,5,7,9
Possible units: 1,3,5,7,9
Product rule 5×5=25
Sum rule:   25+20=45

28



Counting problems and 
introduction to combinatorics

- Ordered arrangement (sequence) = permutation

(1,2,3); (2,1,3); (3,1,2) etc.

- Order is not important (set, subset) = combination

{1,2,3}
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In both cases we have to distinguish: 
with or without replacement



Permutation

An ordered arrangement of k elements of a 
set of n elements is called an k-permutation
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Number of permutations depends on whether the 
elements of sequence can be repeated or not. The 
method of sampling is important: without 
replacement = no repetitions; with replacement = 
repetitions of elements are possible



Permutations without replacement

Example: Take into account a set of n=3-elements Z={a,b,c} 
and write down all possible k=2 permutations without 
replacement:

(a,b)  (b,a) (a,c)  (c,a) (b,c)  (c,b)
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The number of these permutations can be calculated as:

3x2=6
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In general:



Number of k-permutations without replacement drawn 
from a set of n elements can be calculated from the 
following formula:
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When k=n, 

Example:  (abc) (acb) (bac) (bca) (cab) (cba)

Permutations without replacement

!)( n=V k
n



Permutations—without replacement

Think cards (w/o reshuffling) and seating 
arrangements.

Example: You are moderating a debate of 
gubernatorial candidates.  How many different ways 
can you seat the panelists in a row?  Call them 
Arianna, Buster, Camejo, Donald, and Eve. 
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 “Trial and error” method:
Systematically write out all possibilities:
A B C D E
A B C E D
A B D C E
A B D E C
A B E C D
A B E D C
.
.
.

Quickly becomes a pain!
Easier to figure out patterns using 
a probability tree!
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Permutations—without replacement



E

B

A

C

D

E

A
B

D

A
B

C

D

…….

Seat One:
5 possible

Seat Two:
only 4 possible

Etc….

# of permutations = 5 x 4 x 3 x 2 x 1 = 5!

There are 5! ways to order 5 people in 5 chairs (since a 
person cannot repeat)
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Permutations—without replacement



What if you had to arrange 5 people in only 3 chairs 
(meaning 2 are out)?


!2

!5

12

12345

x

xxxx

E

B
A

C

D

E

A
B

D

A
B

C

D

Seat One:
5 possible

Seat Two:
Only 4 possible

E

B
D

Seat Three:

only 3 possible

)!35(

!5



345 xx

Introduction to theory of probability and statistics, Lecture 3 36

Permutations—without replacement



!5
!0

!5

)!55(

!5




Note this also works for 5 people and 5 chairs:
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Permutations—without replacement
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How many two-card hands can I draw from a deck when order 
matters (e.g., ace of spades followed by ten of clubs is 
different than ten of clubs followed by ace of spades)

.

.

.

52 cards 51 cards

.

.

.
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Permutations—without replacement



Summary: order matters, without 
replacement

Formally, “order matters” and “without replacement”
use factorials
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Permutations—without replacement



Example: Take into account a set of n=3-elements 
Z={a,b,c} and write down all possible k=2 permutations  
with replacement:

(a,a) (b,a) (c,a)
(a,b) (b,b) (c,b)
(a,c) (b,c) (c,c)
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Calculate the number of possible permutations:

3x3=32 = 9

Permutations—with replacement



Number of k-permutations with replacement drawn from 
a set of n elements can be calculated from the following 
formula:
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Problem: Electronic devices usually require a personal code to 
operate. This particular device uses 4-digits code. Calculate 
how many codes are possible.

Solution: Each code is represented by k=4 permutations with 
replacement of a set of 10 digits {0,1,2,3,4,5,6,7,8,9} 

00010104)4(
10 =W

Permutations—with replacement



36

1

6

 6 6, roll  way to1 
)6,6(

2
P

When you roll a pair of dice (or 1 die twice), 
what’s the probability of rolling 6 twice?

What’s the probability of rolling a 5 and a 6?

36

2

6

6,5or  5,6 : ways2 
)6&5( 2 P

Permutations—with replacement
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Summary: order matters, with replacement

Formally, “order matters” and “with replacement” use 
powers

kevents of # the n  event)per  outcomes possible (# 
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Permutations—with replacement



Combination
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Combination containing  k elements drawn from a set of n 
elements is a k-elemental subset (order does not matter) 
composed of the elements of the set.

Number of combinations depends on whether the 
elements of subset can be repeated or not. The 
method of sampling is important: without 
replacement = no repetitions; with replacement = 
repetitions of elements are possible



Combination without replacements

:

{a,b} {a,c} {b,c}
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Calculate the number of subsets 6/2 = 3
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In general:

Example: Take into account a set of n=3-elements Z={a,b,c} 
and write down all possible k=2 combinations without 
replacement:



Number of k-combinations without replacement of a set 
containing n elements can be calculated from the 
following formula:

Introduction to theory of probability and statistics, Lecture 3 46

)!(!

!)(

knk

n
=C k

n 

Or:








n

k

k
nC

)(

Combination without replacements



Combinations—order doesn’t matter

Combination function, or “choosing”    







 n

k
knC or     

Spoken: “n choose k”

Written sometimes as:
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Combinations

?

4849505152 xxxx

How many five-card hands can I draw from a deck 
when order does not matter?

.

.

.

52 cards
51 cards

.

.

.

.

.

.

.

.

.

.

.

.

50 cards
49 cards

48 cards
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Combinations

Denominator is a number of permutations without 
replacement.

5! = 120 

!5)!552(

!52

!5

4849505152
hands card-5 of # total




xxxx
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Combinations

How many unique 2-card sets out of 52 cards?

5-card sets?

r-card sets?

r-card sets out of n-cards?
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Summary: combinations

If r objects are taken from a set of n objects without 
replacement and disregarding order, how many 
different samples are possible? 

Formally, “order doesn’t matter” and “without 
replacement” use choosing
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Examples—Combinations 

A lottery works by picking 6 numbers from 1 to 49.  
How many combinations of 6 numbers could you 
choose?  

816,983,13
!6!43

!4949

6









Which of course means that your probability of winning is 
1/13,983,816!   
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Combinations with replacement

Example: Take into account a set of n=3-elements 
Z={a,b,c} and write down all possible k=2 
combinations with replacement:

{a,a} {a,b} {a,c} {b,b}  {b,c}  {c,c}
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Calculate the number of combinations with replacements

6

In general:
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Summary of Counting Methods

Counting methods for computing probabilities

With replacement

Without replacement

Permutations—
order matters!

Combinations—
Order doesn’t 

matter

Without replacement
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With replacement



Conditional probability

   
 BP

BAP
=B|AP



General definition:

under assumption that P(B) > 0 (event B has to be 
possible)
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Useful expressions:

   
 

   
 

  1

0

=BAPAB

BP

AP
=BAPBA

=BAP=BA

ΩAP=AP
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for any event A

Conditional probability



Example 

We are throwing a 6-sided die three times. Each time we 
have got a different number of dots. Calculate a probability 
that once we get a „5” assuming that each attempt gives 
different number.  

 

 

   
  Ω

Ω
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BAP
=B|AP

Ω
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