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Numerical Methods 

Lecture 2.  

Analysis of errors in numerical methods 
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• Example 1.  How a number 256.78 can be represented 
using 5-places? 

 

Why represent numbers in floating point 
format? 

 

. 

What is the smallest number that can be represented in this 
format? 

0 0 0 . 0 0 

What is the largest number that can be represented in this 
format? 

9 9 9 . 9 9 

2 5 6 7 8 
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• Example 2. How a number 256.786 can be represented 
using 5-places? 

 

2 5 6 . 7 9 

rounded off 

Conclusion: The error is smaller than 0.01 

2 5 6 . 7 8 

chopped 

Why represent numbers in floating point 
format? 
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Calculation of errors 

True Error oxx 

Relative True Error 

o

o

x

xx 

accurate or true value of xo 

Calculations: 

%001558.0%100
786.256

786.25679.256
%100 







o

o
t

x

xx
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Relative errors of small numbers are large. 

Compare: 

%001558.0%100
786.256

786.25679.256
%100 







o

o
t

x

xx

%11280.0%100
546.3

546.355.3
%100 







o

o
t

x

xx

Absolute true errors are the same: 

004.055.3546.379.256786.256  oxx
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How to keep relative true errors at a 
constant level? 

The number can be represented as: 

or 

2

3

2

102.5678  as written is 256.78

103.678 as written is 0.003678

102.5678 as written is 256.78









sign x mantissa x 10exponent 

sign x mantissa x 2exponent 
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Floating point arithmetic – decimal 
representation 

Form of a number 

e
m 10

2
105678.2 

2

5678.2

1







e

m


Example 

sign (-1 or +1) 
mantissa (1)10≤m<(10)10 

an integer exponent 

Numerical Methods - Lecture 2 



8 

Floating point arithmetic – binary 
representation 

e
m 2

  2)101(

2 21011011.1 

101

1011011

0







e

m

Example: 

sign (0 – positive 
or 1 – negative) mantisses (1)2≤m<(2)2 

1 is not represented 

Form of a number 
an integer exponent 
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What do we gain by using the 
floating point representation? 

mantissa exponent 

The rage of the numbers that can be expressed has 
increased 

If we use only 5 places to represent a positive number with a 
positive exponent, the smallest number that can be expressed is 1 
and the largest is 9.999 · 109 

The range of numbers that can be represented has increased 
from 999.99 to 9.999·109. 

9 9 9 9 9 
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What do we lose by using a floating point 
representation? 

mantissa exponent 

Precision 

Why? 

There will be a round-off error. 

The number 256.78 will be represented as 2.5678·102 on five 
places: 

2 5 6 8 2 
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Test problem 1 

mantissa exponent 

2. Calculate the true error and the relative true error of round off 

1. Write down  the number 576329.78 on five places in a 
similar manner as that discussed in the previous example: 

3. Compare the results with the previous example (256.78). 
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Test problem 2 

We have 9-bits 

first bit represents the sign of the number,  
second bit represents the sign of the exponent,   
the next four bits represent the mantissa, 
the last three bits represent the exponent  
 

sign 

exponent sign 

mantissa exponent 

0 0 

Find the number (in decimal), which is presented above 
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Solution of the problem 1 

2. The true error is 29.78 and the relative true error is 
0.0051672% 

1. The number 576329.78 written on five places is: 

3. For the number 256.78 these errors are: 0.02 (smaller) and 

0.0077888% (comparable) 

5 7 6 3 5 

mantissa exponent 
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Solution of the problem 2 

     

   
22

5

2210

1011011.1

21011011.111.11011075.54





0 0 1 0 1 1 1 0 1 

is not represented 

 
1054
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What is the accuracy ε? 

 

 For each digital machine epsilon ε is defined as a parameter 

determining the accuracy of the calculations: 

t
Nε




where: N=2 (in binary), N=10 (in decimal), t is the number 
of bits representing the mantissa 

ε is lowered when more bits are allocated to represent the 
mantissa M 

 Epsilon ε can be regarded as a parameter characterizing the 

accuracy of the computing machine (small ε = more accurate 
calculations). 

Double precision (Fortran)  
2
DP

Numerical Methods - Lecture 2 

     

   
22

5

2210

1011011.1

21011011.111.11011075.54
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 Epsilon ε is the smallest number that when added to 1.000 
produces a number that can be represented as different from 
1.000. 

0 0 0 0 0 0 0 0 0 0  
101

Example: 10-bit word 

sign 

exponent sign 

w
NMx 

mantissa exponent 

0 0 0 0 0 0 0 0 0 1 the next number    
102 0625.10001.1 

4
210625.1


mach
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Single precision in IEEE-754 format (Institute of 
Electrical and Electronics Engineers) 

32 bits for single precision  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

sign 
(s) 

exponent (e’) mantissa (m) 

  127'

2
21)1( . 


es

mNumber
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Example 

    127'

2
2.11Value




es
m

    127)10100010(

2

1
2210100000.11




    127162
2625.11




    1035
105834.52625.11 

1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sign 
(s) 

Biased 
Exponent (e’) 

Mantissa (m) 
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The exponent for the 32-bit IEEE -754 standard 

2550  e

128127  e

8-bit exponent means 

The fixed exponent shift is 127 and therefore 

In fact, 2541  e

Numbers            and                  are reserved for 

special cases 

0e 255e

127126  eExponent range 
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Representation of special numbers 

0e all zeros 

255e all ones 

s m Represents 

0 zeros zeros 0 

1 zeros zeros -0 

0 ones zeros 

1 ones zeros 

0 or 1 ones nonzero NaN 

e
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Met.Numer. wykład 2 21 

IEEE-754 Format 

The largest number 

Epsilon 

  38127

2
1040.321........1.1 

  38126

2
1018.220......00.1




723
1019.12


mach

The smallest number 
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Analysis of errors 

If we do not know the exact value of xo we calculate 

the approximate error as the difference in the 

values obtained in the consecutive approximations: 

1 nn xx

Relative error εa : 

n

nn
a

x

xx 1
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For  x
exf

5.0
7)(  at  2x find 

a)  )2(f  for 3.0h

b) 15.0h

c) approximate error  

h

xfhxf
xf

)()(
)('




3.0h

265,10
3,0

77

3,0

)2()3,02(
)2('

)2(5,0)3,2(5,0








eeff

f

Example 

)2(f  for 

Solution 

a)  
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b)  

Example (cont.) 

15.0h

880,9
15,0

77

15,0

)2()15,02(
)2('

)2(5,0)15,2(5,0








eeff

f

c)  
n

nn
a

x

xx 1


0389,0
8800,9

265,10880,9



a

Error 3,89% 
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sa    ||

m
a




2
105.0|ε|

The relative error as a criterion for ending the 

iterative procedure 

If the relative error is less than or equal to a predetermined 
number then further iterations are no longer required 

If we require at least m significant digits in the result then 
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0.3 10.265 N/A 0 

0.15 9.8800 0.03894 1 

0.10 9.7559 0.01271 1 

0.01 9.5378 0.02286 1 

0.001 9.5164 0.00225 2 

h )2(f  a m

m
a




2
105.0|ε|

Relative error and significant digits 

The exact value is 9.514 
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Sources of errors in numerical calculations 

1. Input errors (input data errors) 

2. Truncation error 

3. Round off error  

 Input errors occur when the input data entered into the 
computer memory are different from the exact values. 

Truncation errors are errors due to numerical procedures 
caused by reducing the number of operations. 

Round off errors are errors that usually can not be 
avoided. They arise in the course of the calculations, and 

can be reduced by setting skillfully the method and 
sequence of tasks. 
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 Sources of input errors: 

• the input data are the result of measurement of 
physical quantities 

• a finite length of binary words and therefore pre-
rounding is needed 

• preliminary rounding of irrational numbers 

 

Input errors  

 Rounding of numbers that cannot be expressed 
exactly is accomplished by: 

• chopping 

• rounding off 
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 Example: 

91415926535,3

1416,3

rounding off chopping 

1415,3

Rounding off introduces smaller error than chopping.  
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 Caused by the use of the approximate formula 
instead of a full mathematical operation: 

• when calculating the sum of the infinite series  

• when calculating integral, derivative 

Truncation  error 

 


2

1

2

1

x

x

x

x0x

FdxxFW lim

work 
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 If the function is continuous and all derivatives f ', 
f'', ... fn exist within the interval [x, x + h] the 
value of the function at the point x + h can be 
calculated as: 

Taylor series 

     
   








32

!3!2
h

xf
h

xf
hxfxfhxf

           
!3

0
!2

0000
32

h
f

h
fhffhf

 The Maclaurin series is simply the Taylor series 
about the point x=0 
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Some examples of Taylor series which you must have 
seen 


!6!4!2

1)cos(
642

xxx
x


!7!5!3

)sin(
753

xxx
xx


!3!2

1
32

xx
xe

x

Examples  
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Truncation error in the Taylor series 

            xR
n

h
xf

h
xfhxfxfhxf n

n
n


!!2

''
2



remainder 

    cf
n

hx
xR

n
n

n

1
1

)!1(

)( 







hxcx 
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Example 

The Taylor series for ex at point x=0 is given by 


!5!4!3!2

1
5432

xxxx
xe

x

It can be seen that as the number of terms used 
increases, the error decreases and hence a better 
estimate can be found.  

Question: How many terms would it require to get an 
approximation of e1 with a true error of less than 10-6? 

120

1

24

1

6

1

2

1
2 


!5

1

!4

1

!3

1

!2

1
11

5432
1

e
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x
exfhx  )(,1,0

 
 

  cf
n

R
n

n

n
1

1

!1

1
0







 
 

c
n

e
n !1

1
1






since 
hxcx 

100  c

10  c

 
)!1(

0
)!1(

1




 n

e
R

n
n

Solution 

    cf
n

h
xR

n
n

n
1

1

)!1(
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6
10

)!1(




n

e

en
6

10)!1( 

310)!1(
6
n

9n

Solution 

true error  

It means that 9 terms or more are needed to get a true 
error less than 10-6 
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Arithmetic operations 

 1. Addition and subtraction 

 To add or subtract two standard floating-point 
numbers, the exponents should be made equal with 
an adequate shift of the mantissa. 

 Example: Add 0,4546∙105 to 0,5433∙107 

0,0045∙107+0,5433 ∙107=0,5478 ∙107 

shift 

Answer: We loose some significant digits 

Numerical Methods - Lecture 2 



38 

Arithmetic operations 

 2. Multiplication 

 Multiply mantissas and add the exponents. 

 Example: Multiply 0,5543∙1012 by 0,4111∙10-15 

0,5543∙1012∙0,4111 ∙10-15=0,2278273 ∙10-3=0,2278∙10-3 

All the time we loose some significant digits which is the source 
of the error 

 3. Division   

 Example: Divide 0,1000∙105 by 0,9999∙103 

0,1000∙105/0,9999 ∙103=0,1000 ∙102 
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Sequence of operations 

 (a+b)-c≠(a-c)+b lack of associativity 

 a(b-c) ≠(ab-ac) lack of distributive property 

 Example: a= 0,5665∙101, b=0,5556∙10-1,  

     c=0,5644∙101 

(a+b)=0,5665∙101+0,5556∙10-1 

 =0,5665∙101+0,0055∙101=0,5720∙101 

(a+b)-c=0,5720∙101-0,5644∙101=0,7600∙10-1 

(a-c)=0,5665∙101-0,5644∙101=0,0021∙101=0,2100∙10-1 

(a-c)+b=0,2100∙10-1+0,5556∙10-1=0,7656∙10-1 
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 Rounding off errors occurring during floating point 
operations are equivalent to substitution of accurate 
numbers by slightly perturbed numbers on which we 
act exactly. 

Wilkinson Lemma 

 For individual arithmetical operations: 

)1()1()( 221121   xxxxfl

)1()1()( 32123121  xxxxxxfl

))1(/(/)1()/( 52124121  xxxxxxfl

iε
symbol of operation performed on 
floating-point data 
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Tragic example of the rounding off error 

 On February 25th, 1991 in Dhahran, Saudi Arabia, 28 American 
soldiers were killed in the attack of the Iraqi Scud missiles. The 
defense system Patriot did not detect any assault. Why? 

 The system calculates the area, which should be scanned based 

on the speed of the object and the last detection. The internal 
clock was set to measure every 1/10 second and 24-bit word 
length was assumed. Due to rounding off, the absolute error 
was 9.5 10-8 s which after 100 hours amounted to: 

 Based on this,  the calculated displacement is 687 m. Object is 
considered outside the range when the displacement is 137 m 

sec34.0100606010105.9
8
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Useful hints: 

• To solve the same problem by another method, or 
by the same method, but with a different order of 
operations 

• To solve the problem on slightly perturbed input 
data 

In the numerical calculations it is advantageous: 
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0 2 4

0

20

40

60

80

100

120

140

y

x

u(y) 

u(x) 

function 

y = f(x) 

tangent 

dy/dx )x(u
dx

dy
)y(u 

Propagation of errors 
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Total differential in application to errors 

For y=f(x1,x2,...xn) where maximum uncertainties x1, x2, 
... xn are small compared with the values of the variables 
x1,x2, ... xn  the maximum uncertainty of y can be 

expressed as: 

 

n

n

x
x

y
x

x

y
x

x

y
y 














 ...2

2

1

1
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Estimate the uncertainty of density ρ of a sphere of mass m and 
radius R 

3
π)34(

),(
R

m
Rm 

R
R

m
m















  3
π34

1

Rm






absolute error 

relative error 

Example 

but 

  4
π34

3

R

m

R








Rm   3
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Addition 
aaA 

absolute errors 

Errors of arithmetic operations 

Therefore, the addition (subtraction) absolute error is equal 
to the sum of absolute errors of components. 

bbB 

)( babababaBA 

the addition absolute error  

baba  )(
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ba

ba
ba






the subtraction relative error 

the addition relative error  

Errors of arithmetic operations 

Subtraction relative error can be large even if the relative errors 
of minuend and subtrahend are small. Subtracting of nearly 
equal numbers should be avoided ! 

ba

ba
ba






This phenomenon is called reduction of significant digits 

It is important for the calculation of Newton’s difference quotients 
approximating derivatives of functions, roots of a quadratic equation 
with the dominant factor of the first power, etc. 
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We lose the precise meaning of the number 0 if we 
perform numerical calculations 

The concept of zero 

 

022
2

 xx

Exact roots are 
31

Verify that upon substitution of the approximate solutions to 
x2+2x-2 you will not get 0!!! 

0,7320∙10o 

-0.2732 ∙101 
Approximate solutions 

You should therefore avoid subtraction and the loop condition 

should not be set to "zero", 

    if a-b<ε 
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Tasks and numerical algorithms 

• Numerical task requires a clear and unambiguous 

description of the functional relationship between the 

input or "independent variables" of the task and output 

data, i.e.  searched results. 
• Numerical task is a problem determining the results 

vector w on the basis of data vector a 

a 

D w 

Projection W task well-defined 

)(aw


W

unambiguous 
assignment 
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Tasks and numerical algorithms 

• Numerical algorithm is a full description of the 

operations  correctly transforming the input data vector 

to the vector of output data. 

• The algorithm is formulated correctly when the number 
of necessary actions is  finite 

a 

DN w 

Projection WN 

),(  aw WN

Resulting vector 
depends on the 
computing 
accuracy ε of the 
machine 

 DDN
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Examples of algorithms 

Given a complex number a=x+iy. Calculate 1/a2 

Algorithm I: 

1. 

2. 

3. 

xyt /

222
yxa 

(tangent phase of number a) 

(module of number a) 

2

2

22
1

1

//

11
Re

t

t

aa 











2

2

22
1

2

//

11
Im

t

t

aa 












The task is well-defined if: 0
22
 yx

 )0,0(
2
 RDthat is: 

This algorithm is formulated correctly (11 necessary steps) 

Numerical Methods - Lecture 2 



53 

Examples of algorithms 

Not for each data pair (x, y) ≠ 0 the solution to the problem can 
be found using the algorithm I. 

1. There will be an overflow of floating point numbers (for x = 0, 
also because of rounding to zero) 

2. The overflow may happen even in the first step when  

x = 10-25 and y = 1025 because of the division y / x 

3. For x = 0, and y ≠ 0 the solution cannot be determined 
using this algorithm. The increase in the accuracy of the 
calculation does not change this fact. 

Algorithm I is not numerically stable 
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Examples of algorithms 

Given a complex number a=x+iy. Calculate 1/a2 

Algorithm II: 

1. 

2. 

22

22

2

1
Re

yx

yx

a
r















222

21
Im

yx

xy

a
u















Algorithm II is formulated correctly (9 necessary steps) 

Algorithm II is numerically stable due to the continuity of 
equations for 

0
22
 yx
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Conditioning and stability 

The calculation algorithm is numerically stable if for any 
selected data vector 

Da0 

there exists an accuracy of the calculations ε0, that for ε<ε0
 we 

have 
)DN(a0 

and )(),(lim 00
0

aa WWN 


The algorithm is numerically stable when increasing the 
accuracy of the calculations  any existing solution to the 
problem can be found. 
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Conditioning and stability 

Due to the rounding off error 

By lemma of Wilkinson disturbed data vector can be selected  
Daa 

for which 

)(),( aa WWN 

Size of the disturbance 

)(),( aaa  WWN

depends on:    a

-the data vector a   

-the number of performed operations 

-the accuracy of calculations 
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Conditioning and stability 

Based on Wilkinson’s Lemma: 

when   

a)W(a 

Conditioning tells us  how much the result of the disturbed vector 
data differs from the exact result for vector data that is: 

0


a

a

0

W(a)

Condition number B(a) is the number for which the following 
formula is satisfied: 

a

a



)(aB

w

w
)(),( aWaWNw 
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• Let us assume the relative error of x 

Condition number 

x

xx
~

~

• The relative error  of f(x) 

)~(

)~)(~('

)~(

)~()(

xf

xxxf

xf

xfxf 




• Condition number: 

)~(

)~('~

xf

xfx
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• Example 

Condition number 

xxf )(

• Condition number: 

2

12

1

)~(

)~('~


x

x
x

xf

xfx

task is well-conditioned when condition 
number is small 
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• Example 

Condition number 

2
1

10
)(

x
xf




• Condition number: 

2

2

1

2

)~(

)~('~

x

x

xf

xfx




ill-conditioned task near x=1 i x=-1 
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