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2.1. Conceptual consequences of particles as waves
Some serious difficulties arise when we think carefully about de Broglie’s hypothesis. From the classical point of view, an electron which is a particle, should have a well-defined path 
described by a position vector
This leads to an apparently paradoxical result, as far as the transmission of electrons through a pair of slits is considered. 
A classical interference pattern is produced on the screen when one part of a wave passes through one slit and another part through the other slit.

)(tr

But a particle with a well-defined path passes through only one slit or the other.
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2.1. Conceptual consequences of particles as waves
The observation of two-slit interference with electrons is notconnected with interference between different electrons. We can reduce the number of electrons that pass through the slits per unit time to the point where it is clear that the effect is due to the passage of one electron after another.

Individual electrons coming at a rate of 1000 per second (which, at the energies the electrons posses, corresponds to  spatial separation of 150 km) nevertheless create an interference pattern

The photos illustrate how the pattern is built up as the number of electrons increases
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2.1. Conceptual consequences of particles as waves
A further troubling aspect enters when we employ a detection apparatus that can tell when an electron passes through one slit or the other. We could even tell, by measuring the electron’s precise direction of travel, which slit it was going to pass through and, in anticipation, shut the other slit. But when we do this, the interference effect disappears. 

Somehow, the measurement itself has decided whether the electron has behaved like a particle or like a wave
If a monitor identifies which slit any individual electron passes through, the pattern is a sum of the pattern due to electron passing through single slits
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2.1. Conceptual consequences of particles as waves
Conceptual difficulties arise from the idea that radiation has particlelike properties while matter has wavelike properties.

This wave can be fully described by specifying the electric field it contains.

When photons or electrons are sent through a two-slit system at such a slow rate that their arrivals are separated by very long times, they nevertheless gradually give rise to a characteristic wavelike interference pattern. Any particular „hit” on the screen by a photon or electron appears to be random, but the result of the accumulation of „hits” produces the pattern  
In the classical limit, there are no photons. We have classical electromagnetic wave that follows from Maxwell’s equations. 

2
2
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tεμ 
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

The collective effect of many photons is described by an electric field ),( trE 
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The interference pattern appears on the screen because there is an electric field       associated with the part of the wave coming through slit 1 and an electric field         associated with the part of the wave coming through slit 2, and the net classical field on the far side of the slits will have the form suggested by the principle of superposition 

The pattern on the screen is an intensity pattern:

1E
2E

),(),(),( ttt rErErE 21
 

How is the classical interference pattern formed?

22 )),(),((),( tttI rErErE 21
 

Because of vector character of electric fields, they sometimes reinforce and sometimes cancel each other 

is the interference term),(),(2 tt rErE 21





1E
2E

The interference pattern appears on the screen because there is an electric field       associated with the part of the wave coming through slit 1 and an electric field         associated with the part of the wave coming through slit 2, and the net classical field on the far side of the slits will have the form suggested by the principle of superposition 

1E
2E
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The intensity of the wave is proportional to the square of the field             which is in turn proportional to the number of photons, N, at point         at time t.

Interference of single photons?

),( trE 

)(tr

When the intensity of the light shining on the slits decreases, N decreases as well until we are dealing with one photon at a time. Even single photons carry with them the interference properties characteristic of N photons.

Each single photon is associated with an electric field            that, like the ordinary electric field obeys the rules of superposition and solves the linear equation. 
),( tre 
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The electric field at the screen due to a single photon in a two-slit experiment has a form
),(),(),( ttt rerere 21

 

Interference of single photons?

),(1 tre  is the field due to a photon that came through slit 1 with slit 2 closed

),(2 tre  is the field due to a photon that came through slit 2 with slit 1 closed
The quantum analog to the classical intensity is

   22 ),(),(),( tttI rerere 21
 
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Therefore, I in the formula:

Interference of single photons?

   22 ),(),(),( tttI rerere 21
 

is proportional to the probability that a photon can be found in the box of size        around the point  

Since photons are indivisible, we cannot speak of some fraction of a photon coming through one slit or the other!

  rre  32),( dt
represents a probability distribution function while:

r3d r
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Matter waves
For electrons and other material particles there is no classical field (as for photons)
We assume that associated with each electron is a wave function that must obey some linear equation.
This is Schrödinger equation.

),( tr

Linearity implies that if            and              are solutions of Schrödinger equation, then so is:

. ),(),(),( 21 tBtAt rrr  

),(1 tr ),(2 tr

where A and B are arbitrary complex constants
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Interference of matter waves

 ),(exp),(),( tiStRt rrr  
The wave function           can be a complex function ),( tr

Thus if               is the wave function for an  electron that came through slit 1 and          is the wave function for an electron  that came through slit 2, then the wave function for the electron at the screen on the far side of the slits is the sum of these two wave functions. The square of the sum, which is associated with the probability for finding an electron, includes interference terms needed for a proper description of the passage of an individual electron through a two-slit system.

),(1 tA r
),(2 tB r

where              is the magnitude (real) of the wave function
and             is its phase

),( tR r
),( tS r   2*2 ),(),(),(),( ttttR rrrr  

),( tr),(* tr is a complex conjugate of
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The wave function at a point x on the screen of a particle that passed through the slitlabeled 1 in a two-slit apparatus is R(x)exp(iS1(x). The wave function at the samepoint of a particle that passed through the slit labeled 2 is R(x)exp(iS2(x)).The threefunctions R(x), S1(x) and S2(x) are real-valued. Show that if both slits are open, theabsolute square of the wave function at the screen exhibits an interference pattern.
Solution: With both slits open, the wave function on the screen is:

Therefore, the square of the absolute value is
   )(exp)()(exp)()( 21 xiSxRxiSxRx 

         2121
22 expexpexpexp)()( iSiSiSiSxRx 

  21
22 cos1)(2)( SSxRx 

As the two phases S1 and S2 vary with position,         changes between 0 and  2)(x 2)(4 xR

Example

This is a standard interference pattern, with regions of destructive and constructive interference.



Modern Physics,  summer 2016 14

2.2. Wave function and its probabilistic interpretation

1882-1970

In 1926, German theoretical physicist Max Bornproposed an interpretation of the wave function                           that Schrödinger had introduced. His idea was that the square of the absolute value of the wave function measures the probability of finding a particle.

),( tr

rr  32),( dt
is proportional to the probability of finding an electron at time tin the box of size        around the point  r3d r

 22 ),(),( tRt rr  

The two-slit experiment reveals itself in an enhanced (constructive interference) or suppressed (destructive interference) probabilityof the arrival of the electrons on the screen  
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2.2. Wave function and its probabilistic interpretation
Since, at any given time, the probability of finding an electron somewhere in space is unity, it follows from Born interpretation:

 
spaceall

dt 1),( 32 rr 

normalization process
Wave functions used to describe „particles” like electrons are waves of probability. In places where their amplitudes are small, the probability of locating the particle is also small. They have phases, that is why the probability waves can interfere with each other like any kind of a wave.
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2.3. The form of Schrödinger equation
Postulates under which the quantum wave equation (Schrödinger equation, SE) was formulated:

1. remain in agreement with de Broglie relation

2. total energy E of the particle is the sum of kinetic and potential energies

3. has to be linear (linear combination of wave functions solves SE if all of them solve it) 

p
h

)(2
2 xVm

pE 
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2.3. The form of Schrödinger equation
Sound waves and waves on strings are described by equations of Newtonian mechanics. Light waves are described by Maxwell’s equations. Matter waves are described by Schrödinger’s equation advanced in 1926 by Austrian physicist Erwin Schrödinger

1887-1961 ),()(),(2
),( 22 tVtmt
ti rrrr 



 


)(rV potential
),( tr wave function

2
2

2
2

2
22

zyx 



 Laplacian operator

m – mass of the particle
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2.3. The form of Schrödinger equation
More often we will be using the time-dependentSchrödinger equation in one dimension:

1887-1961

Hamiltonian is an operator acting on the wave function. Its eigenvalues represent energy according to the classical formula: 

),()(),(2
),(

2
22 txxVtxxmt

txi 


 


It can be written in a form:

),()(2
),(

2
22 txxVxmt

txi 


 


 


hamiltonian

)(2
2 xVm

pE 
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Plane wave as a solution of time-dependent Schrödinger equation

 )sin()cos(),( tkxitkxAtx 

Complex wave function that solves the time-dependent SE in one dimension in the absence of any force V(x)=0 has the following form: 

This represents the plane-wave and can be written as:

or:

 )(exp),( tkxiAtx 




 


)(exp),( EtpxiAtx
where:



pk 
 2

k is the wave number


E
ω is the angular frequency
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2.4. The time-independent Schrödinger equation
Assuming that potential V(x) is independent of time (stationary conditions) one can solve SE by separation of variables and obtain so-called time-independent Schrödinger equation.
This method consists of supposing that the wave function can be written as a product of two functions: T(t) dependent on time t, only and u(x) dependent on position x, only:

)()(),( tTxutx 
Then SE takes a form:




  )()()(2)()()( 2
22 xuxVxuxd

d
mtTdt

tdTxui 

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2.4. The time-independent Schrödinger equation
Dividing by T(t)u(x), we get

The two sides of this equation depend on entirely independent variables, the left side on time and the right side on position. The only way to make the equation hold for all time and all positions is for each side to equal a time- and space-independent constant, the same for both sides. We label this constant E and it has the physical meaning (it is the energy of the particle)




  )()()(2)(
1)(

)(
1

2
22 xuxVxuxd

d
mxudt

tdT
tTi 


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2.4. The time-independent Schrödinger equation
We have two equations:

The first of these equations isolates the time dependence of the SE and has a direct solution:

)()( tETdt
tdTi 

)()()()(2 2
22 xEuxuxVxuxd

d
m  







iEttT exp)(
The second of these equations is the so-called time-independent Schrödinger equation. We have to solve it for each particular potential V(x).
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2.4. The time-independent Schrödinger equation
The solution to time-dependent Schrödiger equation is :

We may write:







iEtxutx E exp)(),(

)()(ˆ xEuxuH EE 

uE(x) is an eigenfunction of the Hamiltonian operator, E is the corresponding eigenvalue of that operator
The problem of solving the SE comes down to finding

eigenfunctions and eigenvalues of  the HAMILTONIAN

Hamiltionian operator Ĥ
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2.5. Example of solution of SE – the infinite well
Large potential at the edges of the infinite well acts to prevent theescape of electrons. The motion of an electron is restricted to theregion 0<x<L; in that region the electron is free.

x=0

V(x) infinityV(x) infinity

x=L

V(x)=0

x

The potential is zero inside the box, and infinity outside

u(x)=0 outside the well, probability density vanishes outside the well
In the region inside the well, i.e. for 0<x<L, the time-independent SE is:

Boundary conditions:
0)()0(  Luu
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Proposed solution is:

We apply the boundary conditions: 

2.5. Example of solution of SE –
the infinite well

where A is a constant that we can eventually use for normalization
)sin()( kxAxuE 

Proposed function satisfies SE provided that:

for x=L, uE=0
This means: 0)sin( kL  nkL with n=1,2,…

In other words, E takes on only discrete values

Energy is quantized

m
kE 2

22
discrete energy levels



Modern Physics,  summer 2016 26

The solutions 
correspond to standing waves with a different number n of nodes within the potential well

2.5. Example of solution of SE –
the infinite well

Allowed modes of oscillation of a classical string with its ends fixed

)sin()( xL
nAxun 

Eigenfunctions un(x) for the infinite well
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The ground-state wave function u1(x) as well as the associated probability distribution u1(x) 2

Probability distribution for ground (n=1) and excited states (n>1)

Properly normalized ground-state wave function is:

the subscript is the value of n
)sin(2)(1 L

x
Lxu 
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2.6. The physical meaning of eigenfunctions and eigenvalues

Its eigenvalues represent the measured value of the momentum p
dxipx
 ˆ

It follows that the momentum operator is:

dyipy
 ˆ dzipz

 ˆ

When a wave function satisfies the Schrödinger equation, it is an eigenfunction of the Hamiltonian operator with eigenvalue given by energy of particle, E. Such waves represent particles with definite energy.
It is generally true that, for an eigenfuction of an operator representing some physical variable, a measurement of that variable will always yield the eigenvalue. 

)()( xpuxudx
di pp  
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Conclusions
• The Schrödinger equation, SE is the counterpart of classic equations for waves (electromagnetic, sound, etc.) It is a partial differential equation involving second-order spatial derivatives and first-order temporal derivatives.
• The wave function of a particle under the influence of various forces satisfies the Schrödinger equation. The wave function is a complex-valued function of space and time. Its physical significance is that the square of the absolute value of the function describes the probability that the particle is at a given location in space at a given time. 
• Knowledge of the wave function allows to find the probabilities that the particle has certain values of momentum, energy, or  other physically measurable quantities.
• The time dependence of the SE can often be factored out of the equation leaving the so-called time-independent Schrödinger equation, which determines the allowed values of energy, or energy eigenvalues. In situations in which the particle is bound or confined, these energies are restricted to certain discrete, or quantized, values. For each allowed energy, there is  specific time-independent function, forming  a set of energy eigenfunctions.  


