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Modern physics

3. Wave Packets and the Uncertainty
Principle
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3.1. A free electron in one dimension
3.2. Wave packets
3.3. Heisenberg uncertainty relation of position-
momentum
3.4.The physical meaning of the uncertainty 

relations
3.4.1 Heisenberg microscope
3.4.2. Two-slit experiment

3.5. Time-energy uncertainty relation

Outline
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Free particle (free electron) is a particle that is notsubject to any forces.

3.1. Free electron in one dimension

V(x)=0 in the Schrödinger equation

Such particles should exhibit all the classical properties: they carry momentum and energy and appear to be localized, i.e. when charged, they leave well-defined tracks in a hydrogen bubble chamber 

hamiltonian wave function wave function

the energy of electron
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How can solution of the Schrödinger wave equation
look like a particle?

3.1. Free electron in one dimension

Heisenberg uncertainty relations place limits on how well we can apply our classical intuitions about position and momentum to quantum phenomena
Heisenberg uncertainty relations place limits on how well we can apply our classical intuitions about position and momentum to quantum phenomena
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Schrödinger equation for a free electron:

Hamiltonian includes the kinetic energy E, only
SE takes the simple form:

We introduce the parameterk, the wave number, definedby:

3.1. Free electron in one dimension
Proposed solution:
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Solutions are:
3.1. Free electron in one dimension

Simple cos(kx) or sin(kx) are not the eigenfunctions of the momentum operator but their combination exp(±ikx) is its eigenfunction. Therefore, the momentum of electron will have a definite value of momentum. Can such a particle be localized in space?

)exp()( ikxxu 
)exp()( ikxxu 

electron is traveling in negative x direction
electron is traveling in positive x direction

From combined with m
pE 2

2 we get:
kp  eigenvalues of momentum operator  dx

dip ˆ
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Time-dependent and space-dependent solutions combined give:

3.1. Free electron in one dimension

 
 



EtpxiAtx exp),(
Wave function of a free electron moving in one direction of x-axis; electron has well-defined momentum p and energy E

plane wave

Note that for exp(ipx/ħ) there is a periodicity in space
 xx
p
h

p  2
wavelength

de Broglie relation
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Consequences of solution in a form of plane wave:

3.1. Free electron in one dimension

 
 



EtpxiAtx exp),(
1. This solution does not describe a localized particle. Theprobability of finding a particle is the same at all points in space.

2. The proposed function cannot be normalized. The constant Ahas to be infinitely small!

22),( Atx 

the integral is infinitely large

1),( 22   



 dxAdxtx
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Wave
Our traditional understanding of a wave…

“de-localized” – spread out in space and time

Wave packet

How to construct a wave packet?

If several waves of differentwavelengths (frequencies) andphases are superposed together, onewould get a localized wave packet

3.2. Wave packets
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This wave function is a superposition of plane waves with different momenta p and describes a free particle localized in the space

A wave packet is a group of waves with slightly differentwavelengths interfering with one another in a way that theamplitude of the group (envelope) is non-zero only in theneighbourhood of the particle
A wave packet is localized – a good representation for a particle!

3.2. Wave packets

momentum weight
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A(p) is localized about a central value po

is proportional to the probability that the momentumwill be found in a window of width dp around the value p
There are different types of momentum distribution. The typeimportant for us is when A(p) is centered about some particularvalue po of momentum and falls off as we depart from po (e.g.Gaussian distribution.)

3.2. Wave packets
dppA 2)(

po
p

A(p)

Δp
C – constant

How localized the weights A(p) are, depends 
on a width Δp of momenta about po. There is 
little possibility of finding a momentum value 
larger than p+Δp/2 or smaller than p-Δp/2
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The plane wave can be thought of as a limiting case with a width
Δp that is infinitely small Δp =0. The particle that has a perfectly
definite momentum is highly unlocalized in space Δx ∞.In order to avoid this, i.e. to have a localized particle with finiteΔx we need a nearly definite momentum Δp≠0 . The narrower thewidth described by the weights A(p), the more precisely themomentum is constrained.

3.2. Wave packets

The more precise the momentum, the more spread out the pulseis in space. The inverse relationship between Δx and Δp is ageneral feature of wave packets and is described quantitatively byHeisenberg uncertainty relations
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It was discovered in the framework ofquantum mechanics by WernerHeisenberg in 1927 and plays acritical role in the interpretation ofquantum mechanics and in showingthat there could be no conflict betweenquantum and classic physics in theirrespective domains of applicability.

Position-momentum uncertainty relation

We cannot simultaneously measure the position and the momentum of a particle with arbitrary precision.  

3.3. Heisenberg uncertainty relation

1901-1976
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We define the width in position Δx as the square root of the 
variance σ2(x) in the space distribution: 

Similarly, the width in momentum Δp is the square root of 
variance σ2(p) in the momentum distribution

Evaluation of width in position and momentum

2222 )()( xxxx 

2222 )()( pppp 
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Gaussian wave packet

For Gaussian wave packet we have the maximum simultaneouslocalization in position and momentum, in a sense that the productΔxΔp is as small as it can be.

is one particular example for which the position-momentum Heisenberg relation is realized as an equality. 

2/ px

3.3. Heisenberg uncertainty relation
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small a
The probability density for momentum |A(p)|2 as a function of momentum p

3.3. Uncertainty relation

The probability density |ψ(x)|2 as a function of x

large a

For the Gaussian wave packet
ap  ax 
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The Heisenberg uncertainty relation is not restricted to quantum mechanics.
From de Broglie relation:

3.3. Uncertainty relation

kp  

Heisenberg relation becomes:

21 xk
This relation applies equally to pulses of sound! 
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Example: Consider a grain of dust of mass 10-7 kg moving with the velocityaround 10 m/s. Suppose that measuring instruments available to us leave thevelocity uncertain within the range of 10-6 m/s (i.e. one part in 107). Given theinstrumental uncertainty in the velocity, find the intrinsic quantum mechanicaluncertainty of a position measurement of the dust of grain.
Solution: The instrumental uncertainty in the momentum is   smkgsmkgvmp /10/1010 1367  

Hence, according to the uncertainty relation, the position could be at best be measured to within the window

3.4. The physical meaning of the uncertainty relations

msmkg
sJ

px 21
13

34 10/10
1005.1 



 
 

This is an extremely small number, of about 1011 smaller than the size of one of the approximately 1019 atoms that make up the dust particle!
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This „thought experiment” was devised by Heinsenberg himself.Imagine a microscope that is designed to measure an electron’s x –position and the px – the component of the electron’s momentumsimultaneously.
Suppose an electron moves from the left tothe right with the well-defined initialmomentum px. The electron’s position is tobe observed by shining light on it.

3.4.1. Heisenberg microscope

The light comes in the form of a single photonwith a precisely known momentum (aprecisely known wavelength) coming from theright. The timing of collision between theelectron and the photon is arranged so that ittakes place under the lens of a microscope.The observation takes place if the photonscatters off the electron and passes throughthe lens onto a photographic plate.
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The classical optics gives  for the resolution of lens:

In contrast to Δx, smaller wavelength (larger frequency f) or larger angle θ raise Δpx

λ-photon wavelength after collision

Δx is simultaneously the ability to locate the electron in space and uncertainty in electron’s position; in order to reduce it we need smaller wavelength or larger angle θ

3.4.1. Heisenberg microscope

Uncertainty in the electron’s momentum (its x-component) Δpx after collision, when its position is measured,  is the same as the uncertainty in the photon’s momentum. Photon’s momentum after collision is uncertain, because we do not know the exact direction of the photon when it passed through the lens.
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The product of Δx and  Δpx is

3.4.1. Heisenberg microscope

This result is independent of any details of the system and takes the general form of Heisenberg’s relation

The complementary wavelike and particlelike properties of radiation can be reconciled only within the limits imposed by the uncertainty principle. 

Uncertainty principle always saves us from contradiction.
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y

x
Incident electron

Incident electron

Two possible paths

a

Electrons passing thought a pair of slits produce an interference pattern even if they pass with such a low intensity that we have only one electron at a time. But it seems that just knowing which slit the electron went through destroys the interference pattern. The uncertainty principle ensures that this is exactly the case!!!

.

The condition for the constructive interference is

3.4.2. Two-slit experiment

d

The separation between adjacent maxima on the detection screen is

a
ddd nn

  sinsin 1
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Any measurement of the position of electron (by scattering a photon at an electron) transfers the photon momentum to the electron and introduces an uncertainty Δpy in the electron’s y momentum. We can estimate the minimum size of the Δpy by means of the uncertainty principle  

.
A monitor (an eye) just behind the slits determines the position ofthe electron to an accuracy sufficient to tell which slit the electroncame through. This is equivalent to a measurement of the y-components of the electron’s position with the precision better thanthe separation between the slits:

3.4.2. Two-slit experiment

2
ay 
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Finally, the angular uncertainty translates into an uncertainty in the arrival point on the detection screen. The transverse arrival position is uncertain by:

.
Having introduced an uncertain transverse component of momentum, wehave automatically introduced an uncertainty in the arrival spot on thedetection screen. If the electron came through carrying a longitudinalmomentum p, then the electron moves off the two slits at an angle

3.4.2. Two-slit experiment

aapp
p y 

 2


Comparing this result with the separation between two adjacent maxima:

a
dd  we see that our monitor has disturbed the electron enough to wipe out the interference pattern
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we have:

Time-energy uncertainty relation

There is another uncertainty relation that is quite useful – one involving time and energy. We  can find it by using the momentum – position Heisenberg’s relation

then

3.5.The time – energy uncertaintyrelation

It asserts that a state of finite duration Δt cannot have a precisely defined energy, but we deal with the uncertainly in E. 

For E=p2/2m
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If an excited atomic state has a lifetime τ, the excited state does not 
have a precise energy E1; rather its energy is uncertain by an amount

This uncertainty manifests itself when the state decays to the ground state with energy E0; the frequency of the radiation emitted in the decay:

3.5.The time – energy uncertainty relation

 
1E

h
EEf o 1

will be spread by an amount

 2
11

h
Ef

Broadening of spectral lines is a quantum mechanical phenomenon
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Harmonic oscillator with classical energy

Classically, the minimum energy is zero, which occurs when thekinetic energy is zero (p=0) and the particle is at rest at a positioncorresponding to the bottom of the potential-energy well.
From the uncertainty principle: both momentum and position cannotbe known precisely.
If the uncentrainty in position is

Estimation of ground state energy

22
2

2
1

2 xmm
pE 

ω is the angular frequency of harmonic oscillator

ax 
then momentum’s uncertainty is ap 2


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Near the lowest possible energy, where classically p=0

x

 E x
2
1
x

2x
minE

classicE

quantumE
The energy is

Estimation of ground state energy

pp 
   22

2

2
1

2)( xmm
pxE 

and 22
2

2
2
1

8)( ammaaE  

The uncertainty principle requires that a little residual motion remain inany physical system

zero-point energy

The minimum value of energy can be calculated and the result is

2min
 E
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• Simultaneous uncertainty in both position and momentumrequires construction of wave packets. Then there is asignificant probability of finding the particle only in limitedregions of space – particle is localized

Conclusions
• A free electron in a 1D system can be described by the plane wave resulting from the Schrödinger equation, assuming the potential equal to zero. This solution represents an extreme manifestation of the uncertainty principle (Δp=0, Δx      ∞ ) 

• The magnitude of the position-momentum and energy-timeeffects is proportional to Planck’s constant, and the restrictionwould vanish entirely if that constant were equal to zero.Thus Planck’s constant once again determines the magnitudeof quantum mechanical effects


