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Modern physics
4. Barriers and wells
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4.1. Particle motion in the presence of a potential barrier
A one-dimensional potential barrier is formed by a potential-
energy function of the form

barrier width 2a

barrier height V0

V(x)= 0 for x<-a (region I)
V0 for –a<x<a (region II)
0 for x>+a (region III)

When particle of fixed momentum and energy approaches this potential barrier it can be scattered. The result obtained in classical physics (transmission or reflection) depends on the relationship between the particle energy and barrier height. It is quite different in quantum mechanics
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4.1. Particle motion in the presence of a potential barrier
Classically:

if E>V0, then the particle will pass the barrier
if E<V0, then the particle hits a wall and is reflected back

the momentum p changes when the particle is at the top of the barrier but returns to its original value when x=a

mEp 2 mEp 2 02 VEmp 
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4.1. Particle motion in the presence of a potential barrier
In quantum mechanics :

if E>V0, then the particle will pass the barrier or will be reflected from it
if E<V0, then there is a non-zero probability that the particle will be transmitted through the barrier (barrier tunneling)

For –a<x<a, λ is imaginary

mEp 2
22  

 02
2

VEm 
 

de Broglie wavelength, λ

is real and the same for x>a and x<-a

classically we have evanescent waves, the exponential decay with x, that is why the amplitude of the wave function for x>a is attenuated
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4.2. Wave functions in the presence of a potential barrier
• Wave functions will be obtained as solutions of the time-independent Schrödinger equation

• In region I and III, when V(x)=0, the solutions are in the form of well-known plane waves moving either to the right or to the left

)()()()(2 2
22 xEuxuxVxudx

d
m  
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4.2. Wave functions in the presence of a potential barrier
• Region I   )exp(exp)( ikxRikxxu 

  )exp(exp)( iqxBiqxAxu 

• Region III
 ikxTxu exp)( 

2
2 2



mEk 

 02
2 2 VEmq 

• Region II
reflected wave

coefficients A and B will be found after specifying the physical conditions

transmitted wave, only

incident wave
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4.2. Wave functions in the presence of a potential barrier
• Continuity conditions

As the probability density has to be continuous and the realizable potential is never infinite we insist that:
the wave function and its first derivative be continuous everywhere

)2sin()2sin()()2cos(2
)2sin()(

22

22 ikaqaqkiqakq
qakqiR 



When we apply these physical conditions at boundaries x=-aand x=a (to be done at home) we finally obtain

R is a measure of reflectance

T is a measure of transmittance
)2exp()2sin()()2cos(2

2
22 ikaqaqkiqakq

qkT 
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Properties of solutions for E>V0

We remember that: 2
2 2



mEk   02
2 2 VEmq 

1. From these two relations we see that when E>V0, q is real and when V0≠0, q ≠k thus R is not zero
At energies for which, classically, the particle would not be reflected, in quantum mechanical there is still a possibility 
that it will be reflected

2. When E>>V0, then q≈k, and E
VR 0 1TIn this limit 

122  RT3. Always and 12 R

)2sin()2sin()()2cos(2
)2sin()(

22

22 ikaqaqkiqakq
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
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4.3. Tunneling through the potential barrier
Solutions for E<V0

Classically, a particle will bounce back from such a barrier in perfect reflection. In quantum mechanics the particle has a chance to tunnel through the barrier, especially if the barrier is thin. 
  02

02
2  VEmq



In such a case:

q is imaginary and the solutions for T show an exponential decay

   ak
kT 
 4exp16

222

222

 EVm  02
2 2


a is the barrier thickness
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4.3. Tunneling through the potential barrier
The transmission coefficient        gives the probability with which the particle is transmitted through the barrier, i.e. the probability of tunneling. 
Example: If T=0.020, then of every 1000 particles (electrons) approaching a barrier, 20 (on average) will tunnel through it and 980 will be reflected.

2T

 EVm  02
2 2



Because of the exponential form the transmission coefficient is very sensitive to the three variables on which it depends: particle mass m, barrier thickness a, and energy difference V0-E

 aT  4exp2
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4.4. Applications and examples of tunneling: alpha decay, nuclear fusion, scanning tunneling microscope STM
Barrier tunneling has many applications (especially in electronics), i.e., tunnel diode in which a flow of electrons produced by tunneling can be rapidly turned on and off by controlling the barrier height.

• In 1973 Nobel Prize in physics was shared by Leo Esaki (for tunneling in semiconductors), Ivar Giaever (for tunneling in superconductors) and Brian Josephson (for the Josephson junction,  rapid quantum switching device based on tunneling)
• In 1986 Gerd Binning and Heinrich Rohrer for development of 

scanning tunneling microscope STM
• The earliest (late 1920s) application of tunneling was to nuclear physics: alpha decay (George Gamow, Ronald Gurney, Edward U. Condon) and nuclear fusion.
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Alpha decay
An unstable parent nucleus converts into a daughter nucleus 
with the emission of an alpha particle α– a helium nucleus, He4

2  ZZ AA 4

daughter nucleusparent nucleus
Example:

 NpAm 237241

Alpha decay can be perfectly explained by the tunneling 
phenomenon in which α particle tunnels through the Coulomb 
barrier formed by the combination of the Coulomb and nuclear potential energies.

A-atomic weight
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Alpha decay
The success of the application of tunneling to the explanation of alpha decay manifested itself in the first determination of the radius R of nucleus fmAR 3/15.1
This early result revealed that the volume of the nucleus:

was proportional to its atomic weight A, so that the nuclear density was almost constant. 

3

3
4 RV 

The result also demonstrated just how small the nucleus was. 
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Nuclear fusion
Nuclear fusion has a potentially important technological application to the production of clean nuclear power.

JnHHH 13322 104.6 
deuteron

Coulomb repulsion between two deuterons inhibits this process. This process can take place only because of tunneling through the Coulomb barrier. However, it is necessary to reach a temperature on the order of 104K to have a practical reaction rate.

An important reaction involves the fusion of two deuterons to make a triton and a neutron, with the release of a great deal of energy. 

triton neutron energy released
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Scanning tunneling microscope STM
Three quartz rods are used to scan a sharply pointed conducting tip across the surface. A weak positive potential is placed on an extremely fine tungsten tip. When the distance between the tip and the metallic surface is small, a tunneling effect takes place. The number of electrons that flow from the surface to the tip per unit time (electric current) is very sensitive to the distance between the tip and the surface.

Principle of operation

Quartz rods form a piezoelectric support, their elastic properties depend on the applied electric fields. The magnitude of the tunneling current is detected and maintained to keep a constant separation between tip and the surface. The tip moves up and down to match the contours of the surface and a record of its movement forms a map of the surface, an image.
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Scanning tunneling microscope STM
The resolution of image depends on the size of the tip.  By heating it and applying a strong electric field, one can effectively pull off the tungsten atoms from the tip layer by layer, till one is left with a tip that consists of a single atom, of size 0.1 nm.

Another important application of STM is in nanotechnology. The tip can lift single atoms out of the metallic surface, one at a time and form a new structure at the nano-scale. It is of great value in construction of ultrasmall circuits and the creation of new, artificial molecules.  
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4.5. Bound states
A potential energy well of infinite depth is an idealization. A finite well in which the potential energy of electron outside the well has a finite positive value Uo (wall depth) is realizable.

finite well

To find the wave functions describing the quantum states of an electron in the finite potential well, the Schrödinger equation has to be solved. The continuity conditions at the well boundaries (x=0 and x=L) have to be imposed.
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4.5. Bound states

infinite well finite well
Basic difference between the infinite and finite well is that for a finite well, the electron matter wave penetrates the walls of the well (leaks into the walls).Newtonian mechanics does not allow electron to exist there.

Probability density for an electron confined to the potential well

Because a matter wave does leak into the walls the wavelength λ for any given quantum state is greater when the electron is trapped in a finite wave than when it is trapped in an infinite wave
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4.5. Bound states
The energy level diagram for finite well

The electron with an energy greater than U0 (450 eV in this example) has too much energy to be trapped. Thus it is not confined and its energy is not quantized.
For a given well (e.g. U0=450 eV and L=100 pm) only a limited number of states can exist (in this case n=1,2,3,4). We say that up to a certain energy electron will be bound (trapped).

From:
we see that the energy E for an electron in any given state is less in the finite well than in the infinite well

mE2

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Examples of electron traps

Powders whose granules are small – in the nanometer range – change colour as compared with powder of larger size.

Nanocrystallites

For the infinite quantum well we have shown that the energy E of the electron is

Each such granule – each nanocrystallite – acts as a potential 
well for the electron trapped within it.

2
2

2

8 nmL
hE 

When the width L of the well is decreased, the energy levels increase. The electron in the well will absorb light with higher energy i.e. shorter wavelength. The same is true for nanocrystallites. 
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Examples of electron traps

A given nanocrystallite can absorb photons with an energy above a certain threshold energy Et (=hft). Thus, the wavelength below a corresponding threshold wavelength

Nanocrystallites

will be absorbed while that of wavelength 
longer than λf will be scattered by the 
nanocrystallite. 

Therefore, when the size of a nanocrytallite is reduced, its colour changes ( from red to yellow, for 
instance).

tt
f E

ch
f
c 
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Examples of electron traps

Central semiconducting layer (purple) is deposited between two insulating layers forming a potential energy well in which electrons are trapped. The lower insulating layer is thin enough to permit electrons to tunnel through it if an appropriate potential difference is applied between two metal leads. In this way the number of electrons confined 
to the well can be controlled. 

Quantum dots –artificial atoms

Quantum dots can be constructed in two-dimensional arrays, and have promising applications in computing systems of great speed and storage capacity.
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Examples of electron traps
Quantum corralWith the use of STM, the scientists at IBM’s Almaden Research Center, moved Fe atoms across a carefully prepared Cu surface at low temperature 4K. Atoms forming a circle were named a quantum corral.  

A quantum coral during four stages of construction. Note the appearance of ripples caused by electrons trapped in the corral when it is almost complete.

This structure and especially the ripples inside it are the straightforward demonstration of the existence of matter waves. The ripples are due to electron waves.



Lectures in Physics,  summer  2016 25

Conclusions
• The wavelike aspect of matter produces some surprising results. These effects are evident for potential energies with a steplike structures: wells, walls, and barriers.
• The calculation of wave functions for barriers and wells involves solution of Schrödinger equation with the application of continuity conditions at boundaries between different values of the potential energy
• The results obtained are different from those for classical waves. One such feature of a special interest is the penetration of potential-energy barriers. The probability of tunneling might be small but this phenomenon is of great importance
• Examples of tunneling are: in the alpha decay, fusion of deuterons, STM, tunnel diodes and other electronic devices
• Electrons can be trapped in finite potential wells: nanocrystallites, quantum dots and corrals


