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2.1. Conceptual consequences 
of particles as waves

Some serious difficulties arise when we think carefully about de 
Broglie’s hypothesis. From the classical point of view, an 
electron which is a particle, should have a well-defined path 

described by a position vector

This leads to an apparently paradoxical result, as far as the 
transmission of electrons through a pair of slits is considered. 

A classical interference pattern is produced on the screen when 
one part of a wave passes through one slit and another part 
through the other slit.

)(tr


But a particle with a well-defined path passes through 
only one slit or the other.
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2.1. Conceptual consequences 
of particles as waves

The observation of two-slit interference with electrons is not
connected with interference between different electrons. We can 
reduce the number of electrons that pass through the slits per 
unit time to the point where it is clear that the effect is due to 
the passage of one electron after another.

Individual electrons coming at a rate 
of 1000 per second (which, at the 
energies the electrons posses, 
corresponds to  spatial separation of 
150 km) nevertheless create an 
interference pattern

The photos illustrate how the 
pattern is built up as the number 
of electrons increases
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2.1. Conceptual consequences 
of particles as waves

A further troubling aspect enters when we employ a detection 
apparatus that can tell when an electron passes through one slit 
or the other. We could even tell, by measuring the electron’s 
precise direction of travel, which slit it was going to pass 
through and, in anticipation, shut the other slit. But when we do 
this, the interference effect disappears. 

Somehow, the measurement itself has 
decided whether the electron has 
behaved like a particle or like a wave

If a monitor identifies which slit any 
individual electron passes through, the 
pattern is a sum of the pattern due to 
electron passing through single slits
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2.1. Conceptual consequences 
of particles as waves

Conceptual difficulties arise from the idea that radiation has 
particlelike properties while matter has wavelike properties.

This wave can be fully described by 
specifying the electric field it contains.

When photons or electrons are sent through a two-slit system 
at such a slow rate that their arrivals are separated by very 
long times, they nevertheless gradually give rise to a 
characteristic wavelike interference pattern. Any particular „hit” 
on the screen by a photon or electron appears to be random, 
but the result of the accumulation of „hits” produces the pattern  

In the classical limit, there are no photons. We have classical 
electromagnetic wave that follows from Maxwell’s equations. 
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The collective effect of many photons is 
described by an electric field ),( trE
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The interference pattern appears on the screen because there is 
an electric field       associated with the part of the wave coming 
through slit 1 and an electric field         associated with the part 
of the wave coming through slit 2, and the net classical field on 
the far side of the slits will have the form suggested by the 
principle of superposition 

The pattern on the screen is an intensity pattern:

1E


2E
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How is the classical 
interference pattern formed?
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Because of vector character of electric fields, they sometimes 
reinforce and sometimes cancel each other 

is the interference term),(),(2 tt rErE 21
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The interference pattern appears on the screen because there is 
an electric field       associated with the part of the wave coming 
through slit 1 and an electric field         associated with the part 
of the wave coming through slit 2, and the net classical field on 
the far side of the slits will have the form suggested by the 
principle of superposition 

1E


2E


Modern Physics,  summer 2011 8

The intensity of the wave is proportional to the square of the 
field             which is in turn proportional to the number of 
photons, N, at point         at time t.

Interference of single photons?

),( trE


)(tr


When the intensity of the light shining on the slits decreases, N 
decreases as well until we are dealing with one photon at a 
time. Even single photons carry with them the interference 
properties characteristic of N photons.

Each single photon is associated with an electric field            that, 
like the ordinary electric field obeys the rules of superposition and 
solves the linear equation. 

),( tre
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The electric field at the screen due to a single photon in a two-slit 
experiment has a form

),(),(),( ttt rerere 21



Interference of single photons?

),(1 tre


is the field due to a photon that came through slit 1 with slit 2 
closed

),(2 tre


is the field due to a photon that came through slit 2 with slit 1 
closed

The quantum analog to the classical intensity is

22
),(),(),( tttI rerere 21



Modern Physics,  summer 2011 10

Therefore, I in the formula:

Interference of single photons?

22
),(),(),( tttI rerere 21



is proportional to the probability that a photon can be found in 
the box of size        around the point  

Since photons are indivisible, we cannot speak of some fraction 
of a photon coming through one slit or the other!

rre
 32

),( dt

represents a probability distribution function while:

r
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Matter waves

For electrons and other material particles there is no classical 
field (as for photons)

We assume that associated with each electron is a wave 
function that must obey some linear equation.

This is Schrödinger equation.

),( tr


Linearity implies that if            and              are solutions of 
Schrödinger equation, then so is:

. ),(),(),( 21 tBtAt rrr


),(1 tr


),(2 tr


where A and B are arbitrary complex constants
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Interference of matter waves

),(exp),(),( tiStRt rrr


The wave function           can be a complex function ),( tr


Thus if               is the wave function for an  electron that came 
through slit 1 and          is the wave function for an 
electron  that came through slit 2, then the wave function for 
the electron at the screen on the far side of the slits is the sum 
of these two wave functions. The square of the sum, which is 
associated with the probability for finding an electron, includes 
interference terms needed for a proper description of the 
passage of an individual electron through a two-slit system.

),(1 tA r


),(2 tB r


where              is the magnitude (real) of the wave function

and             is its phase

),( tR r
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is a complex conjugate of
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The wave function at a point x on the screen of a particle that passed through the slit
labeled 1 in a two-slit apparatus is R(x)exp(iS1(x). The wave function at the same
point of a particle that passed through the slit labeled 2 is R(x)exp(iS2(x)).The three
functions R(x), S1(x) and S2(x) are real-valued. Show that if both slits are open, the
absolute square of the wave function at the screen exhibits an interference pattern.

Solution: With both slits open, the wave function on the screen is:

Therefore, the square of the absolute value is

)(exp)()(exp)()( 21 xiSxRxiSxRx

2121

22
expexpexpexp)()( iSiSiSiSxRx

21

22
cos1)(2)( SSxRx

As the two phases S1 and S2 vary with position,         changes between 0 and  
2

)(x
2

)(4 xR

Example

This is a standard interference pattern, with regions of destructive 
and constructive interference.
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2.2. Wave function and its 
probabilistic interpretation

1882-1970

In 1926, German theoretical physicist Max Born
proposed an interpretation of the wave function                           
that Schrödinger had introduced. His idea was 
that the square of the absolute value of the wave 
function measures the probability of finding a 
particle.

),( tr


rr
 32

),( dt

is proportional to the probability of finding an electron at time t
in the box of size        around the point  r

3d r
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The two-slit experiment reveals itself in an enhanced (constructive 
interference) or suppressed (destructive interference) probability
of the arrival of the electrons on the screen  
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2.2. Wave function and its 
probabilistic interpretation

Since, at any given time, the probability of finding an electron 
somewhere in space is unity, it follows from Born interpretation:

spaceall

dt 1),( 32
rr


normalization process

Wave functions used to describe „particles” like electrons are 
waves of probability. In places where their amplitudes are small, 
the probability of locating the particle is also small. They have 
phases, that is why the probability waves can interfere with each 
other like any kind of a wave.
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2.3. The form of Schrödinger 
equation

Postulates under which the quantum wave equation (Schrödinger 
equation, SE) was formulated:

1. remain in agreement with de Broglie relation

2. total energy E of the particle is the sum of kinetic 
and potential energies

3. has to be linear (linear combination of wave 
functions solves SE if all of them solve it) 
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2.3. The form of Schrödinger 
equation

Sound waves and waves on strings are 
described by equations of Newtonian 
mechanics. Light waves are described by 
Maxwell’s equations. Matter waves are 
described by Schrödinger’s equation advanced 
in 1926 by Austrian physicist Erwin 
Schrödinger

1887-1961
),()(),(
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V potential
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wave function
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zyx
Laplacian operator

m – mass of the particle
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2.3. The form of Schrödinger 
equation

More often we will be using the time-dependent
Schrödinger equation in one dimension:

1887-1961

Hamiltonian is an operator acting on the wave function. Its 
eigenvalues represent energy according to the classical formula: 

),()(),(
2
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It can be written in a form:
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hamiltonian
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Plane wave as a solution of time-
dependent Schrödinger equation

)sin()cos(),( tkxitkxAtx

Complex wave function that solves the time-dependent SE in one 
dimension in the absence of any force V(x)=0 has the following 
form: 

This represents the plane-wave and can be written as:

or:

)(exp),( tkxiAtx



)(
exp),(

Etpxi
Atx

where:



p
k

2
k is the wave number



E

ω is the angular frequency
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2.4. The time-independent 
Schrödinger equation

Assuming that potential V(x) is independent of time (stationary 
conditions) one can solve SE by separation of variables and obtain 
so-called time-independent Schrödinger equation.

This method consists of supposing that the wave function can be 
written as a product of two functions: T(t) dependent on time t, 
only and u(x) dependent on position x, only:

)()(),( tTxutx

Then SE takes a form:

)()()(
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2.4. The time-independent 
Schrödinger equation

Dividing by T(t)u(x), we get

The two sides of this equation depend on entirely independent 
variables, the left side on time and the right side on position. 
The only way to make the equation hold for all time and all 
positions is for each side to equal a time- and space-
independent constant, the same for both sides. We label this 
constant E and it has the physical meaning (it is the energy of 
the particle)
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2.4. The time-independent 
Schrödinger equation

We have two equations:

The first of these equations isolates the time dependence of 
the SE and has a a direct solution:
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The second of these equations is the so-called time-
independent Schrödinger equation. We have to solve it for 
each particular potential V(x).
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2.4. The time-independent 
Schrödinger equation

The solution to time-dependent Schrödiger equation is :

We may write:



iEt
xutx E exp)(),(

)()(ˆ xEuxuH EE

uE(x) is an eigenfunction of the Hamiltonian operator, E is the 
corresponding eigenvalue of that operator

The problem of solving the SE comes down to finding

eigenfunctions and eigenvalues of  the HAMILTONIAN

Hamiltionian operator Ĥ
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2.5. Example of solution of SE 
– the infinite well

Large potential at the edges of the infinite well acts to prevent the
escape of electrons. The motion of an electron is restricted to the
region 0<x<L; in that region the electron is free.

x=0

V(x) infinityV(x) infinity

x=L

V(x)=0

x

The potential is zero inside the box, and 
infinity outside

u(x)=0 outside the well, probability 
density vanishes outside the well

In the region inside the well, i.e. for 
0<x<L, the time-independent SE is:

Boundary conditions:

0)()0( Luu
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2
5

Proposed solution is:

We apply the boundary conditions: 

2.5. Example of solution of SE –

the infinite well

where A is a constant that we can eventually use for normalization

)sin()( kxAxuE

Proposed function satisfies 
SE provided that:

for x=L, uE=0

This means: 0)sin(kL nkL with n=1,2,…

In other words, E takes on only discrete values

Energy is quantized

m

k
E

2

22
discrete energy levels
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The solutions 

correspond to standing waves with a different number n of nodes 

within the potential well

2.5. Example of solution of SE –

the infinite well

Allowed modes of oscillation of a 
classical string with its ends fixed

)sin()( x
L

n
Axun

Eigenfunctions un(x) for the infinite 
well
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The ground-state wave function u1(x) as well as 
the associated probability distribution u1(x) 2

Probability distribution for ground 
(n=1) and excited states (n>1)

Properly normalized ground-state wave function is:

the subscript is the value of n

)sin(
2

)(1
L

x

L
xu
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2.6. The physical meaning of 
eigenfunctions and eigenvalues

Its eigenvalues represent the measured value of the momentum p

dx
ipx ˆ

It follows that the momentum operator is:

dy
ipy ˆ

dz
ipz ˆ

When a wave function satisfies the Schrödinger equation, it 
is an eigenfunction of the Hamiltonian operator with 
eigenvalue given by energy of particle, E. Such waves 
represent particles with definite energy.

It is generally true that, for an eigenfuction of an operator 
representing some physical variable, a measurement of that 
variable will always yield the eigenvalue. 

)()( xpuxu
dx

d
i pp
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Conclusions

• The Schrödinger equation, SE is the counterpart of classic equations for 
waves (electromagnetic, sound, etc.) It is a partial differential equation 
involving second-order spatial derivatives and first-order temporal 
derivatives.

• The wave function of a particle under the influence of various forces 
satisfies the Schrödinger equation. The wave function is a complex-
valued function of space and time. Its physical significance is that the 
square of the absolute value of the function describes the probability that 
the particle is at a given location in space at a given time. 

• Knowledge of the wave function allows to find the probabilities that the 
particle has certain values of momentum, energy, or  other physically 
measurable quantities.

• The time dependence of the SE can often be factored out of the equation 
leaving the so-called time-independent Schrödinger equation, which 
determines the allowed values of energy, or energy eigenvalues. In 
situations in which the particle is bound or confined, these energies are 
restricted to certain discrete, or quantized, values. For each allowed 
energy, there is  specific time-independent function, forming  a set of 
energy eigenfunctions.  


