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Modern physics

4. Barriers and wells
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4.1. Particle motion in the presence of a 
potential barrier

A one-dimensional potential barrier is formed by a potential-
energy function of the form

barrier width 2a

barrier height V0

V(x)=
0 for x<-a (region I)

V0 for –a<x<a (region II)

0 for x>+a (region III)

When particle of fixed momentum and 
energy approaches this potential barrier 
it can be scattered. The result obtained 
in classical physics (transmission or 
reflection) depends on the relationship 
between the particle energy and barrier 
height. It is quite different in quantum 
mechanics
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4.1. Particle motion in the presence of a 
potential barrier

Classically:

if E>V0, then the particle will pass the barrier

if E<V0, then the particle hits a wall and is reflected back

the momentum p changes when the particle is at the top of the 
barrier but returns to its original value when x=a
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4.1. Particle motion in the presence of a 
potential barrier

In quantum mechanics :
if E>V0, then the particle will pass the barrier or will be reflected from it

if E<V0, then there is a non-zero probability that the particle will be 
transmitted through the barrier (barrier tunneling)

For –a<x<a, λ is imaginary
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de Broglie wavelength, λ

is real and the same for x>a 
and x<-a

classically we have evanescent waves, the exponential decay with x, that is 
why the amplitude of the wave function for x>a is attenuated
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4.2. Wave functions in the presence of a 
potential barrier

• Wave functions will be obtained as solutions of 
the time-independent Schrödinger equation

• In region I and III, when V(x)=0, the solutions 
are in the form of well-known plane waves 
moving either to the right or to the left
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4.2. Wave functions in the presence of a 
potential barrier

• Region I   )exp(exp)( ikxRikxxu 

  )exp(exp)( iqxBiqxAxu 

• Region III
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• Region II

reflected wave

coefficients A and B will be found after specifying the physical conditions

transmitted wave, only

incident wave
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4.2. Wave functions in the presence of a 
potential barrier

• Continuity conditions
As the probability density has to be continuous and the 

realizable potential is never infinite we insist that:
the wave function and its first derivative be continuous 
everywhere
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When we apply these physical conditions at boundaries x=-a
and x=a (to be done at home) we finally obtain

R is a measure of reflectance

T is a measure of transmittance

)2exp(
)2sin()()2cos(2

2
22

ika
qaqkiqakq

qk
T 






Lectures in Physics,  summer  2017 9

Properties of solutions for E>V0

We remember that:
2
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1. From these two relations we see that when E>V0, q is real 
and when V0≠0, q ≠k thus R is not zero

At energies for which, classically, the particle would not be 
reflected, in quantum mechanical there is still a possibility 
that it will be reflected

2. When E>>V0, then q≈k, and
E
V

R 0 1TIn this limit 
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4.3. Tunneling through the potential barrier

Solutions for E<V0

Classically, a particle will bounce back from such a barrier in 
perfect reflection. In quantum mechanics the particle has a chance 
to tunnel through the barrier, especially if the barrier is thin. 
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In such a case:

q is imaginary and the solutions for T show an exponential decay
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a is the barrier thickness
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4.3. Tunneling through the potential barrier

The transmission coefficient        gives the probability with which 
the particle is transmitted through the barrier, i.e. the probability 
of tunneling. 

Example: If =0.020, then of every 1000 particles (electrons) 
approaching a barrier, 20 (on average) will tunnel through it and 980 
will be reflected.
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Because of the exponential form the transmission coefficient is 
very sensitive to the three variables on which it depends: 
particle mass m, barrier thickness a, and energy difference V0-E
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4.4. Applications and examples of 
tunneling: alpha decay, nuclear fusion, 
scanning tunneling microscope STM

Barrier tunneling has many applications (especially in electronics), 
i.e., tunnel diode in which a flow of electrons produced by 
tunneling can be rapidly turned on and off by controlling the 
barrier height.

• In 1973 Nobel Prize in physics was shared by Leo Esaki (for 
tunneling in semiconductors), Ivar Giaever (for tunneling in 
superconductors) and Brian Josephson (for the Josephson junction,  
rapid quantum switching device based on tunneling)

• In 1986 Gerd Binning and Heinrich Rohrer for development of 
scanning tunneling microscope STM

• The earliest (late 1920s) application of tunneling was to nuclear 
physics: alpha decay (George Gamow, Ronald Gurney, Edward U. 
Condon) and nuclear fusion.
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Alpha decay

An unstable parent nucleus converts into a daughter nucleus 
with the emission of an alpha particle α– a helium nucleus, He4

2

  ZZ AA 4

daughter nucleusparent nucleus

Example:

 NpAm 237241

Alpha decay can be perfectly explained by the tunneling 
phenomenon in which α particle tunnels through the Coulomb 
barrier formed by the combination of the Coulomb and nuclear 
potential energies.

A-atomic weight
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Alpha decay

The success of the application of tunneling to the explanation of 
alpha decay manifested itself in the first determination of the 
radius R of nucleus 

fmAR 3/15.1
This early result revealed that the volume of the nucleus:

was proportional to its atomic weight A, so that the nuclear 
density was almost constant. 
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The result also demonstrated just how small the nucleus was. 
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Nuclear fusion

Nuclear fusion has a potentially important technological application 
to the production of clean nuclear power.

JnHHH 13322 104.6 
deuteron

Coulomb repulsion between two deuterons inhibits this process. 
This process can take place only because of tunneling through 
the Coulomb barrier. However, it is necessary to reach a 
temperature on the order of 104K to have a practical reaction 
rate.

An important reaction involves the fusion of two deuterons to 
make a triton and a neutron, with the release of a great deal of 
energy. 

triton neutron energy released
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Scanning tunneling microscope STM

Three quartz rods are used to 
scan a sharply pointed 
conducting tip across the 
surface. A weak positive potential is placed on an 

extremely fine tungsten tip. When the 
distance between the tip and the metallic 
surface is small, a tunneling effect takes 
place. The number of electrons that flow 
from the surface to the tip per unit time 
(electric current) is very sensitive to the 
distance between the tip and the surface.

Principle of operation

Quartz rods form a piezoelectric support, their elastic properties depend 
on the applied electric fields. The magnitude of the tunneling current is 
detected and maintained to keep a constant separation between tip and 
the surface. The tip moves up and down to match the contours of the 
surface and a record of its movement forms a map of the surface, an 
image.



Lectures in Physics,  summer  2017 17

Scanning tunneling microscope STM

The resolution of image depends on the size of the tip.  By heating it and 
applying a strong electric field, one can effectively pull off the tungsten 
atoms from the tip layer by layer, till one is left with a tip that consists of 
a single atom, of size 0.1 nm.

Another important application of STM is in nanotechnology. The tip 
can lift single atoms out of the metallic surface, one at a time and form 
a new structure at the nano-scale. It is of great value in construction of 
ultrasmall circuits and the creation of new, artificial molecules.  
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4.5. Bound states

A potential energy well of infinite depth is an idealization. A 
finite well in which the potential energy of electron outside 
the well has a finite positive value Uo (wall depth) is realizable.

finite well

To find the wave functions describing the quantum states of an 
electron in the finite potential well, the Schrödinger equation has 
to be solved. The continuity conditions at the well boundaries 
(x=0 and x=L) have to be imposed.
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4.5. Bound states

infinite well finite well

Basic difference between the 
infinite and finite well is that for a 
finite well, the electron matter 
wave penetrates the walls of the 
well (leaks into the walls).
Newtonian mechanics does not 
allow electron to exist there.

Probability density for an electron confined to the potential 
well

Because a matter wave does leak 
into the walls the wavelength λ for 
any given quantum state is 
greater when the electron is 
trapped in a finite wave than when 
it is trapped in an infinite wave
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4.5. Bound states

The energy level diagram for finite well

The electron with an energy greater than 
U0 (450 eV in this example) has too much 
energy to be trapped. Thus it is not 
confined and its energy is not quantized.

For a given well (e.g. U0=450 eV and L=100 pm) only a limited 
number of states can exist (in this case n=1,2,3,4). We say that 
up to a certain energy electron will be bound (trapped).

From:

we see that the energy E for an electron in 
any given state is less in the finite well 
than in the infinite well

mE2
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4.6. Quantum corrals

Lx
Ly

y

x

z
Rectangular corral

Two dimensional 2D infinitive potential well

An electron can be trapped in the rectangular
area with widths Lx and Ly as in 2D infinitive
potential well.
The rectangular corral might be on the
surface of a body that somehow prevents the
electron from moving parallel to the z axis
and thus from leaving the surface.

Solution of Schrödinger’s equation for the rectangular corral,
shows that, for the electron to be trapped, its matter wave must
fit into each of the two widths separately, just as the matter wave
of a trapped electron must fit into a 1D infinitive potential well.
This means the wave is separately quantized in Lx and Ly.
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The energy of the electron depends on both quantum
numbers and is the sum of the energy of the electron
along x axis and y axis.

nx, ny – quantum numbers, positive integers only

The energy level diagram for an electron 
trapped in a square corral Lx=Ly

Different states 
with the same 
energy are 
called 
degenerate

Lx=Ly

Example of degenerate 
states: 

for Lx=Ly the states 
characterized by quantum 
numbers nx=2; ny=1 and 
nx=1; ny=2 have the same 
energy E21=E12

Degenerate states cannot occur in a one-
dimensional well.

4.6. Quantum corrals
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Lx
Ly

y
x

z

Lz

Rectangular box
Three dimensional infinitive 

potential well

An electron can be trapped in 3 D
infinitive potential well – a rectangular
box with widths Lx,Ly,Lz.
Then from the Schrödinger’s equation
we get the energy of electron as:

In the three dimensional world (real world) there are three quantum
numbers to characterize the energetic state of an electron. In the
simple model of the infinite potential well (rectangular box) they are
denoted as: nx, ny, nz. The real 3D potential of an atom is more
complicated but still we get three quantum numbers.

4.6. Quantum corrals
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Examples of electron traps

Powders whose granules are small – in the nanometer range – change 
colour as compared with powder of larger size.

Nanocrystallites

For the infinite quantum well we 
have shown that the energy E of 
the electron is

Each such granule – each 
nanocrystallite – acts as a potential 
well for the electron trapped within it.
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When the width L of the well is decreased, the energy levels increase. 
The electron in the well will absorb light with higher energy i.e. shorter 
wavelength. The same is true for nanocrystallites. 
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Examples of electron traps

A given nanocrystallite can absorb photons with an energy above a 
certain threshold energy Et (=hft). Thus, the wavelength below a 
corresponding threshold wavelength

Nanocrystallites

will be absorbed while that of wavelength 
longer than λf will be scattered by the 
nanocrystallite. 

Therefore, when the size of a 
nanocrytallite is reduced, its colour 
changes ( from red to yellow, for 
instance).
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Examples of electron traps

Central semiconducting layer (purple) is deposited between two 
insulating layers forming a potential energy well in which electrons are 
trapped. The lower insulating layer is thin enough to permit electrons to 
tunnel through it if an appropriate potential difference is applied 
between two metal leads. In this way the number of electrons confined 
to the well can be controlled. 

Quantum dots –artificial atoms

Quantum dots can be constructed in two-dimensional arrays, and have 
promising applications in computing systems of great speed and 
storage capacity.
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Examples of electron traps

Quantum corral
With the use of STM, the scientists 
at IBM’s Almaden Research Center, 
moved Fe atoms across a carefully 
prepared Cu surface at low 
temperature 4K. Atoms forming a 
circle were named a quantum 
corral.  

A quantum coral during four 
stages of construction. Note the 
appearance of ripples caused by 
electrons trapped in the corral 
when it is almost complete.

This structure and especially the 
ripples inside it are the 
straightforward demonstration of 
the existence of matter waves. The 
ripples are due to electron waves.
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Conclusions

• The wavelike aspect of matter produces some surprising results. 
These effects are evident for potential energies with a steplike
structures: wells, walls, and barriers.

• The calculation of wave functions for barriers and wells involves 
solution of Schrödinger equation with the application of continuity 
conditions at boundaries between different values of the potential 
energy

• The results obtained are different from those for classical waves. 
One such feature of a special interest is the penetration of 
potential-energy barriers. The probability of tunneling might be 
small but this phenomenon is of great importance

• Examples of tunneling are: in the alpha decay, fusion of 
deuterons, STM, tunnel diodes and other electronic devices

• Electrons can be trapped in finite potential wells: nanocrystallites, 
quantum dots and corrals


