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Lecture 3.
Probability and elements of combinatorics

Introduction to theory of probability and statistics
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Outline:
● Definitions of probability
● Random and elementary events; sample space
● Relation of events
● Introduction to combinatorics and counting 
problems 

● Conditional probability
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Definitions of probability

● Classical 
● Geometric
● Frequency (von Mises)
● Axiomatic (Kołmogorow)
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Classical definition of probability

  N
n=AP a

First (classical) definition of probability was formulated by P.S. Laplace in 1812. 
Consider random experiment that results always in exactly one of N equally possible results.
Probability of event A is given as a ratio of number na of outcomes favorable to A to the number of all possible outcomes N

A is a subset of a sure event Ω. ΩA
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Geometric definition of probability
Introduced in order to treat the cases of infinite number of outcomes. 
Consider that in r-dimensional space where there exists a region G that contains a smaller region g. A random experiment consists in a random choice of a point in G assuming that all points are equally probable.
Probability of event A that randomly chosen point will be found in a region g  is given as
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Bertrand paradox
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In a given circle one draws at random a chord.
Calculate a probability that it will be longer than a side of equilateral triangle inscribed in a circle? 

There exist three possible solutions and three possible answers: ½, 1/3, ¼.
The source of paradox lies in the lack of precision. What does it mean random way in this case? 



The "random radius" method: Choose a radius of the circle, choose a point on the radius and construct the chord through this point and perpendicular to the radius. To calculate the probability in question imagine the triangle rotated so a side is perpendicular to the radius. The chord is longer than a side of the triangle if the chosen point is nearer the center of the circle than the point where the side of the triangle intersects the radius. The side of the triangle bisects the radius, therefore the probability a random chord is longer than a side of the inscribed triangle is 1/2.
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Bertrand paradox
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  2/14/21
4/14/3

)(
)( Gmeasure
gmeasure=AP



The "random endpoints" method: Choose two randompoints on the circumference of the circle and draw the chord joining them. To calculate the probability in question imagine the triangle rotated so its vertex coincides with one of the chord endpoints. Observe that if the other chord endpoint lies on the arc between the endpoints of the triangle side opposite the first point, the chord is longer than a side of the triangle. The length of the arc is one third of the circumference of the circle, therefore the probability that a random chord is longer than a side of the inscribed triangle is 1/3.
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  3/13
1

3
2

)(
)(  


Gmeasure
gmeasure=AP

α



The "random midpoint" method: Choose a point anywhere within the circle and construct a chord with the chosen point as its midpoint. The chord is longer than a side of the inscribed triangle if the chosen point falls within a concentric circle of 1/2 the radius of the larger circle. The area of the smaller circle is one fourth the area of the larger circle, therefore the probability a random chord is longer than a side of the inscribed triangle is 1/4.
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Frequency definition of probability
Proposed by R. von Mises in 1931. Has no drawbacks of classical nor geometric definition. Is intuitive and agrees with the observed laws concerning frequency. However, it is unacceptable as a definition of mathematical quantity ( a posteriori).
Probability of event A is a limit of frequency of this event when the number of experiments n tends to infinity 
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Axiomatic definition of probability

  1=ΩP

To each random event A we ascribe a number P(A), named a probability of this event that satisfies the following axioms: 
1. 0 ≤ P(A) ≤ 1.
2. Probability of a sure event equals to 1

3. (countable additivity of probability) Probability of an alternative of countable disjoint (mutually exclusive) events is equal to the sum of probabilities of these events: if A1, A2, …Є M, while for each pair of i, j (i≠j) the following condition is fulfilled Ai  Aj =Ø, then
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Consequences of axioms
Probability of sum of the mutually exclusive random events  A i B equals to the sum of probabilities of these events

(Kołmogorov, 1933)

       =BAwhere,BP+AP=BAP
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Random or elementary events

Among all random events we can distinguish some simple,  irreducible  ones that are characterized by a single outcome. These are elementary events.
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For each random experiment we consider a set of its all possible outcomes, i.e., sample space Ω . These outcomes are called random events.

Example:
All sets {k}, where k N if objects are being counted and the sample space is S = {0, 1, 2, 3, ...} (the natural numbers). 



Example of a random event
A coin is tossed twice. Possible outcomes are as follows:
● (T, T) – both tails
● (H, T) – head first, tail next
● (T, H) – tail first, head next
● (H, H) – both heads

Ω={(T, T); (H, T) ; (T, H); (H, H)} is a set of elementary events, i.e., the sample space

If the set of elementary events contains n-elements then the number of all random events is 2n
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Here we have 24 random events.
For instance:
A = {(T,T); (T,H); (H,T)} – at least one tail T
B = {(T,H); (T,T)} – tail in the first two essays
G = {(T,T)} – both tails 
H = {(T,H); (H,T)} – exactly one tail
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Example of a random event



Example for individual study

Count all random events (including sure and impossible ones) in the experiment that consists in throwing a dice. Determine the space of events. 
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Relations of events – Venn diagrams
Sum of events– when  at least one of events A or B takes place (union of sets) 

Product of events– both A and B happen (intersectionof sets) 

A∪ B

A∩B
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Complementary event– event A does not take place

Event A incites B (subset A is totally included in B) 

Events A and B are mutually exclusive

A'

BA

 =BA
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Introduction to combinatorics and counting problems 
Combinatorics concerns itself with finite collections of  discrete objects. With the growth of digital devices, especially digital computers, discrete mathematics has become more and more important.
Counting problems arise when the combinatorial problem is to count the number of different arrangements of collections of objects of a particular kind. Such counting problems arise frequently when we want to calculate probabilities and so they are of wider application than might appear at first sight. Some counting problems are very easy, others are extremely difficult.
Alan Slomson, An Introduction to Combinatorics, Chapman and Hall Mathematics,  1991
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Introduction to combinatorics and counting problems 
Problem I A café has the following menu
Tomato soup
Fruit juice
---
Lamb chops
Baked cod
Nut roll
---
Apple pie
Strawberry ice

How many different three course meals could you order?
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Introduction to combinatorics and counting problems 
Solution to problem I

soup juice

chops cod         roll chops cod       roll

pie ice pie ice pie ice pie ice pie ice pie ice
We would obtain 2x3x2=12 as the total of possible meals.
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Introduction to combinatorics and counting problems 
Problem II In a race with 20 horses, in how many ways the first three places can be filled?
Solution
There are 20 horses that can come first. Whichever horse comes first, there are 19 horses left that can come second. So there are 20x19=380 ways in which the first two places can be filled. In each of these 380 cases there are 18 horses which can come third. So there are:
20x19x18=380x18=6840 ways in which the first three positions can be filled. 
What is a difference between these two problems?

Introduction to theory of probability and statistics, Lecture 3 22



In many situations it is necessary to determine the number of elements of the set under considerations. 
We use simple arithmetic methods:
●sum rule
●product rule

coin toss dice throw 
drawing cards from a deck
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Introduction to combinatorics and counting problems 



Sum Rule
If two events are mutually exclusive, that is, they 
cannot occur at the same time, then we must apply the sum rule

Theorem:
If an event e1 can be realized in n1 ways, 
an event e2 in n2 ways, and
e1 and e2 are mutually exclusive
then the number of ways of both events occurring is 

n1+ n2
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There is a natural generalization to any sequenceof m tasks; namely the number of ways m mutually exclusive events can occur
n1 + n2 + … + nm-1 + nm

We can give another formulation in terms of sets.  Let A1, A2, …, Am be pairwise disjoint sets. Then
|A1  A2  …  Am | = |A1|  |A2|  …  |Am|
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Sum Rule



Principle of Inclusion-Exclusion (PIE)
Say there are two events, e1 and e2, for which there are n1 and n2 possible outcomes respectively.
Now, say that only one event can occur, not both
In this situation, we cannot apply the sum rule. Why?

… because we would be overcounting the number of 
possible outcomes.

• Instead we have to count the number of possible outcomes of e1 and e2 minus the number of possible outcomes in common to both; i.e., the number of ways to do both tasks
• If again we think of them as sets, we have

|A1  A2| =|A1| + |A2| - |A1 A2|
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Product Rule
If two events are not mutually exclusive (that is 
we do them separately), then we apply the product rule
Theorem: 
Suppose a procedure can be accomplished with 
two disjoint subtasks.  If there are
n1 ways of doing the first task and 
n2 ways of doing the second task, 
then there are n1.n2 ways of doing the overall procedure
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Application of sum and product rules
There are two towers at the entrance to the castle,. The first is protected by a two-digits „even” code while the second by a two-digits „odd” code. It is sufficient to break one code in order to enter. How many ways there are to the castle?
Even code.Possible tens: 2,4,6,8Possible units: 0,2,4,6,8Product rule: 5×4=20Odd code.Possible tens: 1,3,5,7,9Possible units: 1,3,5,7,9Product rule 5×5=25Sum rule:   25+20=45

28



Counting problems and introduction to combinatorics
- Ordered arrangement (sequence) = permutation
(1,2,3); (2,1,3); (3,1,2) etc.
- Order is not important (set, subset) = combination
{1,2,3}
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In both cases we have to distinguish: 
with or without replacement



Permutation

An ordered arrangement of k elements of a set of n elements is called an k-permutation
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Number of permutations depends on whether the elements of sequence can be repeated or not. The method of sampling is important: without replacement = no repetitions; with replacement = repetitions of elements are possible



Permutations without replacement
Example: Take into account a set of n=3-elements Z={a,b,c} and write down all possible k=2 permutations without replacement:

(a,b)  (b,a) (a,c)  (c,a) (b,c)  (c,b)
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The number of these permutations can be calculated as:
3x2=6
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Number of k-permutations without replacement drawn from a set of n elements can be calculated from the following formula:

Introduction to theory of probability and statistics, Lecture 3 32

)!(
!)(
kn

n=V k
n 

When k=n, 

Example:  (abc) (acb) (bac) (bca) (cab) (cba)

Permutations without replacement
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Permutations—without replacement

Think cards (w/o reshuffling) and seating 
arrangements.

Example: You are moderating a debate of 
gubernatorial candidates.  How many different ways can you seat the panelists in a row?  Call them Arianna, Buster, Camejo, Donald, and Eve. 
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 “Trial and error” method:
Systematically write out all possibilities:
A B C D E
A B C E D
A B D C E
A B D E C
A B E C D
A B E D C
.
.
.

Quickly becomes a pain!
Easier to figure out patterns using a probability tree!
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E

B
A

C
D
E

A
B

D
A

B
C
D

…….

Seat One:5 possible
Seat Two:only 4 possible Etc….

# of permutations = 5 x 4 x 3 x 2 x 1 = 5!
There are 5! ways to order 5 people in 5 chairs (since a person cannot repeat)
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Permutations—without replacement



What if you had to arrange 5 people in only 3 chairs (meaning 2 are out)?

 !2
!5

12
12345

x
xxxx

E
B
A

C
D
E

A
B D

A
B

C
D

Seat One:5 possible
Seat Two:Only 4 possible

E
B D

Seat Three:
only 3 possible

)!35(
!5


345 xx
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Permutations—without replacement



!5!0
!5

)!55(
!5 

Note this also works for 5 people and 5 chairs:
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Permutations—without replacement



5152)!252(
!52 x

How many two-card hands can I draw from a deck when order matters (e.g., ace of spades followed by ten of clubs is different than ten of clubs followed by ace of spades)

.

.

.

52 cards 51 cards
.
.
.
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Summary: order matters, without replacement
Formally, “order matters” and “without replacement”use factorials

)1)...(2)(1(or  
)!(

!
draws)!or  chairs cardsor  people (

cards)!or  people (



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n
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n
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Permutations—without replacement



Example: Take into account a set of n=3-elements Z={a,b,c} and write down all possible k=2 permutations  with replacement:
(a,a) (b,a) (c,a)
(a,b) (b,b) (c,b)
(a,c) (b,c) (c,c)
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Calculate the number of possible permutations:
3x3=32 = 9

Permutations—with replacement



Number of k-permutations with replacement drawn from a set of n elements can be calculated from the following formula:
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kk
n n=W )(

Problem: Electronic devices usually require a personal code to operate. This particular device uses 4-digits code. Calculate how many codes are possible.
Solution: Each code is represented by k=4 permutations with replacement of a set of 10 digits {0,1,2,3,4,5,6,7,8,9} 

00010104)4(
10 =W

Permutations—with replacement



36
1

6
 6 6, roll  way to1 )6,6( 2 P

When you roll a pair of dice (or 1 die twice), what’s the probability of rolling 6 twice?

What’s the probability of rolling a 5 and a 6?

36
2

6
6,5or  5,6 : ways2 )6&5( 2 P

Permutations—with replacement

Introduction to theory of probability and statistics, Lecture 3 42



Summary: order matters, with replacement

Formally, “order matters” and “with replacement” use powers

kevents of # the n  event)per  outcomes possible (# 
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Permutations—with replacement



Combination
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Combination containing  k elements drawn from a set of n elements is a k-elemental subset (order does not matter) composed of the elements of the set.

Number of combinations depends on whether the elements of subset can be repeated or not. The method of sampling is important: without replacement = no repetitions; with replacement = repetitions of elements are possible



Combination without replacements

:
{a,b} {a,c} {b,c}
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Calculate the number of subsets 6/2 = 3
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In general:

Example: Take into account a set of n=3-elements Z={a,b,c} and write down all possible k=2 combinations without replacement:



Number of k-combinations without replacement of a set containing n elements can be calculated from the following formula:
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Combination without replacements



Combinations—order doesn’t matter
Combination function, or “choosing”    




 n
kknC or     

Spoken: “n choose k”

Written sometimes as:
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Combinations

?
4849505152 xxxx

How many five-card hands can I draw from a deck when order does not matter?

.

.

.

52 cards 51 cards

.

.

.

.

.

.

.

.

.

.

.

.

50 cards 49 cards 48 cards
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Combinations

Denominator is a number of permutations without replacement.
5! = 120 

!5)!552(
!52

!5
4849505152hands card-5 of # total  xxxx

Introduction to theory of probability and statistics, Lecture 3 49



Combinations
How many unique 2-card sets out of 52 cards?

5-card sets?

r-card sets?
r-card sets out of n-cards?

!2)!252(
!52

2
5152

x

!5)!552(
!52

!5
4849505152

xxxx

!)!52(
!52
rr

!)!(
!
rrn

nn
r 



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Summary: combinations
If r objects are taken from a set of n objects without replacement and disregarding order, how many different samples are possible? 
Formally, “order doesn’t matter” and “without replacement” use choosing

!)!(
!
rrn

nn

r 



Introduction to theory of probability and statistics, Lecture 3 51



Examples—Combinations 
A lottery works by picking 6 numbers from 1 to 49.  How many combinations of 6 numbers could you choose?  

816,983,13!6!43
!4949

6





Which of course means that your probability of winning is 1/13,983,816!   
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Combinations with replacement
Example: Take into account a set of n=3-elements Z={a,b,c} and write down all possible k=2 combinations with replacement:

{a,a} {a,b} {a,c} {b,b}  {b,c}  {c,c}
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Calculate the number of combinations with replacements
6

In general:
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Summary of Counting Methods

Counting methods for computing probabilities

With replacement

Without replacement

Permutations—
order matters!

Combinations—
Order doesn’t 

matter

Without replacement
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With replacement



Conditional probability

    BP
BAP=B|AP 

General definition:

under assumption that P(B) > 0 (event B has to be possible)
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Useful expressions:

   
 

      1

0

=BAPAB
BP
AP=BAPBA
=BAP=BA

ΩAP=AP





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for any event A

Conditional probability



Example 
We are throwing a 6-sided die three times. Each time we have got a different number of dots. Calculate a probability that once we get a „5” assuming that each attempt gives different number.  

 
 

     Ω
Ω=BP

BAP=B|AP
Ω=BP
Ω=BAP







456
345

456
345
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