
A generalization of an independent set with application to

(Kq; k)-stable graphs

Andrzej Żak∗
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Abstract

We introduce a natural generalization of an independent set of a graph and give a sharp

lower bound on its size. The bound generalizes the widely known Caro and Wei result on the

independence number of a graph. We use this result in the following problem. Given non-

negative real numbers α, β the cost c(G) of a graph G is defined by c(G) = α|V (G)|+β|E(G)|.
We estimate the minimum cost of a (Kq; k)-vertex stable graph, i.e. a graph which contains a

clique Kq after removing any k of its vertices.

keywords: independent set; independence number; clique

1 Introduction

By a word graph we mean a simple graph in which multiple edges and loops are not allowed. Given

a graph G, V (G) denotes the vertex set of G and E(G) denotes the edge set of G. Furthermore,

|G| := |V (G)| is the order of G and ||G|| := |E(G)| is the size of G. Let NG(v) = {u : uv ∈ E(G)}
denote the set of neighbors of v in G, and let dG(v) (in short d(v)) denote the number of neighbors

of v in G, i.e. dG(v) = |NG(v)|. The minimum degree of G is denoted by δ(G).

A set I ⊂ V (G) is an independent set of G if a subgraph G[I] of G induced by I is edgeless. A

maximum independent set is a largest independent set for a given graph G and its size is denoted

α(G). We start with the following generalization of the concept of an independent set. A set

I ⊂ V (G) is called a p-independent set of G if a subgraph of G induced by I has chromatic number

less than or equal to p. In particular, a 1-independent set is an independent set. A maximum

p-independent set is a largest p-independent set for a given graph G and its size is denoted αp(G).

The well known result about the size of an independent set states that

Theorem 1 ([2, 12]) Let G be a graph. Then

α(G) ≥
∑

v∈V (G)

1

dG(v) + 1
. (1)

As a corollary of a more general result (see Theorem 6, Section 3) we obtain the following theorem.
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Theorem 2 Let G be a graph and p ≥ 1 an integer. If δ(G) ≥ p− 1, then

αp(G) ≥
∑

v∈V (G)

p

dG(v) + 1
. (2)

Moreover, if δ(G) ≥ p, then the equality holds if and only if G is a disjoint union of cliques.

We apply this result in the following problem. Suppose that we want to build a construction

having certain properties using elements from sets S1, ..., St. Each element from a set Si has a

given cost ci. Thus, the total cost (depending on the numbers and costs of used elements) of every

construction can be computed. The purpose is to find a feasible construction with minimal total

cost. We will consider this kind of problem in case where the feasible constructions can be modeled

by graphs. Naturally, the graphs in question are supposed to have some properties that depends

on the properties that are required for feasible constructions. In the paper we want that a feasible

graph G contains a given subgraph H. In fact, we require more. Some elements may get damaged,

hence, we want that even if some of them are spoiled, G still contains a copy of H.

Formally, let H be any graph and k a non-negative integer. A graph G is called (H; k)-stable

if G − S contains a subgraph isomorphic to H for every set S ⊂ V ∪ E with |S| ≤ k. Given a

cost α ≥ 0 of every vertex, and a cost β ≥ 0 of every edge, the total cost c(G) of G is defined by

c(G) = α|G|+β||G||. Then stab(α,β)(H; k) = min{c(G) : G is (H; k) stable} denotes the minimum

cost among the costs of all (H; k)-stable graphs.

Note that if S ⊂ V and α = 0, β = 1 then the above problem reduces to the problem of

finding minimum (H; k)-vertex stable graphs, with minimum size (= minimum cost) denoted by

stab(H; k). So far the exact value of stab(H; k) for any k is known in the case when H = C3,

C4, K4, K1,m [5], H = K5 [8], and H = Kq with k sufficiently large [13]. On the other hand, for

small k the value stab(H; k) is known when H = Km,n and k = 1, see [6, 7], and when H = Kn

and k ≤ n/2 + 1, see [9]. In all the above cases minimal vertex stable graphs are characterized.

Furthermore, stab(Cn; 1) is known for infinitely many n’s and for remaining n’s it has one of only

two possible values, see [4]. An upper and a lower bound on stab(Cn; k) for sufficiently large n is

also presented therein. There are also some general bounds on stab(H; k) that involve the minimal

degree, connectivity and the order of H, see [3, 14].

In this paper we explore the methods from [13] in order to obtain generalizations. On the

other hand, a ‘clear’ edge version (i.e. with S ⊂ E and α = 0, β = 1) has also been considered, see

[10, 11].

Observe that if α = 0 and H does not have isolated vertices, then after adding to or removing

from a (H; k)-stable graph any number of isolated vertices we still have a (H; k)-stable graph with

the same cost. So, in this particular case we will assume throughout the paper that no graph in

question has isolated vertices.

We end this section by the following simple proposition.

Proposition 3 Let G be a (H; k)-stable graph with minimum cost. If α ≥ 0 and β > 0 then each

vertex as well as each edge of G is contained in some copy of H. In particular, dG(v) ≥ δ(H) for

each vertex v ∈ V (G).

On the other hand, trivially, stab(α,0)(H; k) = α(|H| + k) with K|H|+k being a minimum (H; k)-

stable graph.
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2 Two inequalities

Proposition 4 Let (xi)
n
i=1 be a sequence of non-negative numbers and let x̄ = 1

n

∑n
i=1 xi. Then

n∑
i=1

1

xi + 1
≥ n 1

x̄+ 1
.

Proof. It is enough to show that the expression
∑n
i=1

1
xi+1 is minimal if all xi are equal to x̄.

Suppose on the contrary that S :=
∑n
i=1

1
xi+1 is minimal with xs 6= xt for some s, t ∈ [1, n].

Without loss of generality we assume that xt = xs + 2ε, where ε > 0. Let x′i = xi for i 6∈ {s, t},
and x′t = x′s = xs + ε. Let S′ =

∑n
i=1

1
x′
i+1 . Then

S′ = S +
2

xs + 1 + ε
− 1

xs + 1 + 2ε
− 1

xs + 1

= S +
2(xs + 1)(xs + 1 + 2ε)− (xs + 1)(xs + 1 + ε)− (xs + 1 + ε)(xs + 1 + 2ε)

(xs + 1)(xs + 1 + ε)(xs + 1 + 2ε)

= S − 2ε2

(xs + 1)(xs + 1 + ε)(xs + 1 + 2ε)
< S,

a contradiction with the minimality of S.

Proposition 5 Let (xi)
n
i=1 be a sequence of non-negative integers and let x̄ = 1

n

∑n
i=1 xi. Then

there exist m, 0 ≤ m ≤ n, such that 1
n (mdx̄e+ (n−m)bx̄c) = x̄ and

n∑
i=1

1

xi + 1
≥ m 1

dx̄e+ 1
+ (n−m)

1

bx̄c+ 1
.

Proof. It is enough to show that the expression
∑n
i=1

1
xi+1 is minimal if |xi − x̄| < 1 for all i.

Suppose on the contrary that S :=
∑n
i=1

1
xi+1 is minimal with |xs − x̄| ≥ 1 for some s ∈ [1, n].

If xs > x̄ (xs < x̄) then there exist xt such that xt < x̄ (xt > x̄). Without loss of generality we

assume that xs > xt + 1. Let x′i = xi for i 6∈ {s, t}, and x′s = xs − 1, x′t = xt + 1. Clearly (xi)
n
i=1

and (x′i)
n
i=1 have the same arithmetic mean. Let S′ :=

∑n
i=1

1
x′
i+1 . Then

S′ = S − 1

xs + 1
− 1

xt + 1
+

1

x′s + 1
+

1

x′t + 1

= S − 1

xs + 1
− 1

xt + 1
+

1

xs
+

1

xt + 2

= S − xs(xt + 1)(xt + 2) + xs(xs + 1)(xt + 2)− (xs + 1)(xt + 1)(xt + 2)− xs(xs + 1)(xt + 1)

xs(xs + 1)(xt + 1)(xt + 2)

= S − x2s + xs − x2t − 3xt − 2

xs(xs + 1)(xt + 1)(xt + 2)

< S − (xt + 1)2 + (xt + 1)− x2t − 3xt − 2

xs(xs + 1)(xt + 1)(xt + 2)
= S

a contradiction with the minimality of S.

3 Large induced subgraphs with bounded coloring number

The coloring number col(G) of a graph G is the least integer c for which there exists an ordering of

the vertices of G in which each vertex has fewer than c neighbors that are earlier in the ordering.
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Theorem 6 Let G be a graph of order n and minimum degree δ. If c ≥ 1 is an integer such that

δ ≥ c− 1, then G contains an induced subgraph H with coloring number col(H) ≤ c and order

|H| ≥
∑

v∈V (G)

c

dG(v) + 1
. (3)

Moreover, if δ ≥ c then the equality holds if and only if G is a disjoint union of cliques.

Proof. Let σ be an ordering of the vertices of G. For v ∈ V (G) let deg−σ (v) denote the number of

neighbors of v that are earlier in σ. Let Sσ denote the set of all vertices v with deg−σ (v) ≤ c − 1.

In what follows, we use an argument similar to the one that was used by Alon and Spencer [1] in

their proof of Caro [2] and Wei [12] result concerning independence number of graphs. We further

assume that c ≥ 2, because for c = 1 each set Sσ is an independent set and the under-mentioned

facts are well known. Given a random ordering σ, the probability that a vertex v has at most i

neighbors, i ≤ dG(v), earlier in the ordering σ is equal

Pr(deg−σ (v) ≤ i) =

(
n

dG(v)+1

)
(i+ 1)(dG(v))!(n− dG(v)− 1)!

n!
=

i+ 1

dG(v) + 1
.

Thus,

Pr(v ∈ Sσ) =
c

dG(v) + 1
.

Hence,

E (|Sσ|) =
∑

v∈V (G)

c

dG(v) + 1
.

Thus, there exists an ordering σ with the required number of vertices in Sσ, whence for a desired

subgraph H we can take the subgraph induced by Sσ, H = G[Sσ]. Furthermore, the equality in (3)

may hold only if |Sσ| is the same for every ordering σ (if there is a σ with |Sσ| <
∑
v∈V (G)

c
dG(v)+1 ,

then there is also a σ′ with |Sσ′ | >
∑
v∈V (G)

c
dG(v)+1 because the expectation is exactly that

number). Now we will prove that if δ ≥ c, then this is possible only for the disjoint union of

cliques. Let C be any component of G and let v ∈ V (C). Consider the following ordering σ of

vertices of C:

v1, v2, ..., vc−1, vc, vc+1, vc+2, ..., v|C|,

where vc+1 = v and v1, v2, ..., vc are any neighbors of v. Observe that vc+1 6∈ Sσ. Next consider an

ordering σ′

vc+1, v1, v2, ..., vc−1, vc, vc+2, ..., v|C|.

Note that since |Sσ| = |Sσ′ | and vc+1 ∈ Sσ′ , vc 6∈ Sσ′ . Thus, deg−σ′(vc) = c. Analogously we

obtain that deg−σ′′(vc−1) = c in an ordering σ′′ : vc, vc+1, v1, v2, ..., vc−1, vc+2, ..., v|C|, and so on.

Therefore, vertices v1, v2, ..., vc, vc+1 induce a clique. Since v and its neighbors (at least 2) have

been chosen arbitrarily, {v} ∪NG(v) induce a clique for each v ∈ V (C). This implies that C is a

clique. 2

Since the chromatic number of a graph is bounded by the coloring number, we obtain Theorem 2

as a corollary of Theorem 6.
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4 (Kq; k) stable graphs with minimum cost

Lemma 7 Let α ≥ 0 and β > 0 be real numbers. If G is (Kq; k)-stable graph with minimum cost,

then

|G| − (q − 1)
∑

v∈V (G)

1

dG(v) + 1
≥ k + 1. (4)

Moreover, if G is not a union of cliques then the inequality (4) is strong.

Proof. By Proposition 3, δ(G) ≥ q − 1. Thus, by Theorem 2, there exists a set I ⊂ V (G) such

that χ(G[I]) ≤ q − 1 and |I| ≥
∑
v∈V (G)

q−1
dG(v)+1 where the latter inequality is strong if G is not

a union of cliques. Since χ(G[I]) ≤ q − 1, G[I] does not contain any Kq. Thus and since G is

(Kq; k)-stable, |G| − |I| ≥ k + 1. 2

Theorem 8 Let α ≥ 0, β > 0 be real numbers and k ≥ 0, q ≥ 2 be integers. Let r =⌊√
(q − 1)(q − 2 + 2α

β )
⌋
− q.

1. If α(q − 1) > β(2q + qr + (r2 + r − 2)/2), then

stab(α,β)(Kq; k) ≥ (k + 1)
2q + r

q + 1 + r

(
α+ β

(
q +

r − 1

2

))
, (5)

with equality if and only if k = a(q + 1 + r)− 1 for some positive integer a. Moreover, if G

is (Kq; k)-stable with the cost given by right hand side of inequality (5), then G is a disjoint

union of cliques K2q+r.

2. If α(q − 1) = β(2q + qr + (r2 + r − 2)/2), then

stab(α,β)(Kq; k) ≥ (k + 1)
2q + r

q + 1 + r

(
α+ β

(
q +

r − 1

2

))
, (6)

with equality if and only if k = a(q + 1 + r) + b(q + r) − 1 for some positive integers a, b.

Moreover, if G is (Kq; k)-stable with the cost given by the right hand side of inequality (6)

then G is a disjoint union of cliques K2q+r and K2q−1+r.

3. If α(q − 1) < β(2q + qr + (r2 + r − 2)/2), then

stab(α,β)(Kq; k) ≥ (k + 1)
2q − 1 + r

q + r

(
α+ β

(
q +

r − 2

2

))
, (7)

with equality if and only if k = a(q + r) − 1 for some positive integer a. Moreover, if G is

(Kq; k)-stable with the cost given by right hand side of inequality (7) then G is a disjoint

union of cliques K2q−1+r.

Proof. Let

c0 = (k + 1) ·min

{
2q − 1 + r

q + r

(
α+ β

(
q +

r − 2

2

))
,

2q + r

q + 1 + r

(
α+ β

(
q +

r − 1

2

))}
.

Let G be a (Kq; k)-stable graph with minimum cost. One can check that

2q + r

q + 1 + r

(
α+ β

(
q +

r − 1

2

))
+

2q − 1 + r

q + r
· α(q − 1)− β(2q + qr + (r2 + r − 2)/2)

(2q − 1 + r)(q + 1 + r)
(8)

=
2q − 1 + r

q + r

(
α+ β

(
q +

r − 2

2

))
.
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Hence, in order to prove lower bounds (5), (6) and (7), it suffices to show that stab(α,β)(Kq; k) ≥ c0.

By Lemma 7 and Proposition 4 we have that

|G| ≥ (q − 1)
∑

v∈V (G)

1

dG(v) + 1
+ k + 1 ≥ |G| q − 1

dG + 1
+ k + 1, and so

|G| ≥ (k + 1)
dG + 1

dG − q + 2
, (9)

where dG = 2||G||
|G| = 1

|G|
∑
v∈V (G) dG(v) is the average degree of G. Thus, by (9),

c(G) = α|G|+ β||G|| = α|G|+ βdG
2
|G| ≥

(
α+

βdG
2

)
(k + 1)

dG + 1

dG − q + 2
. (10)

Recall that, by Proposition 3, dG ≥ q − 1. Consider the following function

f(x) =

(
α+

βx

2

)
(k + 1) · x+ 1

x− q + 2
, x ≥ q − 1.

Note that the derivative of f is equal to

f ′(x) = (k + 1)

(
β

2

x+ 1

x− q + 2
+ (α+

βx

2
)

1− q
(x− q + 2)2

)
= (k + 1)β

x2 + x(4− 2q) + 2αβ + 2− q
(x− q + 2)2

.

Thus

f ′(x) ≥ 0⇐⇒ x2 + x(4− 2q) + 2
α

β
+ 2 ≥ 0.

Since ∆ = 4(q − 1)(q − 2 + 2α/β), we obtain that f is decreasing for x ≤ x0 and increasing for

x ≥ x0 where x0 = q − 2 +
√

(q − 1)(q − 2 + 2α
β ). Note that

2q − 2 + r = q − 2 +

⌊√
(q − 1)(q − 2 +

2α

β
)

⌋
≤ x0 (11)

≤ q − 2 +

⌊√
(q − 1)(q − 2 +

2α

β
)

⌋
+ 1 = 2q − 1 + r.

Therefore, we can assume that dG ∈ [2q − 2 + r, 2q − 1 + r] because otherwise, by (10) and by the

above mentioned property of f ,

c(G) > min{f(2q − 2 + r), f(2q − 1 + r)}

= min{(k + 1)(α+
β(2q − 2 + r)

2
)
2q − 1 + r

q + r
, (k + 1)(α+

β(2q − 1 + r)

2
)

2q + r

q + r + 1
}

= (k + 1) ·min

{
2q − 1 + r

q + r

(
α+ β(q +

r − 2

2
)

)
,

2q + r

q + 1 + r

(
α+ β(q +

r − 1

2
)

)}
= c0.

Recall that

c(G) = α|G|+ β||G|| = (α+
βdG

2
)|G|.

Thus, given an average degree dG of G, c(G) is minimal if |G| is minimal. Since dG ∈ [2q − 2 +

r, 2q − 1 + r], by Lemma 7 and Proposition 5, we have

|G| ≥ m q − 1

2q − 1 + r
+ (|G| −m)

q − 1

2q + r
+ k + 1, and∑

v∈V (G)

dG(v) = m(2q − 2 + r) + (|G| −m)(2q − 1 + r), (12)
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for some m, 0 ≤ m ≤ |G|. Hence,

|G| ≥ (k + 1)
2q + r

q + 1 + r
+m

q − 1

(2q − 1 + r)(q + 1 + r)
. (13)

Furthermore, if equality holds, then G is a disjoint union of cliques. Thus, by (12) and (13),

c(G) = α|G|+ β||G|| ≥ α(k + 1)
2q + r

q + 1 + r
+ αm

q − 1

(2q − 1 + r)(q + 1 + r)
+
β

2

∑
v∈V (G)

dG(v)

= α(k + 1)
2q + r

q + 1 + r
+ αm

q − 1

(2q − 1 + r)(q + 1 + r)

+
β

2
(m(2q − 2 + r) + (|G| −m)(2q − 1 + r)) (14)

= α(k + 1)
2q + r

q + 1 + r
+ αm

q − 1

(2q − 1 + r)(q + 1 + r)
− β

2
m+

β

2
|G|(2q − 1 + r)

≥ α(k + 1)
2q + r

q + 1 + r
+ αm

q − 1

(2q − 1 + r)(q + 1 + r)
− β

2
m

+
β

2
(2q − 1 + r)(k + 1)

2q + r

q + 1 + r
+
β

2
m

q − 1

q + 1 + r

= (k + 1)
2q + r

q + 1 + r

(
α+ β(q +

r − 1

2
)

)
+m

α(q − 1)− β(2q + qr + (r2 + r − 2)/2)

(2q − 1 + r)(q + 1 + r)
.

Thus, if α(q − 1) ≥ β(2q + qr + (r2 + r − 2)/2), then c(G) ≥ c0. On the other hand if α(q − 1) <

β(2q + qr + (r2 + r − 2)/2), then the minimum in (14) is obtained for m = |G|. In this case, by

(12),

|G| ≥ (k + 1)
2q − 1 + r

q + r
,

so

c(G) = α|G|+ β||G|| = α|G|+ β

2
|G|(2q − 2 + r)

≥
(
α+ β

(
q +

r − 2

2

))
(k + 1)

2q − 1 + r

q + r
. (15)

Therefore, c(G) ≥ c0, as well. Furthermore, if α(q − 1) > β(2q + qr + (r2 + r − 2)/2) and

c(G) = c0, then, by formula (14), m = 0. Hence, G is a disjoint union of cliques K2q+r. Similarly,

if α(q − 1) = β(2q + qr + (r2 + r − 2)/2) and c(G) = c0, then G is the disjoint union of cliques

K2q−1+r and K2q+r (m can be arbitrary). Finally, if α(q − 1) < β(2q + qr + (r2 + r − 2)/2) and

c(G) = c0, then m = |G|, so G is the disjoint union of cliques K2q−1+r.

Therefore, it remains to show that indeed c(G) = c0 in the above cases. Note that aK2q+r

is (Kq; a(q + 1 + r) − 1)-stable, aK2q−1+r is (Kq; a(q + r) − 1)-stable, and aK2q+r + bK2q−1+r

is (Kq; a(q + 1 + r) + b(q + r) − 1)-stable. Suppose that k = a(q + 1 + r) + b(q + r) − 1 and
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α(q − 1) = β(2q + qr + (r2 + r − 2)/2). Hence,

c(aK2q+r + bK2q−1+r) =a

(
α(2q + r) + β

(2q + r)(2q + r − 1)

2

)
+ b

(
α(2q + r − 1) + β

(2q + r − 1)(2q + r − 2)

2

)
=a (q + 1 + r)

2q + r

q + 1 + r
(α+ β(q + (r − 1)/2))

+ b (q + r)
2q + r − 1

q + r
(α+ β(q + (r − 2)/2))

=(k + 1)
2q + r

q + 1 + r
(α+ β(q + (r − 1)/2)) ,

by (8), as required. Similar (and easier) computations can be made in the remaining cases. 2

For two special cases (α = β = 1 and α = 0, β = 1) we obtain the following corollaries.

Corollary 9 Let q ≥ 2. If k ≥ (q − 1)(q − 2)− 1, then

stab(1,1)(Kq; k) = (2q − 1)(k + 1).

Moreover, if G is a (Kq; k)-stable with c(G) = (2q− 1)(k+ 1) then G is a disjoint union of cliques

K2q−2 and K2q−1.

Proof. Note that in this case r = −1 and the situation from Theorem 8 case 2 occurs. Thus,

stab(1,1)(Kq; k) = (2q−1)(k+1) for every k = aq+b(q−1)−1. On the other hand (q−1)(q−2)−1

is the Frobenious number for {q, q− 1}, namely the largest integer that cannot be presented in the

form aq + b(q − 1). 2

Corollary 10 ([13]) Let q ≥ 2. If k ≥ (q − 3)(q − 2)− 1, then

stab(Kq; k) = (2q − 3)(k + 1).

Moreover, if G is a (Kq; k)-stable with ||G|| = (2q− 3)(k+ 1) then G is a disjoint union of cliques

K2q−3 and K2q−2.
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