On $(K_q; k)$ -stable graphs

Andrzej Żak*

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

August 30, 2012

Abstract

A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H even after removing any k of its vertices. By $\mathrm{stab}(H;k)$ we denote the minimum size among the sizes of all (H;k)-vertex stable graphs. Given an integer $q \geq 2$, we prove that, apart of some small values of k, $\mathrm{stab}(K_q;k) = (2q-3)(k+1)$. This confirms in the affirmative the conjecture of Dudek et al. [(H,k) stable graphs with minimum size, Discuss. Math. Graph Theory 28(1) (2008) 137–149]. Furthermore, we characterize the extremal graphs.

1 Introduction

By the word graph we mean a simple graph without loops and multiple edges. Given a graph G, V(G) denotes the vertex set of G and E(G) denotes the edge set of G. Furthermore, |G| := |V(G)| is the order of G and |G|| := |E(G)| is the size of G.

The following problem has attracted some attention recently. Let H be any graph and k a non-negative integer. A graph G is called (H;k)-vertex stable (in short (H;k)-stable) if G contains a subgraph isomorphic to H even after removing any k of its vertices. Then $\mathrm{stab}(H;k)$ denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. A (H;k)-stable graph with minimum size shall be called a $\min(H;k)$ -stable graph. Note that if H does not have isolated vertices then after adding to or removing from a (H;k)-vertex stable graph any number of isolated vertices we still have a (H;k)-vertex stable graph with the same size. Therefore, in the sequel we assume that no graph in question has isolated vertices.

The notion of (H;k)-vertex stable graphs was introduced in [4] (an edge version of this notion was also considered, see [9, 10]). So far the above problem has been mainly investigated for specified graphs including cycles [3, 4], complete bipartite graphs [5, 6], and above all, complete graphs [4, 7, 8]. In [4] it was proved that $\operatorname{stab}(K_3;k) = 3(k+1)$ and $\operatorname{stab}(K_4;k) = 5(k+1)$, and the authors conjectured that $\operatorname{stab}(K_q;k) = (2q-3)(k+1)$ for $k \geq k(q)$ for some sufficiently large integer k(q). In [7] the authors gave the value of $\operatorname{stab}(K_5;k)$ for all k and characterized minimum $(K_q;k)$ -stable graphs for q=3,4,5 and all k. In particular they confirmed in the affirmative the above mentioned conjecture in case q=5 with k(5)=5. In this paper we present a lower bound on $\operatorname{stab}(K_q;k)$ for all $k \geq 0$ and $q \geq 2$. As a result, we confirm the above mentioned conjecture for all remaining q's with k(q)=(q-3)(q-2)-1. Furthermore, we characterize the minimum graphs. We also derive the value of $\operatorname{stab}(K_6;k)$ for all k.

^{*}The author was partially supported by the Polish Ministry of Science and Higher Education.

2 General conditions

Recall the following simple observation.

Proposition 1 ([4]) Let δ_H be the minimum degree of a graph H. Then in any minimum (H;k)-stable graph G, $d_G(v) \geq \delta_H$ for each vertex $v \in G$.

The following theorem may be seen as a necessary condition for a graph G to be a minimum (H;k)-stable graph.

Theorem 2 If G is a minimum (H; k)-stable graph then

$$|G| - \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v) + 1} \ge k + 1.$$
 (1)

Moreover, if G is not a union of cliques then the inequality (1) is strong.

Proof. By Proposition 1 we assume that minimum degree of G is at least δ_H . Let σ be an ordering of the vertices of G. For $v \in V(G)$ let $\deg_{\sigma}^-(v)$ denote the number of neighbors of v that are on the left from v in ordering σ . Let S_{σ} denote the set of all vertices v with $\deg_{\sigma}^-(v) \leq \delta_H - 1$. Note that by removing from G all vertices from $V(G) \setminus S_{\sigma}$ we spoil all copies of H. Indeed, we can consecutively (from the right to the left) eliminate all vertices from S_{σ} because at each time the analyzed vertex has degree $\leq \delta_H - 1$ (and therefore cannot be in any copy of H contained in a graph induced by it and the vertices from $V(G) \setminus S_{\sigma}$ that are earlier in the ordering σ). Thus, since G is (H;k)-stable, $|G| - |S_{\sigma}| \geq k + 1$ for each ordering σ .

Therefore, it suffices to find an ordering σ with $|S_{\sigma}| \geq \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v)+1}$. We will achieve this by an argument similar to the one that was used by Alon and Spencer [1] in their proof of Caro [2] and Wei [11] result concerning independence number of graphs. We further assume that $\delta_H \geq 2$, because for $\delta_H = 1$ each set S_{σ} is an independent set and these facts are well known Caro and Wei theorem. Given a random ordering σ , the probability that a vertex v has at most i, $i \leq d_G(v)$, neighbors on its left side in the ordering σ is equal to

$$Pr(\deg_{\sigma}^{-}(v) \le i) = \frac{\binom{n}{d_{G}(v)+1}(i+1)(d_{G}(v))!(n-d_{G}(v)-1)!}{n!} = \frac{i+1}{d_{G}(v)+1}.$$

Thus,

$$Pr(v \in S_{\sigma}) = \frac{\delta_H}{d_G(v) + 1}.$$

Hence,

$$E(|S_{\sigma}|) = \sum_{v \in V(G)} \frac{\delta_H}{d_G(v) + 1}.$$

Thus, there exists an ordering σ with the required number of vertices in S_{σ} . Furthermore, the equality in (1) may hold only if $|S_{\sigma}|$ is the same for every ordering σ (if there is a σ with $|S_{\sigma}| < \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v)+1}$, then there is also a σ' with $|S_{\sigma'}| > \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v)+1}$ because the expectation is exactly that number). Now we will prove that if G is minimum (H; k)-stable, then this is possible only for the disjoint union of cliques.

Let C be any component of G and let $v \in V(C)$. Let $\delta = \delta_H$. Consider the following ordering σ of vertices of C:

$$v_1, v_2, ..., v_{\delta}, v_{\delta+1}, v_{\delta+2}, ..., v_{|C|},$$

where $v_{\delta+1} = v$ and $v_1, v_2, ..., v_{\delta}$ are any neighbours of v (recall that each vertex of G has at least δ neighbors). Next consider an ordering σ'

$$v_{\delta+1}, v_1, v_2, ..., v_{\delta}, v_{\delta+2}, ..., v_{|C|}$$

Note that since $|S_{\sigma}| = |S_{\sigma'}|$ and $v_{\delta+1} \in S_{\sigma'}$, $v_{\delta} \notin S_{\sigma'}$. Thus, $\deg_{\sigma'}(v_{\delta}) = \delta$. Analogously we obtain that $\deg_{\sigma''}(v_{\delta-1}) = \delta$ in an ordering $\sigma'' : v_{\delta}, v_{\delta+1}, v_1, v_2, ..., v_{\delta-1}, v_{\delta+2}, ..., v_{|C|}$, and so on. Therefore, vertices $v_1, v_2, ..., v_{\delta}, v_{\delta+1}$ induce a clique. Since v and its neighbours have been chosen arbitrarily, $\{v\} \cup N_G(v)$ induce a clique for each $v \in V(C)$. This implies that C is a clique. \Box

Corollary 3 Let H be any graph and let δ_H denote the minimum degree of H. Then

$$\operatorname{stab}(H;k) \ge (k+1) \left(\delta_H + \sqrt{\delta_H(\delta_H - 1)} - 1/2 \right).$$

Proof. Clearly, it suffices to prove the bound on the size for minimum (H; k)-stable graphs. Let G be such a graph. By Theorem 2 we have that

$$|G| \ge \delta_H \sum_{v \in V(G)} \frac{1}{d_G(v) + 1} + k + 1 \ge |G| \frac{\delta_H}{d_G + 1} + k + 1,$$
 (2)

where $d_G = \frac{2||G||}{|G|}$ is the average degree of G. Note that the latter inequality follows from the fact that the expression $\sum_{j=1}^{l} \frac{1}{x_j}$ with $\sum_{j=1}^{l} x_j = const$ (the constant being equal to 2||G|| + |G| in our case) and $x_j > 0$, is minimal if all the x_j are equal. Indeed, suppose on the contrary that $S := \sum_{j=1}^{l} \frac{1}{x_j}$ is minimal with $x_s \neq x_t$ for some $s, t \in [1, l]$. Without loss of generality we assume that $x_t = x_s + 2\epsilon$, where $\epsilon > 0$. Let $x'_j = x_j$ for $j \notin \{s, t\}$, and $x'_t = x'_s = x_s + \epsilon$. Clearly $\sum_{j=1}^{l} x'_j = \sum_{j=1}^{l} x_j$. Let $S' = \sum_{j=1}^{l} \frac{1}{x'_j}$. Then

$$S' = S + \frac{2}{x_s + \epsilon} - \frac{1}{x_s + 2\epsilon} - \frac{1}{x_s} = S + \frac{2x_s(x_s + 2\epsilon) - x_s(x_s + \epsilon) - (x_s + \epsilon)(x_s + 2\epsilon)}{x_s(x_s + \epsilon)(x_s + 2\epsilon)}$$
$$= S - \frac{2\epsilon^2}{x_s(x_s + \epsilon)(x_s + 2\epsilon)} < S,$$

a contradiction with the minimality of S.

Thus, by (2),

$$||G|| = \frac{d_G}{2}|G| \ge \frac{k+1}{2} \cdot \frac{d_G(d_G+1)}{d_G+1-\delta_H}.$$

By examining the derivative of the function $f(x) = \frac{x(x+1)}{x+1-\delta_H}$ we obtain that f has minimum in $x_0 = \delta_H + \sqrt{\delta_H(\delta_H - 1)} - 1$. Hence, $||G|| \ge \frac{k+1}{2} f(x_0) = (k+1) \left(\delta_H + \sqrt{\delta_H(\delta_H - 1)} - 1/2\right)$. \square

3 Complete graphs

Theorem 4 Let G be a $(K_a; k)$ -stable graph, $q \geq 2$ and $k \geq 0$. Then

$$||G|| \ge (2q - 3)(k + 1),\tag{3}$$

with equality if and only if G is a disjoint union of cliques K_{2q-3} and K_{2q-2} .

Proof. We may assume that G is a minimum $(K_q;k)$ -stable graph. Similarly as in the proof of Corollary 3 we have $||G|| \geq \frac{k+1}{2} \cdot \frac{d_G(d_G+1)}{d_G+1-(q-1)}$. By examining the derivative of the function $f(x) = \frac{x(x+1)}{x+1-(q-1)}$ we obtain that f(x) is decreasing for $x \leq x_0$ and increasing for $x \geq x_0$ where $x_0 = q-1+\sqrt{(q-1)(q-2)}-1$, $2q-4 \leq x_0 \leq 2q-3$. On the other hand, f(2q-4)=f(2q-3)=2(2q-3). Therefore, the lower bound (3) can be achieved only if $d_G \in [2q-4,2q-3]$. Then the sum $\sum_{v \in V(G)} \frac{1}{d_G(v)+1}$ is minimal if degrees of vertices of G differ as little as possible from d_G . Thus, we may assume that $d_G(v) \in \{2q-4,2q-3\}$ for every $v \in V(G)$. Let m denote the number of vertices of G with degree equal to 2q-3. Hence,

$$\sum_{v \in V(G)} \frac{1}{d_G(v) + 1} \ge m \frac{1}{2q - 2} + (|G| - m) \frac{1}{2q - 3} = \frac{2(q - 1)|G| - m}{2(q - 1)(2q - 3)},\tag{4}$$

with equality if and only if $d_G(v) \in \{2q-4, 2q-3\}$ for every $v \in V(G)$. Therefore, by Theorem 2 we have

$$|G| - \frac{2(q-1)|G| - m}{2(2q-3)} \ge k+1$$
, and so (5)
 $|G| \ge (k+1)\frac{2q-3}{q-2} - \frac{m}{2(q-2)}$,

with equality if and only if G is a disjoint union of cliques. Thus,

$$||G|| \ge \frac{m(2q-3) + (|G|-m)(2q-4)}{2}$$

$$\ge \frac{m + (k+1)\frac{2q-3}{q-2}(2q-4) - \frac{m}{2q-4}(2q-4)}{2}$$

$$= (k+1)(2q-3)$$
(6)

with equality if and only if G is the disjoint union of cliques K_{2q-3} and K_{2q-2} .

Theorem 5 Let $q \ge 2$, $k \ge 0$ be non-negative integers. Then

$$stab(K_q; k) > (2q - 3)(k + 1).$$

with equality if and only if k = a(q-2) + b(q-1) - 1 for some non-negative integers a, b. In particular,

$$stab(K_q; k) = (2q - 3)(k + 1)$$
 for $k > (q - 3)(q - 2) - 1$.

Furthermore, if G is a $(K_q; k)$ -stable with ||G|| = (2q - 3)(k + 1) then G is a disjoint union of cliques K_{2q-3} and K_{2q-2} .

Proof. It is easy to see that $G = aK_{2q-3} + bK_{2q-2}$ is $(K_q; a(q-2) + b(q-1) - 1)$ -stable. On the other hand (q-3)(q-2) - 1 is the Frobenious number for $\{q-2, q-1\}$, namely the largest integer that canot be presented in the form a(q-2) + b(q-1). Lower bounds follows from Theorem 4. \square

4 Concluding Remarks

Apart of some small values of k, we have determined the exact value of $\operatorname{stab}(K_q; k)$ for all q, together with minimum graphs. In [8] it is proved that for $q \geq 6$ and $k \leq q/2 + 1$ the only $(K_q; k)$ -stable graph with minimum size is isomorphic to K_{q+k} . Thus, $\operatorname{stab}(K_6; k)$ is known for all

k except $k \in \{5, 6, 10\}$. In these cases Theorem 5 implies that $\operatorname{stab}(K_6; k) \geq 9(k+1)+1$. Since the graphs K_{11} , $K_8 \cup K_9$ and $K_{10} \cup K_{11}$ are, respectively, $(K_6; 5)$, $(K_6; 6)$ and $(K_6; 10)$ -stable we have: $\operatorname{stab}(K_6; 5) = 55$, $\operatorname{stab}(K_6; 6) = 64$ and $\operatorname{stab}(K_6; 10) = 100$. Therefore, the value of $\operatorname{stab}(K_6; k)$ is known for all k. Similarily, $\operatorname{stab}(K_7; k)$ is known for all k except $k \in \{6, 7, 8, 12, 13, 18\}$. However, for $k \in \{6, 8, 12, 13, 18\}$, $\operatorname{stab}(K_7; k)$ can be computed in an analogous way as previously. Hence, the first unknown value is $\operatorname{stab}(K_7; 7)$.

References

- [1] N. Alon, J. Spencer, The Probabilistic Method, John Wiley 1992.
- [2] Y. Caro, New Results on the Independence Number, Technical Report, Tel-Aviv University, 1979.
- [3] S. Cichacz, A. Görlich, M. Zwonek and A. Żak, On $(C_n; k)$ stable graphs, Electron. J. Combin. 18(1) (2011) #P205.
- [4] A. Dudek, A. Szymański, M. Zwonek, (H, k) stable graphs with minimum size, Discuss. Math. Graph Theory 28(1) (2008) 137–149.
- [5] A. Dudek, M. Zwonek, (H, k) stable bipartite graphs with minimum size, Discuss. Math. Graph Theory, 29 (2009) 573–581.
- [6] A. Dudek, A. Zak, On vertex stability with regard to complete bipartite subgraphs, Discuss. Math. Graph Theory 30 (2010) 663-669.
- [7] J-L. Fouquet, H. Thuillier, J-M. Vanherpe and A.P. Wojda, On $(K_q; k)$ vertex stable graphs with minimum size, Discrete Math. 312 (2012) 2109–2118.
- [8] J-L. Fouquet, H. Thuillier, J-M. Vanherpe and A.P. Wojda, On $(K_q; k)$ stable graphs with small k, Electronic J. Combin. 19 (2012) #P50.
- [9] P. Frankl and G.Y. Katona, Extremal k-edge Hamiltonian hypergraphs, Discrete Math. 308 (2008) 1415-1424.
- [10] I. Horváth, G.Y. Katona, Extremal P₄-stable graphs, Discrete Appl. Math. 16 (2011) 1786–1792.
- [11] V.K. Wei, A Lower Bound on the Stability Number of a Simple Graph, Technical memorandum, TM 81 - 11217 - 9, Bell laboratories, 1981.