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Abstract
A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H even
after removing any k of its vertices. By stab(H;k) we denote the minimum size among the
sizes of all (H;k)-vertex stable graphs. Given an integer ¢ > 2, we prove that, apart of some
small values of k, stab(Kg; k) = (2¢—3)(k+1). This confirms in the affirmative the conjecture
of Dudek et al. [(H, k) stable graphs with minimum size, Discuss. Math. Graph Theory 28(1)
(2008) 137-149]. Furthermore, we characterize the extremal graphs.

1 Introduction

By the word graph we mean a simple graph without loops and multiple edges. Given a graph G,
V(G) denotes the vertex set of G and E(G) denotes the edge set of G. Furthermore, |G| := |V(G)]
is the order of G and ||G|| := |E(G)] is the size of G.

The following problem has attracted some attention recently. Let H be any graph and k a
non-negative integer. A graph G is called (H; k)-vertez stable (in short (H; k)-stable) if G contains
a subgraph isomorphic to H even after removing any k of its vertices. Then stab(H;k) denotes
the minimum size among the sizes of all (H;k)-vertex stable graphs. A (H;k)-stable graph with
minimum size shall be called a minimum (H; k)-stable graph. Note that if H does not have isolated
vertices then after adding to or removing from a (H; k)-vertex stable graph any number of isolated
vertices we still have a (H; k)-vertex stable graph with the same size. Therefore, in the sequel we
assume that no graph in question has isolated vertices.

The notion of (H;k)-vertex stable graphs was introduced in [4] (an edge version of this
notion was also considered, see [9, 10]). So far the above problem has been mainly investigated for
specified graphs including cycles [3, 4], complete bipartite graphs [5, 6], and above all, complete
graphs [4, 7, 8]. In [4] it was proved that stab(K3;k) = 3(k + 1) and stab(K4; k) = 5(k + 1), and
the authors conjectured that stab(Kg; k) = (2¢ — 3)(k + 1) for k > k(q) for some sufficiently large
integer k(g). In [7] the authors gave the value of stab(K5; k) for all k and characterized minimum
(Ky; k)-stable graphs for ¢ = 3,4,5 and all k. In particular they confirmed in the affirmative the
above mentioned conjecture in case ¢ = 5 with k(5) = 5. In this paper we present a lower bound
on stab(Ky; k) for all k£ > 0 and ¢ > 2. As a result, we confirm the above mentioned conjecture
for all remaining ¢’s with k(¢) = (¢ — 3)(¢ — 2) — 1. Furthermore, we characterize the minimum
graphs. We also derive the value of stab(Kg; k) for all k.
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2 General conditions

Recall the following simple observation.

Proposition 1 ([4]) Let 0y be the minimum degree of a graph H. Then in any minimum (H;k)-
stable graph G, dg(v) > 0 for each vertex v € G.

The following theorem may be seen as a necessary condition for a graph G to be a minimum
(H; k)-stable graph.

Theorem 2 If G is a minimum (H;k)-stable gmph then

—og Y Tk (1)

veV(G) + 1
Moreover, if G is not a union of cliques then the inequality (1) is strong.

Proof. By Proposition 1 we assume that minimum degree of G is at least 0. Let o be an ordering
of the vertices of G. For v € V(G) let deg, (v) denote the number of neighbors of v that are on
the left from v in ordering o. Let S, denote the set of all vertices v with deg, (v) < dy — 1. Note
that by removing from G all vertices from V(G) \ S, we spoil all copies of H. Indeed, we can
consecutively (from the right to the left) eliminate all vertices from S, because at each time the
analized vertex has degree < 0y — 1 (and therefore cannot be in any copy of H contained in a
graph induced by it and the vertices from V(G) \ S, that are earlier in the ordering o). Thus,
since G is (H; k)-stable, |G| — |Ss| > k + 1 for each ordering o.

Therefore, it suffices to find an ordering o with [S;| > 61 -, cv () m.

this by an argument similar to the one that was used by Alon and Spencer [1] in their proof of

‘We will achieve

Caro [2] and Wei [11] result concerning independence number of graphs. We further assume that
dg > 2, because for y = 1 each set S, is an independent set and these facts are well known
Caro and Wei theorem. Given a random ordering o, the probability that a vertex v has at most i,

i < dg(v), neighbors on its left side in the ordering o is equal to

Pr(deg- (1) < i) (ae (1) G+ 1)(dc;:!1))!(n —de(v) 1) dGi(j) 1+ )
Thus,
Pr(veS,) = dG(‘i’ﬁl.
Hence,
E(S)= 3 dcf;;l
veV(G)

Thus, there exists an ordering ¢ with the required number of vertices in S,. Furthermore, the
equality in (1) may hold only if |S,| is the same for every ordering o (if there is a o with
1Se| < 6m D evia) dc(v)+1’ then there is also a o’ with |So/| > 0m 3 cv(q) W because
the expectation is exactly that number). Now we will prove that if G is minimum (H;k)-stable,
then this is possible only for the disjoint union of cliques.

Let C be any component of G and let v € V(C). Let § = dy. Consider the following ordering

o of vertices of C:

V1,V2y ey Vs, V541, V542, "‘7’0‘0‘7



where vs511 = v and vy, v, ..., vs are any neighbours of v (recall that each vertex of G has at least
d neighbors). Next consider an ordering o

V§+1,V1,02,...,V5,V54+2, ~-~7U\C\-

Note that since |S,| = |So/| and v541 € Sor, v5 & Sor. Thus, deg_,(vs) = J. Analogously we
obtain that deg_,(vs_1) = ¢ in an ordering 0" : vs,Vs41,v1,v2, ..., V51, V542, .-, V||, and so on.
Therefore, vertices vy, va, ..., vs, Vs4+1 induce a clique. Since v and its neighbours have been chosen
arbitrarily, {v} U Ng(v) induce a clique for each v € V(C). This implies that C is a clique. O

Corollary 3 Let H be any graph and let 0y denote the minimum degree of H. Then

stab(H; k) > (k + 1) (5H + /om0 —1) — 1/2) .

Proof. Clearly, it suffices to prove the bound on the size for minimum (H; k)-stable graphs. Let G
be such a graph. By Theorem 2 we have that

1 Om
|G| > dp g ——— +tk+1>|G| +k+1, (2)
e da(v) +1 dg +1
where dg = 2||g” is the average degree of G. Note that the latter inequality follows from the fact

that the expression 22:1 % with Z;Zl x; = const (the constant being equal to 2||G|| + |G| in

our case) and z; > 0, is minimal if all the z; are equal. Indeed, suppose on the contrary that

S = Z;Ll L is minimal with z, # 2, for some s,¢ € [1,{]. Without loss of generality we assume
J

that x; = x5 + 2¢, where € > 0. Let 2 = z; for j ¢ {s,t}, and 7; = 2, = z; + e Clearly
Zé’:l T = Zg‘:l xj. Let §' = 22:1 i Then

S-S+ 2 1 7i:S+2xs($s+26)_xs(xs+€)_(xs+€)(xs+2€)
Ts+e xTs+2 x4 xs(xs + €)(xs + 2€)
2 2
= € < S,

 ag(zs + €) (s + 2€)

a contradiction with the minimality of S.
Thus, by (2),

da k+1 dg(dg+1)
1G]l = =71G| = : —
2 2 dg+1—-90gy
By examining the derivative of the function f(x) = ;:ETJ_F;L we obtain that f has minimum in

o =0n + \/On(6m — 1) — 1. Hence, ||G|| > 4L f(z0) = (k + 1) (5H + /oo —1) — 1/2) .0

3 Complete graphs
Theorem 4 Let G be a (K,; k)-stable graph, ¢ > 2 and k > 0. Then
|Gl = (2g = 3)(k + 1), (3)

with equality if and only if G is a disjoint union of cliques Koq_3 and Koq_o.



Proof. We may assume that G is a minimum (K; k)-stable graph. Similarily as in the proof
of Corollary 3 we have ||G]|| > % . dzi(ldf%. By examining the derivative of the function

fz) = Hxl(fi'(% we obtain that f(z) is decreasing for x < z( and increasing for & > 7 where

Ty = q—1+\/m—l, 2q—4 < x9 < 2g—3. On the other hand, f(2¢—4) = f(2¢—3) =
2(2q — 3). Therefore, the lower bound (3) can be achieved only if dg € [2¢ — 4,2¢ — 3]. Then
the sum ) ev(G) m is minimal if degrees of vertices of G differ as little as possible from dg.
Thus, we may assume that dg(v) € {2q — 4,2q — 3} for every v € V(G). Let m denote the number
of vertices of G with degree equal to 2¢ — 3. Hence,

Z 1 1 1 2(qg—1)|G| —m (1)

>m + (|G| = m) = :
e iE) dg(v) +1 2q — 2 2¢—3  2(¢g—1)(2¢—3)

with equality if and only if dg(v) € {2¢ — 4, 2q — 3} for every v € V(G). Therefore, by Theorem 2

we have
2(Q*1)|G|—m
- > k+
|G| 2(2q 3) k+1, and so (5)
29— 3 m
Gl>(k+1 — ,
| | ( )q—2 2((1—2)

with equality if and only if G is a disjoint union of cliques. Thus,

m(2q = 3) + (|G| = m)(2¢ — 4)

|Gl >

2
29=3 (9, _ 4y _ _m _
N m+ (k+1) = (2¢ —4) 2q_4(2q 4) ©)
2
=(k+1)(2¢—-3)
with equality if and only if G is the disjoint union of cliques Kg,—3 and Kag_s. O

Theorem 5 Let ¢ > 2, k > 0 be non-negative integers. Then
stab(Kg; k) > (2¢ — 3)(k+ 1),

with equality if and only if k = a(q — 2) + b(q — 1) — 1 for some non-negative integers a,b. In
particular,

stab(K; k) = (2¢ — 3)(k+ 1) for k> (¢—3)(¢—2) — 1.
Furthermore, if G is a (Kg; k)-stable with ||G|| = (2¢ — 3)(k + 1) then G is a disjoint union of
cliques Kog—3 and Koq_o.

Proof. It is easy to see that G = aKaq—3 + bKoq_2 is (Kg;a(g — 2) + b(¢g — 1) — 1)-stable. On the
other hand (¢ —3)(¢—2) — 1 is the Frobenious number for {g — 2, ¢ — 1}, namely the largest integer
that canot be presented in the form a(q — 2) 4+ b(q — 1). Lower bounds follows from Theorem 4. O

4 Concluding Remarks

Apart of some small values of k, we have determined the exact value of stab(K;k) for all ¢,
together with minimum graphs. In [8] it is proved that for ¢ > 6 and k < ¢/2 + 1 the only
(K4; k)-stable graph with minimum size is isomorphic to K. Thus, stab(Kg; k) is known for all



k except k € {5,6,10}. In these cases Theorem 5 implies that stab(Kg; k) > 9(k+1)+ 1. Since the
graphs K11, Ks UKy and K79U K11 are, respectively, (Kg;5), (Kg;6) and (Kg; 10)-stable we have:
stab(Kg; 5) = 55, stab(K;6) = 64 and stab(Ks;10) = 100. Therefore, the value of stab(Kg; k) is
known for all k. Similarily, stab(K~; k) is known for all k except k € {6,7,8,12,13,18}. However,
for k € {6,8,12,13,18}, stab(K7; k) can be computed in an analogous way as previously. Hence,
the first unknown value is stab(K7; 7).
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