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Abstract

A graph G is called (H; k)-vertex stable if G contains a subgraph isomorphic to H even

after removing any k of its vertices. By stab(H; k) we denote the minimum size among the

sizes of all (H; k)-vertex stable graphs. Given an integer q ≥ 2, we prove that, apart of some

small values of k, stab(Kq; k) = (2q−3)(k+1). This confirms in the affirmative the conjecture

of Dudek et al. [(H, k) stable graphs with minimum size, Discuss. Math. Graph Theory 28(1)

(2008) 137–149]. Furthermore, we characterize the extremal graphs.

1 Introduction

By the word graph we mean a simple graph without loops and multiple edges. Given a graph G,

V (G) denotes the vertex set of G and E(G) denotes the edge set of G. Furthermore, |G| := |V (G)|
is the order of G and ||G|| := |E(G)| is the size of G.

The following problem has attracted some attention recently. Let H be any graph and k a

non-negative integer. A graph G is called (H; k)-vertex stable (in short (H; k)-stable) if G contains

a subgraph isomorphic to H even after removing any k of its vertices. Then stab(H; k) denotes

the minimum size among the sizes of all (H; k)-vertex stable graphs. A (H; k)-stable graph with

minimum size shall be called a minimum (H; k)-stable graph. Note that if H does not have isolated

vertices then after adding to or removing from a (H; k)-vertex stable graph any number of isolated

vertices we still have a (H; k)-vertex stable graph with the same size. Therefore, in the sequel we

assume that no graph in question has isolated vertices.

The notion of (H; k)-vertex stable graphs was introduced in [4] (an edge version of this

notion was also considered, see [9, 10]). So far the above problem has been mainly investigated for

specified graphs including cycles [3, 4], complete bipartite graphs [5, 6], and above all, complete

graphs [4, 7, 8]. In [4] it was proved that stab(K3; k) = 3(k + 1) and stab(K4; k) = 5(k + 1), and

the authors conjectured that stab(Kq; k) = (2q − 3)(k + 1) for k ≥ k(q) for some sufficiently large

integer k(q). In [7] the authors gave the value of stab(K5; k) for all k and characterized minimum

(Kq; k)-stable graphs for q = 3, 4, 5 and all k. In particular they confirmed in the affirmative the

above mentioned conjecture in case q = 5 with k(5) = 5. In this paper we present a lower bound

on stab(Kq; k) for all k ≥ 0 and q ≥ 2. As a result, we confirm the above mentioned conjecture

for all remaining q’s with k(q) = (q − 3)(q − 2) − 1. Furthermore, we characterize the minimum

graphs. We also derive the value of stab(K6; k) for all k.
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2 General conditions

Recall the following simple observation.

Proposition 1 ([4]) Let δH be the minimum degree of a graph H. Then in any minimum (H; k)-

stable graph G, dG(v) ≥ δH for each vertex v ∈ G.

The following theorem may be seen as a necessary condition for a graph G to be a minimum

(H; k)-stable graph.

Theorem 2 If G is a minimum (H; k)-stable graph then

|G| − δH
∑

v∈V (G)

1

dG(v) + 1
≥ k + 1. (1)

Moreover, if G is not a union of cliques then the inequality (1) is strong.

Proof. By Proposition 1 we assume that minimum degree of G is at least δH . Let σ be an ordering

of the vertices of G. For v ∈ V (G) let deg−σ (v) denote the number of neighbors of v that are on

the left from v in ordering σ. Let Sσ denote the set of all vertices v with deg−σ (v) ≤ δH − 1. Note

that by removing from G all vertices from V (G) \ Sσ we spoil all copies of H. Indeed, we can

consecutively (from the right to the left) eliminate all vertices from Sσ because at each time the

analized vertex has degree ≤ δH − 1 (and therefore cannot be in any copy of H contained in a

graph induced by it and the vertices from V (G) \ Sσ that are earlier in the ordering σ). Thus,

since G is (H; k)-stable, |G| − |Sσ| ≥ k + 1 for each ordering σ.

Therefore, it suffices to find an ordering σ with |Sσ| ≥ δH
∑
v∈V (G)

1
dG(v)+1 . We will achieve

this by an argument similar to the one that was used by Alon and Spencer [1] in their proof of

Caro [2] and Wei [11] result concerning independence number of graphs. We further assume that

δH ≥ 2, because for δH = 1 each set Sσ is an independent set and these facts are well known

Caro and Wei theorem. Given a random ordering σ, the probability that a vertex v has at most i,

i ≤ dG(v), neighbors on its left side in the ordering σ is equal to

Pr(deg−σ (v) ≤ i) =

(
n

dG(v)+1

)
(i+ 1)(dG(v))!(n− dG(v)− 1)!

n!
=

i+ 1

dG(v) + 1
.

Thus,

Pr(v ∈ Sσ) =
δH

dG(v) + 1
.

Hence,

E (|Sσ|) =
∑

v∈V (G)

δH
dG(v) + 1

.

Thus, there exists an ordering σ with the required number of vertices in Sσ. Furthermore, the

equality in (1) may hold only if |Sσ| is the same for every ordering σ (if there is a σ with

|Sσ| < δH
∑
v∈V (G)

1
dG(v)+1 , then there is also a σ′ with |Sσ′ | > δH

∑
v∈V (G)

1
dG(v)+1 because

the expectation is exactly that number). Now we will prove that if G is minimum (H; k)-stable,

then this is possible only for the disjoint union of cliques.

Let C be any component of G and let v ∈ V (C). Let δ = δH . Consider the following ordering

σ of vertices of C:

v1, v2, ..., vδ, vδ+1, vδ+2, ..., v|C|,
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where vδ+1 = v and v1, v2, ..., vδ are any neighbours of v (recall that each vertex of G has at least

δ neighbors). Next consider an ordering σ′

vδ+1, v1, v2, ..., vδ, vδ+2, ..., v|C|.

Note that since |Sσ| = |Sσ′ | and vδ+1 ∈ Sσ′ , vδ 6∈ Sσ′ . Thus, deg−σ′(vδ) = δ. Analogously we

obtain that deg−σ′′(vδ−1) = δ in an ordering σ′′ : vδ, vδ+1, v1, v2, ..., vδ−1, vδ+2, ..., v|C|, and so on.

Therefore, vertices v1, v2, ..., vδ, vδ+1 induce a clique. Since v and its neighbours have been chosen

arbitrarily, {v} ∪NG(v) induce a clique for each v ∈ V (C). This implies that C is a clique. 2

Corollary 3 Let H be any graph and let δH denote the minimum degree of H. Then

stab(H; k) ≥ (k + 1)
(
δH +

√
δH(δH − 1)− 1/2

)
.

Proof. Clearly, it suffices to prove the bound on the size for minimum (H; k)-stable graphs. Let G

be such a graph. By Theorem 2 we have that

|G| ≥ δH
∑

v∈V (G)

1

dG(v) + 1
+ k + 1 ≥ |G| δH

dG + 1
+ k + 1, (2)

where dG = 2||G||
|G| is the average degree of G. Note that the latter inequality follows from the fact

that the expression
∑l
j=1

1
xj

with
∑l
j=1 xj = const (the constant being equal to 2||G|| + |G| in

our case) and xj > 0, is minimal if all the xj are equal. Indeed, suppose on the contrary that

S :=
∑k
j=1

1
xj

is minimal with xs 6= xt for some s, t ∈ [1, l]. Without loss of generality we assume

that xt = xs + 2ε, where ε > 0. Let x′j = xj for j 6∈ {s, t}, and x′t = x′s = xs + ε. Clearly∑l
j=1 x

′
j =

∑l
j=1 xj . Let S′ =

∑l
j=1

1
x′
j
. Then

S′ = S +
2

xs + ε
− 1

xs + 2ε
− 1

xs
= S +

2xs(xs + 2ε)− xs(xs + ε)− (xs + ε)(xs + 2ε)

xs(xs + ε)(xs + 2ε)

= S − 2ε2

xs(xs + ε)(xs + 2ε)
< S,

a contradiction with the minimality of S.

Thus, by (2),

||G|| = dG
2
|G| ≥ k + 1

2
· dG(dG + 1)

dG + 1− δH
.

By examining the derivative of the function f(x) = x(x+1)
x+1−δH we obtain that f has minimum in

x0 = δH +
√
δH(δH − 1)− 1. Hence, ||G|| ≥ k+1

2 f(x0) = (k + 1)
(
δH +

√
δH(δH − 1)− 1/2

)
. 2

3 Complete graphs

Theorem 4 Let G be a (Kq; k)-stable graph, q ≥ 2 and k ≥ 0. Then

||G|| ≥ (2q − 3)(k + 1), (3)

with equality if and only if G is a disjoint union of cliques K2q−3 and K2q−2.
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Proof. We may assume that G is a minimum (Kq; k)-stable graph. Similarily as in the proof

of Corollary 3 we have ||G|| ≥ k+1
2 · dG(dG+1)

dG+1−(q−1) . By examining the derivative of the function

f(x) = x(x+1)
x+1−(q−1) we obtain that f(x) is decreasing for x ≤ x0 and increasing for x ≥ x0 where

x0 = q−1+
√

(q − 1)(q − 2)−1, 2q−4 ≤ x0 ≤ 2q−3. On the other hand, f(2q−4) = f(2q−3) =

2(2q − 3). Therefore, the lower bound (3) can be achieved only if dG ∈ [2q − 4, 2q − 3]. Then

the sum
∑
v∈V (G)

1
dG(v)+1 is minimal if degrees of vertices of G differ as little as possible from dG.

Thus, we may assume that dG(v) ∈ {2q− 4, 2q− 3} for every v ∈ V (G). Let m denote the number

of vertices of G with degree equal to 2q − 3. Hence,∑
v∈V (G)

1

dG(v) + 1
≥ m 1

2q − 2
+ (|G| −m)

1

2q − 3
=

2(q − 1)|G| −m
2(q − 1)(2q − 3)

, (4)

with equality if and only if dG(v) ∈ {2q − 4, 2q − 3} for every v ∈ V (G). Therefore, by Theorem 2

we have

|G| − 2(q − 1)|G| −m
2(2q − 3)

≥ k + 1, and so (5)

|G| ≥ (k + 1)
2q − 3

q − 2
− m

2(q − 2)
,

with equality if and only if G is a disjoint union of cliques. Thus,

||G|| ≥ m(2q − 3) + (|G| −m)(2q − 4)

2

≥
m+ (k + 1) 2q−3

q−2 (2q − 4)− m
2q−4 (2q − 4)

2
(6)

= (k + 1)(2q − 3)

with equality if and only if G is the disjoint union of cliques K2q−3 and K2q−2. 2

Theorem 5 Let q ≥ 2, k ≥ 0 be non-negative integers. Then

stab(Kq; k) ≥ (2q − 3)(k + 1),

with equality if and only if k = a(q − 2) + b(q − 1) − 1 for some non-negative integers a, b. In

particular,

stab(Kq; k) = (2q − 3)(k + 1) for k ≥ (q − 3)(q − 2)− 1.

Furthermore, if G is a (Kq; k)-stable with ||G|| = (2q − 3)(k + 1) then G is a disjoint union of

cliques K2q−3 and K2q−2.

Proof. It is easy to see that G = aK2q−3 + bK2q−2 is (Kq; a(q − 2) + b(q − 1)− 1)-stable. On the

other hand (q−3)(q−2)−1 is the Frobenious number for {q−2, q−1}, namely the largest integer

that canot be presented in the form a(q− 2) + b(q− 1). Lower bounds follows from Theorem 4. 2

4 Concluding Remarks

Apart of some small values of k, we have determined the exact value of stab(Kq; k) for all q,

together with minimum graphs. In [8] it is proved that for q ≥ 6 and k ≤ q/2 + 1 the only

(Kq; k)-stable graph with minimum size is isomorphic to Kq+k. Thus, stab(K6; k) is known for all
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k except k ∈ {5, 6, 10}. In these cases Theorem 5 implies that stab(K6; k) ≥ 9(k+1)+1. Since the

graphs K11, K8 ∪K9 and K10 ∪K11 are, respectively, (K6; 5), (K6; 6) and (K6; 10)-stable we have:

stab(K6; 5) = 55, stab(K6; 6) = 64 and stab(K6; 10) = 100. Therefore, the value of stab(K6; k) is

known for all k. Similarily, stab(K7; k) is known for all k except k ∈ {6, 7, 8, 12, 13, 18}. However,

for k ∈ {6, 8, 12, 13, 18}, stab(K7; k) can be computed in an analogous way as previously. Hence,

the first unknown value is stab(K7; 7).
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