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Abstract

We say that a hypergraph H is hamiltonian chain saturated if H does not contain a

hamiltonian chain but by adding any new edge we create a hamiltonian chain in H. In this

paper, for each k ≥ 3, we establish the right order of magnitude n
k−1 for the size of the

smallest k-uniform hamiltonian chain saturated hypergraph. This solves an open problem of

G. Y. Katona.
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1 Introduction

Let H be a k-uniform hypergraph on a vertex set V (H) with |V (H)| = n ≥ k. The set of the edges

— k-element subsets of V (H) — is denoted by E(H). For simplicity of notation vn+x with x ≥ 0

denotes the same vertex as vx. In [21] the authors defined the notion of a hamiltonian chain.

Definition 1 A cyclic ordering (v1, v2, . . . , vn) of the vertex set is called a hamiltonian chain and

denoted C
(k)
n , if and only if {vi, vi+1, . . . , vi+k−1} ∈ E(H) whenever 1 ≤ i ≤ n. An ordering

(v1, v2, . . . , vl) of a subset of the vertex set is called an open chain and denoted P
(k)
l , if and only

if {vi, vi+1, . . . , vi+k−1} ∈ E(H) whenever 1 ≤ i ≤ l − k + 1. An open chain P
(k)
n is an open

hamiltonian chain.

For v ∈ V (H), let H − v be the hypergraph obtained by deleting v and all edges incident

to v. We refer to this operation as removing v from H. Given a k-uniform hypergraph H and

a k-element set e ∈ Hc, where Hc is the complement of H, we denote by H + e the hypergraph

obtained from H by adding e to its edge set.

∗The author was partially supported by the Polish Ministry of Science and Higher Education.

1



Definition 2 We say that a hypergraph H is hamiltonian chain saturated if H does not contain

a hamiltonian chain but for every e ∈ Hc the hypergraph H + e does contain a hamiltonian chain.

In the paper we study k-uniform hamiltonian chain saturated hypergraphs with as few as

possible edges. Let sat(n,C
(k)
n ) denote the minimum size (number of edges) among the sizes of k-

uniform hamiltonian chain saturated hypergraphs on n vertices. The problem is solved for graphs,

i.e. 2-uniform hypergraphs. Namely, sat(n,Cn) = d 3n
2 e (apart from a few small values of n) which

follows from [5, 9, 10]. Similar problem for hamiltonian paths is also solved in case of graphs, see

[11] and [16]. Much less is known for k ≥ 3. Namely, sat(n,C
(k)
n ) ≥

(
n
k

)
/(k(n − k) + 1), see [12].

Hence the lower bound is of order nk−1. In [20] the author conjectures that this is the right order

of magnitude for sat(n,C
(k)
n ) (a corresponding conjecture in case of hamiltonian path saturated

hypergraphs was also posed in [12]). So far only hypergraphs with O(nk−1/2) edges are known

[13]. In this paper we prove that sat(n,C
(k)
n ) = Θ(nk−1) for each k ≥ 3. The proof is constructive.

This solves the above mentioned open problem of G. Y. Katona. Our construction is based on

the construction from [13]. However, it is much more detailed. Moreover, the key idea of using

constructions of smallest hamiltonian cycle saturated graphs, which allowed us to obtain the right

order of magnititude is entirely new.

In fact, the above problem belongs to the much wider theory of saturated graphs and hyper-

graphs. Given a hypergraph F , we say that the hypergraph H is F -saturated if H has no F as

a subhypergraph, but does contain F after the addition of any new edge. The minimum number

of edges in an F -saturated hypergraph on n vertices is denoted by sat(n, F ). There are many

results on sat(n, F ) for graphs, see for example [15] for complete graphs, [3, 7, 8, 23] for complete

s-partite graphs or [1, 2, 6, 17, 19, 22, 25] for cycles. In case k ≥ 3, Bollobás [4] generalized Erdős,

Hajnal and Moon’s result [15] for complete k-uniform hypergraphs. Erdős, Füredi and Tuza [14]

obtained sat(n, F ) for some particular hypergraphs F with few edges. Pikhurko [24] proved that

sat(n, F ) = O(nk−1) for any fixed hypergraph F (generalizing previous result for graphs by Erdős,

Füredi and Tuza [14]). Finally, note that asking for the maximum (instead of minimum) number

ex(n, F ) of edges in an F saturated hypergraph on n vertices is the Turan problem. The problem

of establishing ex(n,C
(k)
n ) was also studied, see [18, 21, 26].

The paper is organized as follows. In Section 2 we recall the definition and usefull properties

of Isaac’s graphs. Then we present our construction. In Section 3 we prove that the construction

gives hamiltonian chain saturated hypergraphs, provided that the parameters used in it satisfy

certain conditions. As a corollary we obtain that sat(n,C
(k)
n ) = Θ(nk−1).

2 Construction

We begin this section by recalling the definition and usefull properties of Isaac’s graphs. Isaac’s

graphs Js for odd s ≥ 3 are defined as follows. Let V (Js) = {vi : 0 ≤ i ≤ 4s − 1} and E(Js) =

E0 ∪ E1 ∪ E2 ∪ E3 where

E0 =
⋃s−1

j=0{v4jv4j+1, v4jv4j+2, v4jv4j+3},

E1 = {v4j+1v4j+7 : 0 ≤ j ≤ s− 1},

E2 = {v4j+2v4j+6 : 0 ≤ j ≤ s− 1} and

E3 = {v4j+3v4j+5 : 0 ≤ j ≤ s− 1}.

Subscripts should be read modulo 4s. Note that Js is 3-regular.
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Theorem 1 ([9]) Let e = v4jv4j+2 where 0 ≤ j < s − 1 and s ≥ 5. For any two nonadjacent

vertices u and v of Js there exists a hamiltonian (u, v)-path in Js containing edge e.

For w ∈ V (G) with neighbors v1, v2, v3 and w1, ..., wl 6∈ V (G) let Gl(w) be a graph with V (Gl(w)) =

V (G−w)∪{w1, ..., wl} and E(Gl(w)) = E(G−w)∪
(
⋃

i<j wiwj

)

∪{w1v1, w2v2, w3v3}. Note that

Gl(w) is hamiltonian if and only if G is hamiltonian.

Theorem 2 ([10]) Let e = v0v2 and s ≥ 9. For any two nonadjacent vertices u and v of J3
s (v14)

there exists a hamiltonian (u, v)-path in J3
s (v14) containing edge e.

Given a vertex v, by NG(v) (in short N(v)) we denote the set of neighbors of v in G, i.e. NG(v) =

{u : uv ∈ E(G)}. Furthermore, given an edge e = xy of G, we say that G has property Q(e) if

N(x) ∩N(y) = ∅ and for every pair of non-adjacent vertices u, v ∈ V (G), the graph G + uv has a

hamiltonian cycle containing e.

Lemma 3 For each n ≥ 44 there exists a graph Gn of order n and size m ≤ 3
2 (n + 39) with the

property Q(e) for some e ∈ E(G).

Proof. Let s ≥ 9 and l = 0 or l ≥ 3. First we will prove that for every pair of non-adjacent vertices

u, v of J l
s(v14), the graph J l

s(v14) + uv has property Q(v0v2). If l = 0 or l = 3 then this is true

by Theorems 1 or 2 respectively. Suppose that l ≥ 4. Since vertices w1, ..., wl induce a complete

graph in J l
s(v14), we may assume that v 6∈ {w1, ..., wl}.

If u 6∈ {w4, ..., wl}, then, by Theorem 2, there is an appropriate hamiltonian cycle in
(
J l
s(v14) + uv

)
− {w4, ..., wl} = J3

s (v14) + uv. This cycle contains an edge f = w1w2 or f = w1w3.

Thus by replacing f by a path w1, w4, ..., wl, w2 (or w1, w4, ..., wl, w3) we obtain a required hamil-

tonian cycle in J l
s(v14) + uv.

Suppose now that u = wr for some r ∈ {4, ..., l}. Let w′ ∈ {w1, w2, w3} such that w′v 6∈
E
(
J l
s(v14)

)
. Then, by Theorem 2, there is an appropriate hamiltonian cycle in

(
J l
s(v14) + w′v

)
−

{w4, ..., wl} = J3
s (v14) + w′v. Thus by replacing w′v by a path w′, w4, ..., wr−1, wr+1, ..., wl, wr, v

we obtain a required hamiltonian cycle in J l
s(v14) + wrv = J l

s(v14) + uv.

Note that |V (J l
s(v14))| = 4s + l − 1 and |E(J l

s(v14))| = 6s +
(
l
2

)
because Js is 3-regular.

Let n = 4s + r where s is odd and 0 ≤ r ≤ 7. Since n ≥ 44, we have s ≥ 11. If r = 0,

then Gn = Js is a graph with property Q(v0v2). Furthermore, for 2 ≤ r ≤ 7 we can have

Gn = Jr+1
s (v14). Finally, if r = 1 then we choose Gn = J10

s−2(v14) (note that s− 2 ≥ 9). Observe

that |E(J l
s(v14))| = |V (J l

s(v14))| + (l−1)(l+3)
2 . Thus |E(Gn)| ≤ 3

2n + 9·13
2 = 3

2 (n + 39), because

l ≤ 10.
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Now we are in the position to define our construction.

Definition 3 Let q be a non-negative integer and U0, U1, . . . , Uq be pairwise disjoint sets of vertices

such that |U0| ≥ 2 and |Ui| ≥ 44 for i = 1, 2, . . . , q. Let G(Ui), i = 1, ..., q, be a graph isomorphic to

G|Ui| with the vertex set V (G(Ui)) = Ui and xi, yi ∈ Ui being vertices that correspond, respectively,

to the vertices x, y of G|Ui|. Define the vertex set of the hypergraph H to be V (H) =
⋃q

i=0 Ui. Let

u1 ∈ Ui1 , ..., uk ∈ Uik with 0 ≤ i1 ≤ i2 ≤ ... ≤ ik ≤ q. Then {u1, ..., uk} =: e ∈ E(H) if and only if

one of the following conditions is satisfied

1. |e ∩ U0| = 0, |e ∩ Ui1 | = 2 and if u, v ∈ e ∩ Ui1 then uv is an edge of G (Ui1)
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2. |e ∩ U0| = 0 and |e ∩ Ui1 | ≥ 3

3. |e ∩ U0| = 1, |e ∩ Ui2 | = 1 and e ∩ {xi2 , yi2} 6= ∅

4. |e ∩ U0| = 1 and |e ∩ Ui2 | ≥ 2

5. |e ∩ U0| ≥ 2

6. |e ∩ U0| = 1, |e ∩ U1| = 1 and |e ∩ U2| ≥ 1 with e ∩ {x1, y1, x2, y2} = ∅.

If |U0| = t and |Ui| = pi, i = 1, ..., q, then the hypergraph obtained by this construction is denoted

by Hk(t, p1, ..., pq).

Example 1 Let H = H5(t, p1, ..., pq). Then

• a 5-tuple of the form {2, 2, 2, 4, 4} (which means that the 5-tuple contains 3 vertices from the

set U2 and 2 vertices from the set U4) is an edge of H (an edge of type 2)

• a 5-tuple of the form {0, 0, 2, 4, 4} is an edge of H (an edge of type 5)

• a 5-tuple of the form {1, 2, 2, 4, 4} is not an edge of H (it contains only one vertex from the

set Ui1 = U1)

• a 5-tuple of the form {0, 1, 1, 2, 4} is an edge of H (an edge of type 4)

• a 5-tuple of the form {0, 2, 3, 3, 4} is an edge of H (an edge of type 3) but only if a vertex in

the position denoted by 2 is either x2 or y2.

• a 5-tuple of the form {1, 1, 2, 2, 4} is an edge of H (an edge of type 1) but only if the two

vertices from U1 (in the positions denoted by 1) are connected in G(U1).

• a 5-tuple of the form {0, 1, 2, 2, 3} is an edge of H if it has no vertex from {x1, y1, x2, y2} (an

edge of type 6) or it has a vertex from {x1, y1} (an edge of type 3).

Definition 4 Let k ≥ 3 and let t be an even integer if k is odd, or an arbitrary integer if k is even.

For integers β ≥ α ≥ 22, let Hk(t, α, β) denote a hypergraph Hk(t, p1, ..., pq) such that q = t
2k + 1,

p1 = 2β + 1, pi = 2α + 1 for i = 2, ..., q − 1 and pq = (β − α)(k − 2) + t
2 (k − 4) + 1 ≥ 44.

Proposition 4 The number of vertices in Hk(t, α, β) is equal to (t− 1)kα + kβ + t(k − 1) + 1.

Proof. Since q = t
2k + 1, we have

|V (Hk(t, α, β))| = t + 2β + 1 + (2α + 1)(q − 2) + (β − α)(k − 2) +
t

2
(k − 4) + 1

= t + 2β + 1 + (2α + 1)(
t

2
k − 1) + (β − α)(k − 2) +

t

2
(k − 4) + 1

= t(k − 1) + kβ + (t− 1)kα + 1

2

Proposition 5 If α = Θ(n1/2), β = Θ(n1/2) and t = Θ(n1/2) then |E(Hk(t, α, β))| = Θ(nk−1).
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Proof. Let Ei denote the set of edges of type i, i = 1, ..., 6, from Definition 3. Thus,

|E1| ≤
q

∑

i=1

3

2
(|Ui| + 39) ·

(
n

k − 2

)

= Θ(nk−1)

|E2| ≤
q

∑

i=1

(|Ui|
3

)

·
(

n

k − 3

)

= Θ(nk−1)

|E3| ≤ t · 2q ·
(

n

k − 2

)

= Θ(nk−1)

|E4| ≤ t ·
q

∑

i=1

(|Ui|
2

)

·
(

n

k − 3

)

= Θ(nk−1)

|E5| ≤
(
t

2

)(
n

k − 2

)

= Θ(nk−1)

|E6| ≤ t · |U1| · |U2| ·
(

n

k − 3

)

= Θ(nk−3/2),

where the first inequality holds by Lemma 3. 2

3 The main result

For S ⊂ V (Hk(t, p1, ..., pq)) let min(S) = min {i : S ∩ Ui 6= ∅}.

Lemma 6 If α ≤ β and 44 ≤ (β − α)(k − 2) + t
2 (k − 4) + 1 ≤ kα + (k − 2), then Hk(t, α, β) does

not have a hamiltonian chain.

Proof. Let H = Hk(t, α, β). For an indirect proof let us suppose that H contains a hamiltonian

chain (v1, v2, ..., vn). Let us partition this chain by removing the vertices from U0. Thus the chain

(v1, v2, ..., vn) falls to parts A1, ..., Am with m ≤ t. Each part induces an open chain in H or

consists of at most k − 1 vertices. Note that for any two adjacent edges e and e′ belonging to

one part min(e) = min(e′). Indeed, since e and e′ are of type 1 or 2 of Definition 3 (vertices

from U0 have been removed)
∣
∣e ∩ Umin(e)

∣
∣ ≥ 2 and

∣
∣e′ ∩ Umin(e′)

∣
∣ ≥ 2. Thus, e′ ∩ Umin(e) 6= ∅, so

min(e′) ≤ min(e), and vice versa. Hence, every edge in a part Ai has at least two vertices from

the set Uj , where j = min(Ai). We say that the set Uj is the dominating set for this part.

First we will show that if the hamiltonian chain consists only from edges of types 1-5 of

Definition 3, then the following formula holds:

|Ai| ≤
|Uj | − 1

2
k + (k − 2) =

{

αk + (k − 2) if j 6= 1, q

βk + (k − 2) if j = 1
(1)

where Uj is the set dominating Ai. Indeed, consider consecutive disjoint k-tuples consisting of

consecutive vertices of Ai and one r-tuple, 0 ≤ r ≤ k − 1, at the end. Clearly, every such k-tuple

is an edge in H, hence, contains at least two vertices from the dominating set. Let ε denote the

number of vertices from the dominating set which are in the r-tuple. Then |Ai| ≤
⌊
|Uj |−ε

2

⌋

k + r.

If r ≤ k − 2 or ε ≥ 2 then (1) is true, because |Uj | is odd.

So let us suppose that r = k − 1, ε ≤ 1 and |Ai| =
|Uj |−1

2 k + (k − 1) ((1) does not hold).

Then every considered k-tuple contains exactly two vertices from Uj . In fact ε = 1, because the

last k vertices of Ai form an edge in H, too. Let us consider again consecutive disjoint k-tuples,
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but this time taken in the opposite direction. Thus, again, every new k-tuple contains exactly two

vertices from Uj and the new r-tuple contains exactly one vertex from Uj . It is easily seen now

that every two consecutive (in Ai∩Uj) vertices from Uj are the only vertices from Uj in some edge

of H. Hence, in G(Uj) they are adjacent. Thus, G (Uj) has a hamiltonian path. Moreover, since

in the original chain both r-tuples are contained in an edge of type 3 from Definition 3 (recall that

so far we do not use edges of type 6 of Definition 3), this hamiltonian path starts in xj and ends

in yj . This, however, is a contradiction because xjyj ∈ E(G(Uj)) and G(Uj) is not hamiltonian.

Therefore, |Ai| < |Uj |−1
2 k + (k − 1), so (1) holds.

By the assumption we have that |Uq| ≤ kα + (k − 2). Hence, and by (1), every part Ai

contains at most kα + (k − 2) vertices exept possibly one with dominating set U1 which contains

at most kβ + (k − 2) vertices. Thus and since m ≤ t we have

m∑

i=1

|Ai| ≤
m−1∑

i=1

(kα + (k − 2)) + kβ + (k − 2) ≤ (m− 1)(kα + k − 2) + kβ + k − 2

≤ (t− 1)kα + kβ + t(k − 2) (2)

Therefore, by (2) and Proposition 4,

n = |U0| +

m∑

i=1

|Ai| ≤ (t− 1)kα + kβ + t(k − 1) = n− 1, (3)

a contradiction.

Now, we will prove that inequality (2) remains true even if the edges of type 6 are also used

(although inequality (1) may not hold). This will complete the proof of the lemma because (2)

leads to a contradiction. Let e′ be an edge of type 6 of Definition 3 (we assume that at least one

such edge is used in the chain), namely an edge of the form {0, 1, 2, ..., ik} with x1, y1, x2, y2 6∈ e′.

Let u be the only vertex from U0 ∩ e′. Let AL, AR be two adjacent parts, AL ‘on the left’ from u

and AR ‘on the right’. Clearly, U1 is the dominating set for one of those parts, say AL.

We again consider consecutive disjoint k-tuples and an rL-tuple, rL ≤ k− 1, of AL (from the

left to the right). Simirarily, we consider consecutive disjoint k-tuples and an rR-tuple, rR ≤ k−1,

of AR, this time taken from the right to the left. Note that if rL, rR ≤ k − 2 then the number

of vertices in AL and AR do not exceed the bound (1), so inequality (2) holds. Assume that

rL = k − 1. Thus, the number of vertices of AL exceeds (by one) the bound (1). It is possible

only if the rL-tuple contains exactly one vertex from U1. Since e′ contains already a vertex from

U1 \ {x1, y1} the rL-tuple plus u form an edge e′′ that is also of type 6 of Definition 3. Note that

if rR ≤ k − 3 then the number of vertices in AR is at least one smaller then the bound (1). Thus,

the sum of vertices of AL and AR is bounded by the same number as before and (2) remains true.

So, let k−1 ≥ rR ≥ k−2. Let w1 ∈ e′′∩U1 and w2 be the vertex from e′′∩U2 which is the closest

to u among all vertices from e′′ ∩U2. Suppose that the distance between w1 and u is smaller than

the distance between w2 and u and consider the k-tuple which begins in w1. Thus, this k-tuple

intersects the rR-tuple. Moreover, this intersection contains a vertex from U2. Indeed, since e′′

contains exactly one vertex from U1, namely w1, and w1 6∈ {x1, y1}, e′′ is of type 6 in this case.

On the other hand, if the distance between w2 and u is smaller than the distance between w1 and

u then the intersection of the rR-tuple and a k-tuple that begins in w2 also contains a vertex from

U2. Indeed, since w2 6∈ {x2, y2}, e′′ is of type 4 in this case. Thus, U2 is the dominating set for AR.
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Furthermore, the rL-tuple as well as the rR-tuple contains at least one vertex from U2. Hence,

|AR| ≤
⌊ |U2| − 2

2

⌋

k + r2 = αk − 1 ≤ αk + (k − 4). (4)

Hence, the sum of the numbers of vertices in AL and AR is even smaller than before, so (2) holds.

Therefore, we may assume that rL ≤ k − 2. Then the number of vertices in AL does not

exceed (1). If the dominating set of AR is different from U1, then AR does not have any vertex

from U1. Hence, in {u} ∪ AR we can use only edges of types 1-5 of Definition 3. Thus, (1) holds

for AR and so (2) remains true. Finally, if U1 is the dominating set for both AL and AR, then

|AL| + |AR| ≤
⌊ |AL ∩ U1|

2

⌋

+ (k − 1) +

⌊ |AR ∩ U1|
2

⌋

+ (k − 1)

≤ βk + 2k − 4,

and so |AL|+ |AR| is by far less than αk+ (k−2) +βk+ (k−2), the sum of the bounds (1). Thus,

(2) remains true in each case. 2

Example 2 Consider the hypergraph H3(2, 1, 1) with U0 = {u0, v0} and G(Ui) being the path

on the vertices ui, xi, yi in order, i = 1, ..., 3. Note that α = 1, β = 1, q = 4 and p4 = 0, so the

parameters do not satisfy all conditions required in Definition 4. However, in this particular case

G(Ui) has property Q(xiyi), which will allow us to illustrate the key ideas that occur in the proof

of the main theorem (in fact, this example is not hamiltonian chain saturated). The reasoning

from Lemma 6 can be repeated in order to prove that H3(2, 1, 1) has no hamiltonian chain. Below

we will show how to construct a hamiltonian chain in H3(2, 1, 1) + e0 for three different non-edges

e0.

1. If e0 = {x1, x2, x3}, then the cyclic ordering

(u0y1u1 x1x3x2
︸ ︷︷ ︸

e0

u2y2v0y3u3)

is a hamiltonian chain.

2. If e0 = {u1, y1, x3}, then the cyclic ordering

(u0 y1x3u1
︸ ︷︷ ︸

e0

x1u3v0y2u2x2y3)

is a hamiltonian chain.

3. If e0 = {v0, u1, x3}, then the cyclic ordering

(u0y1y3x1 u1x3v0
︸ ︷︷ ︸

e0

y2u2x2u3)

is a hamiltonian chain.

Theorem 7 Let k ≥ 3. If t, α, β satisfy the following conditions

1. t ≥ 2k is an even integer if k is odd, or an arbitrary integer if k is even,

2. α ≥ 2kt (5)

3. 2α + t + 4 ≤ β ≤ 2α + 3t + 5,

then Hk(t, α, β) is hamiltonian chain saturated. Moreover, if t = Θ(n1/2), α = Θ(n1/2) and

β = Θ(n1/2), then |E(Hk(t, α, β))| = Θ(nk−1).
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Proof. Let H = Hk(t, α, β). It is easy to check that the upper bound on β from (5) implies that

|Uq| = (β−α)(k−2)+ t
2 (k−4)+1 ≤ kα+(k−2), if α ≥ 2kt. Hence, by Lemma 6, H does not have

any hamiltonian chain. Recall first that, for each i = 1, ..., q, G(Ui) +uv, with uv 6∈ E(G(Ui)), has

a hamiltonian cycle containing the edge xiyi. In particular, for each vertex ui ∈ V (G(Ui)) with

uiyi 6∈ E(G(Ui)), G(Ui) + uiyi, has a hamiltonian cycle containing the edge xiyi (and of course

the edge uiyi). Thus, G(Ui) − yi has a hamiltonian path, say Pi(ui), with endpoints xi and ui.

Analogously, for each vertex vi ∈ V (G(Ui)) with viyi 6∈ E(G(Ui)) G(Ui) − xi has a hamiltonian

path, say P ′
i (vi), with endpoints yi and vi. Note that using edges of H we are able to construct t

open chains Ci, i = 1, ..., t, of the following form

yi ∗...∗︸︷︷︸

k−3

uii ∗...∗︸︷︷︸

k−2

ii ∗...∗
︸︷︷︸

k−2

ii ∗...∗
︸︷︷︸

k−2

ii ∗...∗
︸︷︷︸

k−2

· · · ii ∗...∗
︸︷︷︸

k−2

ii ∗...∗
︸︷︷︸

k−2

ixi ∗...∗︸︷︷︸

k−2

(6)

which means that Ci contains

• vertices yi, xi and ui,

• all remaining vertices from Ui – in the positions denoted by i in order given by Pi(ui).

• |Ui|−1
2 (k − 2) + (k − 3) arbitrary vertices from sets Uj , j ≥ t + 1 – in the positions denoted

by ∗,

Note that Ci is indeed an open chain: first (from the left) edge is of type 2 of Definition 3

and each remaining is of type 1 of Definition 3 (because vertices (V (Ci) \ {yi}) ∩ Ui are arranged

in order given by a path Pi(ui)). Note also, that after deleting any vertices from positions ∗ we

still have an open chain. Moreover,

|Ci| =
|Ui| − 1

2
k + (k − 2) =

{

αk + (k − 2) if i 6= 1

βk + (k − 2) if i = 1
(7)

The concatenation of these chains, obtained by placing a vertex from U0 between Ci and Ci+1,

i = 1, ..., t − 1, and between Ct and C1, is a (closed) chain. Indeed, since Ci are open chains it

sufices to check that every k-tuple (consisting of consecutive vertices) that contains a vertex from

U0 is an edge of H. Note that every such k tuple e has the form xi ∗...∗︸︷︷︸

k−2

0 or ∗...∗
︸︷︷︸

k′

0yi ∗...∗︸︷︷︸

k′′

, with

k′ + k′′ = k − 2 and i ≤ t (where 0 represents a vertex from U0). Moreover, in the positions ∗
there are vertices from sets Uj with j ≥ t + 1. Hence, min(e \ U0) = i. Therefore, e is of type 3 of

Definition 3. Furthermore,

|U0| +

t∑

i=1

|Ci| = t + (kβ + k − 2) + (t− 1)(kα + k − 2) = n− 1, (8)

by Proposition 4. Hence, we are able to construct a (closed) chain which has n−1 vertices. Briefly

speaking, we will show that by adding any new edge we will be able to modify one open chain Ci

in such a way that the resulting open chain will have at least one vertex more.

Let e0 be a new edge. Let e0 have the form {i1, i2, ..., ik}, 0 ≤ i1 ≤ i2 ≤ ... ≤ ik, which

means that e0 = {u1, u2, ..., uk} with u1 ∈ Ui1 , u2 ∈ Ui2 , ..., uk ∈ Uik . Let I = {i ≥ 1 : e0∩Ui 6= ∅}.

Let j1 < j2 < ... < jq−|I| be consecutive elements of the set {1, 2, ..., q} \ I. Furthermore, let

J = {j1, ..., jt−1} and R = {jt, ..., jq−|I|}. Let Cji , i = 2, ..., t− 2, have the form

yji ∗...∗︸︷︷︸

k−3

ujiji ∗...∗︸︷︷︸

k−2

jiji ∗...∗︸︷︷︸

k−2

jiji ∗...∗︸︷︷︸

k−2

· · · jiji ∗...∗︸︷︷︸

k−2

jiji ∗...∗︸︷︷︸

k−2

jixji ∗...∗︸︷︷︸

k−2

8



which means that Cji contains

• vertices yji , uji and xji ,

• all remaining vertices from Uji – in the positions denoted by ji in order given by some

Pji(uji),

• some other vertices in positions denoted by ∗ (this will be decided later).

Furthermore, let Cjt−1
have the form

yjt−1
∗...∗
︸︷︷︸

k−3

ujt−1
jt−1 ∗...∗︸︷︷︸

k−2

jt−1jt−1 ∗...∗︸︷︷︸

k−2

jt−1jt−1 ∗...∗︸︷︷︸

k−2

· · · jt−1jt−1 ∗...∗︸︷︷︸

k−2

jt−1jt−1 ∗...∗︸︷︷︸

k−2

jt−1xjt−1
q...q
︸︷︷︸

k−2

.

Note that Cjt−1
differs slightly from the other open chains Cji because it is supossed to have

vertices from Uq \ e0 on the last positions. This will be important later, when we will concatenate

constructed open chains. Since e0 is not an edge of H we have three cases

C1. |e0 ∩ U0| = 0 and |e0 ∩ Ui1 | = 1.

C2. |e0 ∩ U0| = 0, e0 ∩ Ui1 = {u, v} with uv 6∈ E (G(Ui1)).

C3. |e0 ∩ U0| = 1, e0 ∩ Ui2 = {u} with u 6∈ {xi2 , yi2}.

Consider C1: Assume first that {i1, i2} 6= {1, 2}. Let {u} = e0 ∩ Ui1 . Suppose that u 6∈ {xi1 , yi1}.

Since N(xi1) ∩ N(yi1) = ∅ in G(Ui1), we may assume that u is not a neighbour of yi1 in G(Ui1)

(the case when u is not a neighbour of xi1 in G(Ui1) is analogous). Let C+
0 be an open chain of

the form

yi1 ∗...∗︸︷︷︸

k−3

xi1i1 ∗...∗︸︷︷︸

k−2

i1i1 ∗...∗︸︷︷︸

k−2

· · · i1i1 ∗...∗︸︷︷︸

k−2

i1 ui3...iki2
︸ ︷︷ ︸

e0

i2i2i2...i20

which means that C+
0 contains

• vertices xi1 , yi1 and u,

• all remaining vertices from Ui1 – in the positions denoted by i1 in order given by Pi1(u)

• all vertices from Ui2 – in the positions denoted by i2 (or, if i2 = q, all vertices from Uq \
V (Cjt−1

)),

• some other vertices in positions denoted by ∗ (this will be decided later),

• a vertex from U0 – in the position denoted by 0.

If u = xi1 (or u = yi1) then let C+
0 has the form

yi1 ∗...∗︸︷︷︸

k−3

i1i1 ∗...∗︸︷︷︸

k−2

i1i1 ∗...∗︸︷︷︸

k−2

· · · i1i1 ∗...∗︸︷︷︸

k−2

i1 xi1i3...iki2
︸ ︷︷ ︸

e0

i2i2i2...i20

(or analogous one), where vertices from Ui1 \{yi1} are arranged in order given by some path Pi1(v)

for an arbitrary vertex v ∈ Ui1 which is not a neighbour of yi1 in G(Ui1). Note that the sequence

C+
0 \ {0} is (by far) longer than an analogous sequence (6).

Assume now that {i1, i2} = {1, 2}. Let C+
0 be an open chain of the form

y1 ∗...∗︸︷︷︸

k−3

11 ∗...∗
︸︷︷︸

k−2

11 ∗...∗
︸︷︷︸

k−2

11 ∗...∗
︸︷︷︸

k−2

· · · ∗...∗
︸︷︷︸

k−2

1 1i3...ik2
︸ ︷︷ ︸

e0

22...x20
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if x2 6∈ e0 (or analogous one if y2 6∈ e0, i.e. with x2 replaced by y2). The fact that the vertex x2 is

present on the penultimate position in C+
0 will be very important later, when we will concatenate

open chains.

If x2, y2 ∈ e0, then let C+
0 have the form

y1 ∗...∗︸︷︷︸

k−3

11 ∗...∗
︸︷︷︸

k−2

11 ∗...∗
︸︷︷︸

k−2

11 ∗...∗
︸︷︷︸

k−2

· · · 11 ∗...∗
︸︷︷︸

k−2

1 1i4...iky2x2
︸ ︷︷ ︸

e0

0 (9)

Note that the latter open chain differs significantly from the previous ones. However, also in this

case the sequence C+
0 \ {0} is longer than an analogous sequence (6), but this time only by one

vertex.

Consider now C2. Thus, e0 = {u, v, i3, .., ik} where u, v ∈ Ui1 and uv 6∈ E (G (Ui1)). Since

G (Ui1) ∪ uv has a hamiltonian cycle containing the edge xi1yi1 , there are two paths (possibly one

of them trivial), one from xi1 to u (or v), say Pi1(xi1 , u), and the other from yi1 to v (resp. u), say

Pi1(yi1 , v), which together cover all vertices of G (Ui1). Without loss of generality we may assume

that Pi1(xi1 , u) is a path from xi1 to u and has even order while Pi1(yi1 , v) is a path from yi1 to v

and has odd order. In this case let C+
0 have the form

yi1 ∗...∗︸︷︷︸

k−2

i1i1 ∗...∗︸︷︷︸

k−2

· · · i1i1 ∗...∗︸︷︷︸

k−2

i1 vi3...iku
︸ ︷︷ ︸

e0

i1 ∗...∗︸︷︷︸

k−2

i1i1 ∗...∗︸︷︷︸

k−2

· · · i1i1 ∗...∗︸︷︷︸

k−2

i1xi1 q...q
︸︷︷︸

k−2

0

which means that C+
0 contains

• vertices yi1 , xi1 , u, v,

• all remaining vertices from Ui1 – in the positions denoted by i1 in order given by Pi1(xi1 , u)

and Pi1(yi1 , v),

• some other vertices in positions denoted by ∗ (this will be decided later),

• some vertices from Uq – in the positions denoted by q,

• a vertex from U0 – in the position denoted by 0.

Note that the sequence C+
0 \ {0} is longer by one vertex than an analogous sequence (6).

Consider C3. Assume first that {i2, i3} 6= {1, 2}. Hence, e0 = {0, u, i3, ..., ik} where u ∈
Ui2 \ {xi2 , yi2}. Since N (xi2) ∩N (yi2) = ∅ in G (Ui2), we may assume that u 6∈ N (yi2) (the case

when u 6∈ N (xi2) is analogous). Then there is a hamiltonian path from u to yi2 in G (Ui2). In this

case let C+
0 have the form

yi2 ∗...∗︸︷︷︸

k−2

i2i2 ∗...∗︸︷︷︸

k−2

· · · i2i2 ∗...∗︸︷︷︸

k−2

i2 ui3...ik0
︸ ︷︷ ︸

e0

,

where vertices from Ui2 are arranged in order given by the hamiltonian path from u to yi2 in

G (Ui2). Note that also in this case the sequence C+
0 \ {0} is longer (by one vertex) than an

analogous sequence (6).

If {i2, i3} = {1, 2}, then e0 = {0, u, v, i4, ..., ik} with u ∈ U1 \ {x1, y1} and v ∈ {x2, y2}.

Without loss of generality we assume that v = x2. In this case C+
0 has the form

y1 ∗...∗︸︷︷︸

k−2

11 ∗...∗
︸︷︷︸

k−2

· · · 11 ∗...∗
︸︷︷︸

k−2

1ui4...ikx20
︸ ︷︷ ︸

e0

.
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Similarily as in (9), it is important to have a vertex x2 on the penultimate position of C+
0 .

Finally, let Cj1 be an open chain of the form

yj1 ∗...∗︸︷︷︸

k−3

uj1j1 ∗...∗︸︷︷︸

k−2

j1j1 ∗...∗︸︷︷︸

k−2

· · · j1j1 ∗...∗︸︷︷︸

k−2

j1xj1 q...q
︸︷︷︸

k−2

where vertices from Uj1 \ {yj1} are arranged in order given by a path Pj1(uj1).

Note that sequences C+
0 , Cj1 , ..., Cjt−1

contain all vertices from sets Ui with i ∈ J . Now

we will insert vertices in positions denoted by ∗. Note that in order to assure that the resulting

sequence is an open chain in H, it sufices to insert in Cji vertices from sets Ui with i > ji, because

then Uji = min(V (Cji). Similarily, in C+
0 it sufices to insert vertices from sets Ui with i > i1 in

cases C1 and C2, or vertices from sets Ui with i > i2 in case C3. Firstly, we want to insert all

vertices from
(⋃

i∈I Ui

)
\ Uq in C+

0 ∪ Cj1 . Some of them are already inserted. The remaining ones

will be inserted in Cj1 , if j1 = 1, or in C+
0 if j1 6= 1 (clearly, if j1 6= 1, then i1 = 1 in cases C1 and

C2 or i2 = 1 in case C3). In case C1 we have already inserted all vertices from Ui1 ∪ Ui2 in C+
0 if

C+
0 is different from (9). Thus, since |I| ≤ k it remains to insert at most (k − 2)(2α + 1) vertices

in positions denoted by ∗. On the other hand, if C+
0 has the from (9), then it contains all vertices

from Ui1 = U1. Moreover, |I| ≤ k− 1 because e0 contains two vertices from U2. Hence, it remains

to insert at most (k − 2)(2α + 1) vertices in positions denoted by ∗. Similarily, since in cases C2

and C3 we have |I| ≤ k − 1 and we have already inserted all vertices from Ui1 (or Ui2) in C+
0 , it

also remains to insert at most (k − 2)(2α + 1) vertices in positions denoted by ∗. Therefore, if

j1 6= 1, then we can insert all remaining vertices from
(⋃

i∈I Ui

)
\ Uq in C+

0 because it has at least

(2β + 1) − 3

2
(k − 2) + k − 3 ≥ (2α + 1)(k − 2) (10)

(β ≥ 2α + 2 by the assumption) positions ∗. Similarily, if j1 = 1, then we can insert all remaining

vertices from
(⋃

i∈I Ui

)
\ Uq in Cj1 . At this stage the sequences contain already all vertices from

sets Ui, i ∈ (I ∪ J) \ {q}. Consider now vertices from Uq. Our next goal is to fill up all positions

∗ in C+
0 by different vertices from Uq, but only if j1 = 1. To achieve this we need sufficiently large

number of vertices in Uq. We have already used k − 2 vertices from Uq in Cj1 , k − 2 vertices from

Uq in Cjt−1
and at most k − 1 vertices from Uq in e0. On the other hand, if j1 = 1, we have at

most (2α+1)−3
2 (k − 2) + k − 2 = α(k − 2) positions ∗ in C+

0 . Therefore we need that

(β − α)(k − 2) +
t

2
(k − 4) + 1 = |Uq| ≥ α(k − 2) + 2(k − 2) + (k − 1).

This is satisfied by the assumption (5) on α and β. However, if i2 = q then in case C1 we have

already used all vertices from Uq in the positions denoted by i2 in C+
0 . In such situation we simply

delete all positions ∗ without spoiling the open chain. However, we have to be sure that the length

of the resulting sequence (minus a vertex from U0) exceeds (7). This is possible when

|Ui1 | + |Uq| − 2(k − 2) − (k − 1) > αk + (k − 2)

(some vertices from Uq are already used in different places), which is satisfied by the assumption

(5) on α and β.

Now, since j1 < ... < jt−1 < jt < ... < jq−|I| we can arbitrarily fill up positions ∗ in all

Cj1 , ..., Cjt−1
(and also in C+

0 , if i1 = 1 in cases C1 and C2, or if i2 = 1 in case C3) by different

vertices from sets Ui with i ∈ R and by not previously used vertices from Uq. Recall also, that

11



after deleting any number of vertices from positions ∗ we still have an open chain. Hence, we can

fill up these positions until the moment that we do not have any available vertices. If this happens

then it means that constructed open chains contain all vertices from V (H) \ U0. Otherwise, since

C+
0 \ {0} is in each case C1, C2 and C3 longer than an analogous open chain (6), we have

∣
∣C+

0

∣
∣− 1 +

t−1∑

i=1

|Cji | > n− 1 − |U0|,

see formula (8). Thus in each situation

∣
∣C+

0

∣
∣ +

t−1∑

i=1

|Cji | ≥ n− |U0| + 1, (11)

Consider now the following cyclic ordering C:

(
C+
0 Cj10Cj20 · · · Cjt−1

0
)
.

Since |U0| = t, by formula (11) we have

|C| ≥ n.

Moreover, C is a (closed) chain. Indeed, C+
0 and all Cji are open chains. Hence, it suffices to check

that each k-tuple (consisting of consecutive vertices) of C that contains a vertex from U0 is an

edge in H. Note that each such k-tuple e contains either vertex xji or yji+1
(eventually either

xjt−1
or yi1). Furthermore, if j1 ≤ 2, then either ji = min(e \ U0) or ji+1 = min(e \ U0) (either

jt−1 = min(e \ U0) or i1 = min(e \ U0), respectively). Thus, every such k-tuple is an edge of type

3 or 4 from Definition 3. Note however, that we have to be careful in the following concatenations

Cjt−1
0C+

0 , C+
0 Cj1 and Cj10Cj2 . In order to assure that e is an edge (of type 3 or 4) it is required

that min(e \ U0) = i1 (or i2 in case C3) in the first concatenation, min(e \ U0) = j1 in the second

and min(e \ U0) = j2 in the third. This is the reason why we require vertices from Uq in the last

positions in Cj1 . If j1 ≥ 3 then the presence of x2 in the penultimate position of C+
0 implies that

each k tuple e having non-empty intersections with both C+
0 and Cji is an edge of H. Thus, C is a

hamiltonian chain.

Finally, if t = Θ(n1/2), α = Θ(n1/2) and β = Θ(n1/2), then |E(Hk(t, α, β))| = Θ(nk−1), by

Proposition 5. 2

Corollary 8 For every k ≥ 3 we have

sat(n,C(k)
n ) = Θ(nk−1).

Proof. Let n = |V (Hk(t, α, β))|. By Proposition 4, n = (t− 1)kα+ kβ + t(k− 1) + 1. By Theorem

7, it is enough to prove that each sufficiently large integer n can be represented in such form with

α, β, t being integers that satisfy (5) and α, β, t = Θ(n1/2). Suppose first that k is even. Let

t =
⌊
2
√
n

3k

⌋

+ ε where 0 ≤ ε ≤ k − 1 is chosen in such a way that t + n − 1 ≡ 0 mod k. Thus

n′ := n − 1 − t(k − 1) ≡ 0 mod k. Let n′′ = n′/k. Clearly, n′′ = x(t − 1) + r where x and r are

integers and 0 ≤ r ≤ t − 2. Let y =
⌈
2x+3
t+1

⌉

+ 1. We set α = x − y, β = r + y(t − 1). Thus,

12



y(t− 1) ≤ β ≤ y(t− 1) + t− 2. Now,

β ≥y(t− 1) ≥
(

2x + 3

t + 1
+ 1

)

(t− 1) = 2x + 3 − 2
2x + 3

t + 1
+ t− 1

≥2x + 3 − (2y − 2) + t− 1 = 2α + t + 4, and

β ≤y(t− 1) + t− 2 ≤
(

2x + 3

t + 1
+ 2

)

(t− 1) + t− 2 = 2x + 3 − 2
2x + 3

t + 1
+ 3t− 4

=2x + 3 − 2

(
2x + 3

t + 1
+ 2

)

+ 3t ≤ 2x + 3 − 2y + 3t = 2α + 3t + 3.

Furthermore, α = 3
2

√
n + O(1). Thus, for suficiently large n, α ≥ 2kt = 4

3

√
n + O(1). Therefore,

all conditions (5) are satisfied for sufficiently large n. Suppose now that k is odd. Hence we have

to choose t even. Therefore, if
⌊
2
√
n

3k

⌋

+ ε is odd we can take t = k +
⌊
2
√
n

3k

⌋

+ ε. All previous

calculations remain valid. 2
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