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Abstract

The following statement was conjectured by Faudree, Rousseau, Schelp and Schuster in
1981: every non-star graph G with girth g ≥ 5 is packable.

The conjecture was proved by Faudree et al. with the additional condition that the size
||G|| ≤ 6

5
n − 2, where n is the order of G. In this paper, for each integer k ≥ 3, we prove

that every non-star graph with girth g ≥ 5 such that ||G|| ≤ 2k−1

k
n−αk(n) is packable, where

αk(n) is o(n) for every k. This implies that the conjecture is true for sufficiently large planar
graphs.

1 Introduction

We deal with finite, simple graphs without loops and multiple edges. We use standard graph theory
notation. Let G be a graph with vertex set V (G) and edge set E(G). The order of G is denoted
by |G| and the size is denoted by ||G||. By NG(x) we denote the set of vertices adjacent to x in G.
For a vertex set X, the set NG(X) denotes the external neighbourhood of X in G, i.e.

NG(X) = {y ∈ V (G) \X : y is adjacent with some x ∈ X}.

We say that G is packable in its complement (G is packable, in short) if there is a permutation
σ on V (G) such that if xy is an edge in G, then σ(x)σ(y) is not an edge in G. Thus, G is packable
if and only if G is a subgraph of its complement. If σ(x) 6= x for every vertex x ∈ V (G), then we
say that G is fixed-point-free packable. In the rest of this paper, in the notation of permutations
we omit fixed points.

One of the classical results in the theory of packing graphs is the following theorem, proved
independently in [1, 3, 9].

Theorem 1 ([1, 3, 9]) Let G be a graph of order n and size ||G|| ≤ n− 2. Then G is packable.

This theorem cannot be improved by raising the size of G since a star on n vertices is not packable.
In [5] all non-packable graphs with order n and size n are presented. Each of the non-packable
graphs has a cycle of length 3 or 4. These results motivate the following conjecture:

Conjecture 2 ([5]) Every non-star graph G with girth g ≥ 5 is packable.

Woźniak [11] proved that every non-star graph G with girth g ≥ 8 is packable. His result was
improved by Brandt [2] who showed that every non-star graph G with girth g ≥ 7 is packable.
Another, relatively short proof of Brandt’s result was given in [6]. Recently, the present authors
proved [7] the following theorem.

∗The authors were partially supported by the Polish Ministry of Science and Higher Education.
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Theorem 3 ([7]) Let G be a non-star graph with girth g ≥ 6. Then G is packable.

Note that this theorem implies that Conjecture 2 is true for bipartite graphs. Other results
concerning Conjecture 2 were obtained by adding extra conditions on the size of a graph.

Theorem 4 ([5]) Let G be a non-star graph with girth g ≥ 5, order n and size ||G|| ≤ 6
5n − 2.

Then G is packable.

In this paper we prove the following statement.

Theorem 5 Let k ≥ 3 be an integer. If G is a non-star graph with girth g ≥ 5, order n and size

||G|| ≤ 2k−1
k

n− 4k−1
k

(2
√
n + 1) − 2k(4k − 5), then G is packable.

By taking k = 3 we note that our new upper bound for the size of G is greater than the bound in
Theorem 4 for n > 285. As a corollary of Theorem 5 we obtain that Conjecture 2 is true for large
planar graphs.

Corollary 6 Let G be a planar graph of order n ≥ 3850. If G is a non-star graph with girth g ≥ 5,
then G is packable.

Proof. Let f denote the number of faces of G. Since g ≥ 5, every face of G has at least 5 edges.
On the other hand every edge belongs to two faces. Hence, 2||G|| ≥ 5 ·f . Thus, by Euler’s formula
||G|| + 2 = n + f , we have ||G|| ≤ 5

3 (n− 2). Note that for n ≥ 3850 we have

5

3
(n− 2) ≤ 11

6
n− 20

6
(2
√
n + 1) − 228, (1)

where the RHS of (1) is our new bound on the size of G taken for k = 6. Indeed, the above
inequality is equivalent to the following one

n− 40
√
n− 1368 ≥ 0,

which is satisfied for
√
n ≥ 62.0476 (and so for n ≥ 3849.91). Hence G is packable by Theorem 5.

�

We recall further classical results of packing theory which will be used in the proof of Theo-
rem 5.

Theorem 7 ([9]) Let G1 and G2 be graphs of order n each, and maximum degrees ∆(G1) and

∆(G2), respectively. If 2∆(G1)∆(G2) < n, then the complete graph Kn contains edge-disjoint

copies of G1 and G2.

Theorem 8 ([10]) Let G be a graph of order n and size ||G|| ≤ n− 2. Then G is fixed-point-free

packable.

The paper is organized as follows. In the next section we prove some preliminary lemmas.
They will be needed in the main part of the proof of Theorem 5 presented in the third section.
The general idea of the proof of this part has also been succesfully applied in [8].

2 Lemmas

We use the following result from [7].

Lemma 9 ([7]) Let G be a graph and k ≥ 1, l ≥ 1 be any positive integers. If there is a set

U = {v1, ...vk, vk+1, ..., vk+l} ⊂ V (G) of k + l independent vertices of G such that

1. vertices v1, ..., vk have degrees at most l and vertices vk+1, ..., vk+l have degrees at most k;

2. vertices of U have mutually disjoint neighborhoods, i.e. N(vi) ∩N(vj) = ∅ for i 6= j;
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3. there is a packing σ′ of G− U

then there exists a packing σ of G such that σ|G−U = σ′.

In fact, the conclusion in the above lemma is slightly stronger than that in [7]. However, it can be
derived directly from the proof of Lemma 3 in [7], without changing any line of the proof.

For convenience, let αk(n) = 4k−1
k

(2
√
n + 1) + 2k(4k − 5). In many places in the proofs we

will use the following observation.

Proposition 10 Let k ≥ 3. Let G be a graph of order n and size ||G|| ≤ 2k−1
k

n−αk(n). If G′ is a

graph that arises from G by deleting m vertices and at least 2m edges, then ||G′|| ≤ 2k−1
k

n′−αk(n′),
where n′ is the order of G′.

Proof. Note that αk(n) is increasing with respect to n. Thus,

||G′|| ≤ 2k − 1

k
n− αk(n) − 2m =

2k − 1

k
(n−m) − αk(n) − m

k

<
2k − 1

k
(n−m) − αk(n−m) =

2k − 1

k
(n′) − αk(n′).

�

Lemma 11 Let k ≥ 3. Let G be a non-star graph of order n, girth g ≥ 5 and size ||G|| ≤
2k−1

k
n− αk(n). If n ≤ 10k2, then G is packable.

Proof. If ||G|| ≤ 6
5n− 2, then G is packable by Theorem 4. Note that

2k − 1

k
n− 4

k − 1

k
(2
√
n + 1) − 2k(4k − 5) ≤ 6

5
n− 2 ⇐⇒

4k − 5

5k
n− 2k(4k − 5) − 4

k − 1

k
(2
√
n + 1) + 2 ≤ 0 (2)

Since 2 − 4k−1
k

(2
√
n + 1) ≤ 0, (2) holds if n ≤ 10k2. Thus, if n ≤ 10k2, then G is packable by

Theorem 4. �

Let T1, T2 be vertex-disjoint trees (we include isolated vertices as trivial trees). Let x be a
vertex belonging neither to the vertex set of T1 nor T2 and let B be any non-empty set of edges
containing x. Then a graph H = (V,E) is called a starry tree if V = V (T1) ∪ V (T2) ∪ {x} and
E = E(T1) ∪ E(T2) ∪ B. A vertex x we call a middle vertex of H. Note that a starry tree need
not be connected.

Lemma 12 Let H be a non-star starry tree of girth g ≥ 5. Then there is a packing of H such

that the middle vertex x of H is the image of one of its neighbors.

Proof. Let P5(3) be a starry tree with vertex set {1, 2, 3, 4, 5} and edge set {i(i + 1); i = 1, ..., 4},
and with the middle vertex x = 3. First, note that (1435)(2) is a packing of P5(3) as required.

In what follows, we will prove a slightly stronger statement than the one formulated in the
lemma. Namely, we will prove that if H is a non-star and different from P5(3) starry tree of girth
g ≥ 5, then there is a fixed-point-free packing of H such that the middle vertex x of H is the image
of one of its neighbors. The proof of this statement is by induction on |T1| + |T2|.

If |T1| + |T2| = 2 then the claim obviously holds. Assume that |T1| + |T2| ≥ 3. By a leaf of a
tree we mean a vertex with degree equal to 1 (in particular, the vertex of a one-vertex tree is not
a leaf). Observe that there is at least one leaf in T1 or in T2. We distinguish two cases:

Case 1. The middle vertex x is adjacent to all leaves in T1 and T2.
Case 2. There exists a leaf l in T1 or T2 such that the middle vertex x is not adjacent to l.
Consider Case 1. Without loss of generality we can assume that |T2| ≥ |T1|. Thus, by the

girth assumption, |V (T2)| ≥ 4. Furthermore, again by the girth assumption, every vertex in V (T2)
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is a neighbor of at most one leaf of T2 (the same holds for T1 as well). Let L be the set of all leaves
of T2. Hence, |NT2

(L)| = |L|. If every vertex v ∈ NT2
(L) has degree 3 or more in T2, then

2||T2|| =
∑

v∈V (T2)

deg v ≥ |L| + 3|NT2
(L)| + 2(n− |L| − |NT2

(L)|)

= |L| + 3|L| + 2(n− 2|L|) = 2n,

which is not possible. Hence, there exists a leaf l′′ in T2 such that l′′ is a neighbor of a vertex z with
degree 2 in T2. Let z′ be the neighbor of z other than l′′. Note that neither z nor z′ is connected
with x since g ≥ 5. Let H ′ = H − {l′′, z, z′, x}. Observe that by Theorem 8, H ′ is fixed-point-free
packable since ||H ′|| ≤ |H ′| − 2. Let σ′ be such a packing of H ′. Then (l′′, x, z, z′)σ′ is a packing
as required of H .

Consider Case 2. Without loss of generality we assume that l ∈ V (T1). Let l′ denote
the neighbour of l in T1. Consider a graph H ′ = H − {l}. Suppose that H ′ is a star. Hence,
V (H) = {x, l, l′, u} with {l, l′} = V (T1) and {u} = V (T2). Since g ≥ 5, xl is not an edge of H.
Thus (x, l, l′, u) is a packing as required of H. So we may assume that H ′ is not a star. On the
other hand, if H ′ = P5(3) then by the girth assumption H is a path of length five. Hence, (l23541)
is a packing as required of H.
Therefore, we may assume that H ′ is not a star and H ′ is different from P5(3). Thus, by the
induction hypothesis, there exists a fixed-point-free packing σ′ of H ′ such that x is the image of
one of its neighbors. If l′σ′(l′) is not an edge of H, then σ1 such that σ1(σ′−1(l′)) = l, σ1(l) = l′

and σ1(v) = σ′(v) for remaining vertices is a packing as required of H. On the other hand, if
l′σ′(l′) is an edge of H, (and so σ′−1(l′)l′ is not an edge in H since σ′ is a packing of H ′), then σ2

such that σ2(l′) = l, σ2(l) = σ′(l′) and σ2(v) = σ′(v) for remaining vertices is a packing as required
of H, unless σ′(l′) = x, in which case our additional assumption is not satisfied.

So we may assume that σ′(l′) = x and that l′x is an edge in H. In particular, σ′(x) 6= l′.
Observe that NT1

(l′) \ {l} 6= ∅ or T1 is the edge ll′. Assume first that there is a vertex z ∈
NT1

(l′)\{l}. Note that, by the girth assumption, z is not adjacent to x. Moreover, σ′−1(z)σ′−1(l′)
is not an edge in H since σ′ is a packing of H ′. Let σ3 be such that σ3(σ′−1(z)) = l, σ3(l) = z and
σ3(v) = σ′(v) for remaining vertices. Then σ3 is a packing as required of H. Therefore we must
have that T1 is the edge ll′. Moreover, without loss of generality we can assume that one of the
following holds:

• |T2| = 1

• |T2| = 2 (and H 6= P5(3))

• all of the leaves in T2 are adjacent to x.

Otherwise, we can replace T1 by T2 and using the above arguments we obtain a required packing
of H. For |T2| = 1 or |T2| = 2 the existence of a packing as required is obvious. Suppose then that
all of leaves in T2 are adjacent to x. Then we proceed as in Case 1. �

Lemma 13 Let k ≥ 3. Let G be a graph with minimum order n such that G is a non-star,

non-packable graph with girth g ≥ 5 and size ||G|| ≤ 2k−1
k

n − αk(n). Then G has no isolated

vertices.

Proof. Suppose for a contradiction, that y is an isolated vertex of G. By Proposition 11, n > 10k2 ≥
90. Hence, ∆(G) ≥ 7. Indeed, otherwise 2∆2(G) ≤ 72 < n and G is packable by Theorem 7. Let
x ∈ G with deg x ≥ 7. Note that since g ≥ 5, the graph G′ = G − {x, y} is not a star (otherwise
x would be a vertex of some cycle of order 3 or 4). Furthermore, as we delete two vertices and at
least 7 edges, ||G′|| ≤ 2k−1

k
|G′|−αk(|G′|), by Proposition 10. Thus, by the minimality assumption

there is a packing σ′ of G′. Then (xy)σ′ is a packing of G, a contradiction.
�
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Now we are going to show a similar result for vertices of degree 1, namely that if the number
of vertices of degree 1 is large, then G is packable. However, first we need the following two
preparatory lemmas.

Lemma 14 Let G be a graph with girth g ≥ 5 such that S = {v ∈ V (G) : deg v ≥ 3} is a set of

independent vertices in G. If G is not a star, then G is packable.

Proof. Let G be a counterexample of the above lemma with minimal order n. By Theorem 3, we
may assume that G contains a cycle of length 5. Since vertices of degree greater than or equal to
3 are independent, this cycle contains two adjacent vertices x, y with degree 2. Let x′, y′ be the
neighbours of x, y different from y and x, respectively. Let G′ = G− {x, y, x′, y′}.

If G′ is not a star then it is packable by the minimality assumption. Let σ′ be a packing of
G′. Then (x, x′, y, y′)σ′ is a packing of G.

If G′ is a star, then |S| = 1. Thus deg x′ = 2 or deg y′ = 2. Without loss of generality we
may assume that deg x′ = 2. Let s ∈ S. Hence, G′′ = G − {s, x′, x, y} is different from a star.
Thus, there is a packing σ′′ of G′′. Then (x, y, x′, s)σ′′ is a packing of G.

�

Lemma 15 Let G be a graph of order n ≥ 1. Let U,W ⊂ V (G) be disjoint sets of independent

vertices of G such that

1. vertices of W are isolated in G;

2. m vertices of U have degree at most 1;

3. vertices of U have mutually disjoint neighborhoods, i.e. N(vi) ∩N(vj) = ∅ for i 6= j;

4. there exists a packing σ′ of G− (U ∪W ).

If |W | ≥ min {b2√nc, |U | −m + 1} then G is packable. Moreover, there exists a packing σ of G

such that σ|G−(U∪W ) = σ′.

Proof. Let G′ := G− (U ∪W ). Let W = {w1, ..., wt} and U = {u1, ..., us} with deg u1 ≤ deg u2 ≤
... ≤ deg us. If |W | ≥ |U | −m + 1, then we have two cases:

Case 1. m ≤ 1 (hence t ≥ s): in this case σ′′ := (w1, u1)(w2, u2)...(ws, us)σ
′ is a packing of

G with the required property.
Case 2. m ≥ 2 (so t ≥ s −m + 1): in this case σ′′ := (w1, um+1)(w2, um+2)...(ws−m, us)σ

′

is a packing of G− {u1, ..., um}. Moreover, deg ui ≤ 1 for i = 1, ...,m. Hence, this packing can be
extended to a packing of G with the required property, by Lemma 9.

So we may assume that |U | − m + 1 > b2√nc. Hence |W | ≥ b2√nc. If deg us <
⌊

s
2

⌋

+ 1,
then we can extend σ′, using Lemma 9 (with k = b s

2c and l = d s
2e), to a packing of G[V (G′) ∪ U ]

(= G − W ). Clearly, in this way we obtain also a packing of G because W consists of isolated
vertices. Thus we may assume that

deg us ≥
⌊s

2

⌋

+ 1.

Consider now U1 := U − us. In the same way as before, if σ′ cannot be extended, using Lemma 9,
to a packing of G[V (G′) ∪ U1], then

deg us−1 ≥
⌊

s− 1

2

⌋

+ 1

and so on. Let U0 = U and let Ul = U \ {us, ..., us−l+1} for 1 ≤ l ≤ s. Let p, 0 ≤ p ≤ s− 1, be the
smallest integer such that deg us−p−1 ≤

⌊

s−p−1
2

⌋

, or p = s− 1 if deg us−i ≥≤
⌊

s−i
2

⌋

+ 1 for every
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i = 1, ..., s. Note that, by Lemma 9, σ′ can be extended to a packing σp+1 of G[V (G′)∪Up+1]. We
will show that p ≤ t− 1. Indeed,

s
∑

i=1

deg ui ≥
p

∑

j=0

(⌊

s− j

2

⌋

+ 1

)

≥
p

∑

j=0

(

s + 1 − j

2

)

= (p + 1)
2s + 2 − p

4

≥ (p + 1)p

4
.

Because vertices in U have disjoint neighborhoods and |U | ≥ b2√nc,

n ≥ |U | + |W | +

s
∑

i=1

deg ui ≥ 4
√
n− 2 +

(p + 1)p

4
.

The last component of the above inequality is increasing for p ≥ 0. Hence, if p ≥ 2
√
n− 1, then

n ≥ n +
7

2

√
n− 2,

a contradiction. Thus, p < 2
√
n−1 hence p ≤ t−1. Hence, σ = (w1, us−p)(w2, us−p+1)...(wp+1, us)σp+1

is a packing of G. �

Now we are in the position to show that if the number of vertices of degree 1 is large enough,
then G is packable.

Lemma 16 Let k ≥ 3. Let G be a graph with minimum order n such that G is a non-star, non-

packable graph with girth g ≥ 5 and size ||G|| ≤ 2k−1
k

n−αk(n). If all the vertices of G of degree 1

have a common neighbor then G has at most 4
√
n + 1 vertices of degree 1.

Proof. By Lemma 13, G has no isolated vertices. Let V1 denote the set of all vertices of G with
degree 1 and suppose that |V1| ≥ 4

√
n + 2. Let x be the common neighbor of all vertices from V1.

Furthermore, let y be one of the neighbors of x outside V1 or if N(x) = V1 let y ∈ V (G)\(V1∪{x}).
We define G′ := G− x−N(x) − y −N(y).
Let U1 denote the set of all different from y neighbors of x with degree at least 2. Furthermore
let z 6= x be one of the neighbors of y. Let U2 be the set of all neighbors of y excluding x and z.
Note that U1 ∩ U2 = ∅ (because of girth assumptions if y is a neighbor of x, or because U1 = ∅,
otherwise). Finally let a and a′ be certain vertices from V1.
We choose disjoint subsets, W1 and W2, of V1 \{a, a′} such that |Wi| = min{b2√nc, |Ui|−mi +1},
where mi denotes the number of vertices of degree 2 in Ui. In particular,

|Wi| ≤ |Ui| −mi + 1.

Thus

∑

v∈Ui∪Wi

deg v ≥ |Wi| + 2mi + 3(|Ui| −mi) = 3|Ui| + |Wi| −mi

≥ 2|Ui| −mi + |Wi| + |Wi| + mi − 1 = 2|Ui ∪Wi| − 1. (3)

Let V ′
1 = V1 \ (W1∪W2∪{a, a′}). Denote vertices in V ′

1 by {u1, ..., up}, see Figure 1. Let us choose
a subset A = {v1, ..., v|A|} ⊂ V (G′) in the following way. Let G′

1 = G′. Let v1 ∈ V (G′
1) be a vertex

such that v1 is not a neighbor of z in G and v1 has degree at least 3 in G′
1. In the (i + 1)-th step

we define G′
i+1 = G′

i − vi and we choose such a vertex vi+1 ∈ V (G′
i+1) which is not a neighbor of

z in G and which has degree at least 3 in G′
i+1. We continue this procedure until the time when

|A| = p or it is not possible to choose a successive vertex vi+1. Let G′′ := G′
|A|+1. Now we have

two cases:

6



Case 1. |A| < p. In this case G′′ contains all the neighbors of z in G′ (deg z ≥ 2) which are
independent because of girth assumption. Furthermore, all remaining vertices of G′′ have degrees
at most 2 in G′′. Hence, G′′ is packable by Lemma 14 or G′′ is a star of order 2 or more (if G′′ is
a star of order 1, then it is trivially packable).

Case 2. |A| = p. Let n′′ = |G′′|. Hence n′′ = n− |U1 ∪W1| − |U2 ∪W2| − 2p− 5. Note that
because girth is greater than or equal to 5 the set U1 ∪ U2 ∪ {z} is independent in G. Thus,

||G′′|| ≤ ||G|| −





∑

v∈U1∪W1∪U2∪W2

deg v +
∑

v∈A

3 +
∑

v∈V ′

1

1 + deg a + deg a′ + deg z





≤ ||G|| − (2|U1 ∪W1| − 1 + 2|U2 ∪W2| − 1 + 3p + p + 4), by (3)

= ||G|| + 2(n′′ − n) + 8 ≤ 2k − 1

k
n− αk(n) + 2n′′ − 2n + 8.

Recall that, by Proposition 11, n > 10k2. Hence 1
k

(n−n′′) ≥ 8 since n ≥ n′′ + 4
√
n+ 2. Therefore

||G′′|| ≤ −1

k
n′′ − 8 − αk(n) + 2n′′ + 8 ≤ 2k − 1

k
n′′ − αk(n′′)

for, clearly, αk(n) ≥ αk(n′′). Therefore G′′ is a star of order at least 2 or G′′ is packable by the
minimality assumption (if G′′ is a star of order 1, then it is trivially packable).

In what follows we deal with both cases simultaneously. Suppose first that G′′ is not a non-
trivial star whence it is packable. Let σ′′ denote a packing of G′′. Then σ′ := (v1, u1)...(v|A|, u|A|)σ

′′

is a packing of G′ + V ′
1 (recall, that in the notation of a permutation we omit fixed points). Now,

by Lemma 15, σ′ can be extended to a packing σ′
2 of G′ + V ′

1 + U2 + W2 (the girth assumption
implies that vertices from U2 have disjoint neighborhoods). Consequently, by Lemma 15, σ′

2 can
be extended to a packing σ′

1 of G′ + V ′
1 +U2 +W2 +U1 +W1 (again, the girth assumption implies

that vertices from U1 have disjoint neighborhoods). Finally, σ = (x, a, y, z)σ′
1 is a packing of G.

In the case when G′′ is a star let z′ ∈ V (G′′) be a neighbor of z in G′′ and let z′′ denote a neighbor
of z′ in G′′ (recall that deg z ≥ 2 and the star has at least 2 vertices). Note that because of the
girth, z′′ is not a neighbor of z in G. Furthermore, either z′ or z′′ is the center of the star G′′.
Hence, σ′′ = (z′, z′′, a′) is a packing of G′′ + a′. We extend σ′′ to a packing of the whole G in the
same way as previously. �

Lemma 17 Let k ≥ 3. Let G be a graph with minimum order n such that G is a non-star, non-

packable graph with girth g ≥ 5 and size ||G|| ≤ 2k−1
k

n − αk(n). If two vertices of G of degree 1

have different neighbors then G has at most 20 vertices of degree 1.

Proof. Let V1 denote the set of all vertices of G with degree 1. Suppose for a contradiction, that
|N(V1)| ≥ 2 and |V1| > 20. By the same argument as in the proof of Lemma 13 we may assume
that G contains a vertex x with deg x ≥ 7. Let x1, x2 ∈ V1 and y1, y2, y1 6= y2, be the neighbors
of x1 and x2 respectively.

Note that y1 and y2 cover at most 7 edges. Indeed, otherwise G′ := G − {x1, x2, y1, y2}
arises from G by deleting 4 vertices and at least 8 edges. Hence, ||G′|| ≤ 2k−1

k
|G′| − αk(|G′|),

by Proposition 10. Moreover, y1 or y2 has at least two neighbors in G′. Hence, by the girth
assumption, G′ is not a star. Thus, by the minimality assumption there is a packing σ′ of G′.
Then, (x1, y1, x2, y2)σ′ is a packing of G.

Therefore, deg y1,deg y2 ≤ 6 and x is not a neighbor of any vertex from V1. Moreover,
deg y1 + deg y2 ≤ 8 if y1y2 is an edge of G, and deg y1 + deg y2 ≤ 7 otherwise. In particular, y2
has at most 7 − deg y1 neighbors in V1. Analogously, every vertex other than y1 of G has at most
7 − deg y1 neighbors in V1. Let V ′

1 ⊂ V1 \ {y1} be the set of all vertices of degree 1 which are at
distance equal to 1 or 2 from y1. Let V ′′

1 = V1 \ V ′
1 . Thus, |V ′

1 | ≤ (deg y1 − 1)(7 − deg y1) + 1.
Hence, |V ′′

1 | ≥ |V1| − (deg y1 − 1)(7 − deg y1) − 1. Since every vertex other than y1 of G has at
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Figure 1:

most 7 − deg y1 neighbors in V1, we have

|N(V ′′
1 )| ≥ |V1| − (deg y1 − 1)(7 − deg y1) − 1

7 − deg y1
.

Therefore, if |V1| ≥ (deg y1 − 1) (7 − deg y1) + 1 + (deg y1 − 1) (7 − deg y1) + 1 then |N(V ′′
1 )| ≥

deg y1, so we can find a set W ⊂ V1 of deg y1 vertices of degree 1 which are independent, have
different neighbors and are at distance at least 3 from y1 (we include the case when deg y1 = 1).
It is easy to check that the above statement is true if |V1| ≥ 20 since the largest number of vertices
of degree 1 is needed when deg y1 = 4.

Consider now a graph G′′ := G − (W ∪ {x, x1, y1}). Note that in order to obtain G′′ we
remove from G, deg y1 + 3 vertices and at least deg y1 + (deg y1 + deg x− 1) ≥ 2(deg y1 + 3) edges.
Therefore, by Proposition 10, ||G′′|| ≤ 2k−1

k
|G′′|+αk(|G′′|). Hence, by the minimality assumption,

there is a packing σ′′ of G′′. Furthermore, (x, x1)σ′′ is a packing of G − (W ∪ {y1}). Then, by
Lemma 9, there is a packing of G, a contradiction. �

3 Proof of Theorem 5

Proof. Fix k, k ≥ 3. Assume that G is a counterexample to Theorem 5 with minimum order n. By
Lemma 11, n > 10k2 ≥ 90. Moreover, by Lemma 13, G has no isolated vertices, and, by Lemmas
16 and 17, G has less than 4

√
n + 2 vertices of degree 1. Let V1 be the set of all vertices of degree

1 in G, so |V1| < 4
√
n + 2.

Let S denote a most numerous set of independent vertices of degrees 2, ..., k which have
mutually disjoint sets of neighbors. Note that S 6= ∅. Indeed, otherwise

4k − 2

k
n− 2αk(n) ≥ 2||G|| =

∑

v∈V (G)

deg v > (4
√
n + 2) + (k + 1)(n− 4

√
n− 2).
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Hence,

k2 − 4k + 4

k
(4
√
n + 2) − 4k(4k − 5) >

k2 − 3k + 2

k
n,

which is not possible because n > 4
√
n + 2 for n > 90, and k2 − 3k + 2 > k2 − 4k + 4 for k ≥ 3.

By the girth assumption, G − S is not a star. Moreover, by Proposition 10, ||G − S|| ≤
2k−1

k
|G − S| + αk(|G − S|). Thus, by the minimality assumption, G − S is packable. Hence, by

Lemma 9 (with l = k),
|S| < 2k. (4)

Thus,
|N(S)| < 2k2. (5)

Let Vj := {v ∈ V (G) \ N(S) : deg v = j}. By the definition of S, every vertex from V2 ∪ ... ∪ Vk

has a neighbor in N(S). Thus,
∑

v∈N(S) deg v ≥ |V2| + ... + |Vk|. Therefore,

4k − 2

k
n− 2αk(n) ≥ 2||G|| =

∑

v∈V (G)

deg v =
∑

u∈N(S)

deg u +
∑

v∈V (G)\N(S)

deg v

≥ (|V2| + ... + |Vk|) + |V1| + 2|V2| + ... + k|Vk|
+ (k + 1) (n− |V1| − |V2| − ...− |Vk| − |N(S)|) ,

Thus, by (5),

(k − 2)|V2| + (k − 3)|V3| + ... + |Vk−1| >
k2 − 3k + 2

k
n− k|V1| − 2k2(k + 1) + 2αk(n).

Clearly, |N(N(S))| ≥ |V2| + |V3| + ... + |Vk−1|, hence

|N(N(S))| > k − 1

k
n− k

k − 2
|V1| +

2αk(n) − 2k2(k + 1)

k − 2
. (6)

Thus, vertices from N(S) cover at least k−1
k

n− k
k−2 |V1| + 2αk(n)−2k2(k+1)

k−2 edges.
Consider now the graph G − N(S). Let T1,...,Tp, with |Ti| ≥ |Tj | for i < j, denote connected
components of G − N(S) which are trees such that each vertex of Ti is incident with at most
one vertex in N(S). We call these components minimal components of G − N(S). Let R :=
G − N(S) − V (T1) − ... − V (Tp). Let r denote the sum of the size of R and the number of all
vertices in R which are joined (in G) with N(S) by at least two edges. Since R does not contain
minimal components, every component of R which is a tree contains a vertex joined with N(S)
by at least two edges. On the other hand, every component of R which is not a tree has at least
as many edges as vertices. Hence, r ≥ |R|. Moreover, r counts all edges in R and some edges
between R and N(S) which are not counted in inequality (6), because this inequality counts only
the number of vertices in N(N(S)) and ignores the number of connections.

Note that there are exactly n− |N(S)| − |R| − p edges in
⋃p

i=1 Ti. Below we show that p is
greater than 2|N(S)|− |R|+r+1. By the assumption and by inequality (6), the size of G satisfies:

2k − 1

k
n− αk(n) ≥ ||G|| > k − 1

k
n− k

k − 2
|V1| +

2αk(n) − 2k2(k + 1)

k − 2

+ (n− |N(S)| − p− |R|) + r

Thus, since |N(S)| < 2k2,

p > − k

k − 2
|V1| +

2αk(n) − 2k2(k + 1)

k − 2
− 2k2 + 1 − |R| + r + αk(n)

= − k

k − 2
|V1| +

k

k − 2
αk(n) − 2k2(2k − 1)

k − 2
+ 1 − |R| + r.
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Then the number p′ of non-trivial (i.e. with at least one edge) minimal components satisfies

p′ ≥ p− |V1| > −2k − 2

k − 2
|V1| +

k

k − 2
αk(n) − 2k2(2k − 1)

k − 2
+ 1 − |R| + r.

Using the bound on |V1| we obtain

p′ > 4k2 + 1 − |R| + r > 2|N(S)| + 1 − |R| + r. (7)

Since r ≥ |R|, T1, ..., T2|N(S)| are non-trivial minimal components of G. Let G′ := G[N(S)∪V (T1)∪
...∪V (T2|N(S)|)] and G′′ := G−G′. Below we show that there exists a packing of G′ such that the
image of every vertex in N(S) is not in N(S). Let L be a set of maximum cardinality l of vertex-
disjoint starry trees, such that each starry tree is formed of two of the trees Ti, 1 ≤ i ≤ 2|N(S)|,
and one vertex (the middle vertex) from N(S). Let H1, ..., Hl, l ≤ |N(S)|, denote the starry trees.
Suppose first that l = |N(S)|. Then we pack every starry tree in such a way that the middle vertex
is the image of one of its neighbors in the same starry tree. Since T1, ..., T2|N(S)| are non-trivial
trees, every starry tree is not a star. Hence, the required packing exists by Lemma 12. Let σi

be the required packing of Hi. We claim that the product σ = σ1....σ|N(S)| is a packing of G′ as
well. Since σi is a packing of Hi, only edges between different starry trees may spoil the packing
of G′. Furthermore, every middle vertex is mapped on a non-middle vertex. Since there are no
edges between Ti and Tj for i 6= j, the edges between middle vertices do not spoil the packing. It
remains to check the edges of the form xy where x is the middle vertex of some starry tree and
y is a non-middle vertex of another starry tree. However, since the middle vertex of each starry
tree is the image of one of its neighbors in the same starry tree and this neighbor has no other
neighbors outside its minimal component, these edges do not also spoil the packing. Suppose now,
that l < |N(S)|. Again, we pack every starry tree in such a way that the middle vertex is the
image of one of its neighbors. Moreover, since L is maximal, each remaining vertex of N(S) has
no neighbors in each of the remaining minimal components (otherwise, we would have an extra
starry tree). Hence, by Theorem 8, each of the remaining vertices from N(S) together with two
non-trivial minimal components (not involved in any starry tree) can be packed without fixed
points. We claim that the product of these packings is a proper packing of G′. Suppose for a
contradiction that the image of an edge e in G′ coincides with some other edge e′ in G′. Using the
previous argument, e′ must join a vertex z ∈ N(S) which is not in any starry tree from L with
a non-middle vertex of some starry tree H. Moreover, e must join the middle vertex of H with
some minimal component which is not in any starry tree from L. By replacing the middle vertices
incident to e and e′ we obtain more than l starry trees and we get a contradiction. Hence G′ is
packable.

Recall that r ≥ ||R||. Furthermore, since p ≥ p′, by (7) we have

||G′′|| = ||R ∪ T2|N(S)|+1 ∪ ... ∪ Tp|| = ||R|| + |T2|N(S)|+1| + ... + |Tp| − (p− 2|N(S)|)
< ||R|| + |T2|N(S)|+1| + ... + |Tp| − (r − |R|) − 1

≤ |R| + |T2|N(S)|+1| + ... + |Tp| − 1

= |R ∪ T2|N(S)|+1 ∪ ... ∪ Tp| − 1 = |G′′| − 1.

Thus, by Theorem 1, G′′ is packable.
Let σ′, σ′′ denote packings of G′ and G′′, respectively. Then σ = σ′σ′′ is a packing of G.

Suppose for a contradiction that the image of an edge xy in G coincides with some other edge
σ(x)σ(y) in G. Then x, σ(x) ∈ V (G′) and y, σ(y) ∈ V (G′′). By construction of G′ and G′′ we have
that x and σ(x) belong to N(S). Then we get a contradiction, since the image of every vertex in
N(S) is not in N(S). The packing σ contradicts the assumption that G was non-packable, so we
deduce no counterexample to Theorem 5 exists. �
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