On vertex stability with regard to complete bipartite subgraphs

Aneta Dudek and Andrzej Żak
Faculty of Applied Mathematics, AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: {dudekane,zakandrz}@agh.edu.pl

February 23, 2010

Abstract

A graph G is called $(H; k)$-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. $Q(H; k)$ denotes the minimum size among the sizes of all $(H; k)$-vertex stable graphs. In this paper we complete the characterization of $(K_{m, n}; 1)$-vertex stable graphs with minimum size. Namely, we prove that for $m \geq 2$ and $n \geq m + 2$, $Q(K_{m, n}; 1) = mn + m + n$ and $K_{m, n} + K_1$ as well as $K_{m+1, n+1} - e$ are the only $(K_{m, n}; 1)$-vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.

Key words: vertex stable, bipartite graph, minimal size
Mathematics Subject Classifications (2000): 05C70; 11B50; 05C78.

1 Introduction

We deal with simple graphs without loops and multiple edges. We use the standard notation of graph theory, cf. [1]. The following notion was introduced in [2]. Let H be any graph and k a non-negative integer. A graph G is called $(H; k)$-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Then $Q(H; k)$ denotes minimum size among the sizes of all $(H; k)$-vertex stable graphs. Note that if H does not have isolated vertices then after adding to or removing from a $(H; k)$-vertex stable graph any number of isolated vertices we still have a $(H; k)$-vertex stable graph with the same size. Therefore, in the sequel we assume that no graph in question has isolated vertices.

There are two trivial examples of $(H; k)$-vertex stable graphs, namely $(k + 1)H$ (a disjoint union of $(k + 1)$ copies of H) and $H + K_k$ (a graph obtained from $H \cup K_k$ by joining all the vertices of H to all the vertices of K_k). Therefore,

Proposition 1 $Q(H; k) \leq \min \left\{ (k + 1)|E(H)|, |E(H)| + k|V(H)| + \binom{k+1}{2} \right\}.$

On the other hand, the following is easily seen.

Proposition 2 Suppose that H contains k vertices which cover q edges. Then $Q(H; k) \geq |E(H)| + q$.

Recall also the following

Proposition 3 ([2]) Let δ_H be a minimal degree of a graph H. Then in any $(H; k)$-vertex stable graph G with minimum size, $\deg_G v \geq \delta_H$ for each vertex $v \in G$.

1
The exact values of \(Q(H;k) \) are known in the following cases: \(Q(C_i;k) = i(k+1), i = 3, 4, Q(K_4;k) = 5(k+1), Q(K_n;k) = i(\frac{n^2+k}{2}) \) for \(n \) large enough, and \(Q(K_{1,m};k) = m(k+1), Q(K_{n,n};1) = n^2+2n, Q(K_{n,n+1};1) = (n+1)^2, n \geq 2, \) see [2, 3]. In this paper we complete the characterization of \((K_{m,n};1)\) vertex stable graphs with minimum size. Namely, we prove the following theorem and hence confirm Conjecture 1 formulated in [3].

Theorem 1 Let \(m, n \) be positive integers such that \(m \geq 2 \) and \(n \geq m+2 \). Then \(Q(K_{m,n};1) = mn + m + n \) and \(K_{m,n} \ast K_1 \) as well as \(K_{m+1,n+1} - c \), where \(c \in E(K_{m+1,n+1}) \), are the only \((K_{m,n};1)\)-vertex stable graphs with minimum size.

2 Proof of the main result

Proof of Theorem 1. Let \(m \geq 2 \) and \(n \geq m+2 \) be positive integers. Define \(G_1 := K_{m,n} \ast K_1 \) and \(G_2 := K_{m+1,n+1} - c \) where \(c \in E(K_{m+1,n+1}) \). Let \(G = (V,E) \) be a \((K_{m,n};1)\)-vertex stable graph with minimum size. Thus, by Proposition 1, \(|E(G)| \leq mn + m + n \). Clearly \(G \) contains a subgraph \(H \) isomorphic to \(K_{m,n} \). Let \(H = (X,Y;E_H) \) with vertex bipartition sets \(X, Y \) such that \(|X| = m \) and \(|Y| = n \). Let \(v \in X \). Since \(G \) is \((K_{m,n};1)\)-vertex stable, \(G - v \) contains a subgraph \(H' \) isomorphic to \(K_{m,n} \). Let \(H' = (X',Y';E_{H'}) \) with vertex bipartition sets \(X',Y' \) such that \(|X'| = m \) and \(|Y'| = n \). We denote \(x_1 = |X \cap X'|, x_2 = |X \cap Y'|, y_1 = |Y \cap X'|, y_2 = |Y \cap Y'| \). Hence \(x_1 + x_2 \leq m - 1, y_1 + y_2 \leq n, y_1 \leq m \). One can see that \(|E(G)| \geq 2mn - x_1y_2 - x_2y_1 \).

Consider the following linear programming problem with respect to \(y_1 \) and \(y_2 \):

\[
\begin{align*}
y_1 & \leq m \\
y_1 + y_2 & \leq n \\
y_1 & \geq 0 \\
y_2 & \geq 0 \\
c & = x_1y_2 + x_2y_1 \rightarrow \max
\end{align*}
\]

where \(x_1 \) and \(x_2 \) are parameters such that \(x_1, x_2 \geq 0, x_1 + x_2 \leq m - 1 \).

![Fig. 1. Geometrical interpretation of the linear programming problem](image-url)
The proof falls into two cases.

Case 1 : \(x_1 < x_2 \)

In this case \(y_1 = m, y_2 = n - m \), \(c = x_2m + x_1(n - m) \) is the unique optimal solution of the above linear programming problem. This can be easily checked using a geometrical interpretation of the linear programming problem, see Fig. 1. Thus \(|E(G)| \geq 2mn - x_2m - x_1(n - m) \) and the inequality is strict if \(y_1 \neq m \) or \(y_2 \neq n - m \). We assume that \(x_1 + x_2 = m - 1 \) because otherwise the size of \(G \) may only increase. Then

\[
|E(G)| \geq 2mn - m^2 + m + x_1(2m - n) := f(x_1).
\]

Subcase 1a : \(n > 2m \)

Then \(f(x_1) \) is decreasing. Furthermore, \(x_1 < \frac{m-1}{2} \) since \(x_1 < x_2 \). Thus

\[
|E(G)| > f \left(\frac{m - 1}{2} \right) = \frac{3}{2}mn + \frac{1}{2}n \geq mn + m + n.
\]

Thus \(|E(G)| > mn + m + n \), a contradiction.

Subcase 1b : \(n < 2m \)

Then \(f(x_1) \) is increasing. Thus

\[
E(G) \geq f(0) = 2mn - m^2 + m \geq mn + m + n
\]

with equality if and only if \(m = 2 \) and \(n = 4 \), which is not possible in this subcase.

Subcase 1c : \(n = 2m \)

In this case

\[
E(G) \geq mn + m + n
\]

with equality if and only if \(m = 2 \), \(n = 4 \), \(y_1 = y_2 = 2 \). Recall that \(x_1 < x_2 \) whence \(x_1 = 0 \) and \(x_2 = 1 \). Let \(u \in Y' \setminus (X \cup Y) \). Thus \(|E(G)| \geq 12 + \deg u \). Hence \(\deg u = 2 \) and \(|V(G)| = 7 \) because otherwise \(|E(G)| > mn + m + n \). However, then \(G \) is not \((K_{2,4};1) \)-stable. Indeed let \(w \) be a neighbor of \(u \). Then \(G - w \) does not contain any subgraph isomorphic to \(K_{2,4} \) since \(G - w \) has 6 vertices and one of them has degree 1. Therefore Case 1 is not possible.

Case 2 : \(x_1 \geq x_2 \)

In this case \(c = x_1n \) is the optimal solution of the above linear problem, see Fig. 1. Therefore, \(|E(G)| \geq 2mn - x_1n \). If \(x_1 \leq m - 2 \) then \(|E(G)| \geq 2mn - (m - 2)n = mn + 2n > mn + m + n \). Hence we may assume that \(x_1 = m - 1 \) and \(x_2 = 0 \). Thus there is only one vertex, say \(u \), such that \(u \in X' \setminus X \).

Subcase 2a : \(y_2 = n \)

Thus, \(u \) have \(n \) neighbors in \(Y \). Note that \(|V(G)| \leq m + n + 2 \). Indeed, otherwise by Proposition 3, \(|E(G)| \geq mn + n + 2m - 1 > mn + m + n \). Consider now a graph \(G'' := G - w \) where \(w \in Y \). Clearly \(G - w \) contains a subgraph \(H'' \) isomorphic to \(K_{m,n} \). Let \(H'' = (X'', Y'', E_{H''}) \) with vertex bipartition sets \(X'', Y'' \) such that \(|X''| = m \) and \(|Y''| = n \). Let \(x_1' = |X \cap X''|, x_2' = |X \cap Y''|, y_1' = |Y \cap X''|, y_2' = |Y \cap Y''| \).

Suppose first that \(|V(G)| = m + n + 2 \) and \(u, u_1 \in V(G) \setminus (X \cup Y) \). Since \(|E(G)| \leq mn + m + n \), \(\deg u_1 = m \) and \(\deg u = n + 1 \). In particular, \(u_1 \notin X'' \) and \(u \) has no neighbor in \(X \). Furthermore, \(|E(G)| \geq mn + n + m + x'_1, x'_2 + y'_1, y'_2 \). Thus, \(x'_1 = 0 \) or \(x'_2 = 0 \), and \(y'_1 = 0 \) or \(y'_2 = 0 \). We distinguish two possibilities.
1. \(x'_1 = 0 \). Then \(y'_1 \neq 0 \). Indeed, otherwise \(X'' = \{u, u_1\} \), a contradiction with previous observation that \(u_1 \notin X'' \). Hence, \(y'_2 = 0 \). Thus, \(x'_2 = m \) and \(u, u_1 \in Y'' \) (so \(n = m+2 \)). Consequently, \(y'_2 = m \). However, then \(G \) is not \((K_{m,m+2};1)\)-stable. Indeed, let \(w_1 \) be a neighbor of \(u_1 \), \(w_1 \in X'' \subset Y \). Then \(G - w_1 \) consists of a subgraph isomorphic to \(K_{m+1,m+1} \) plus one vertex (namely \(u_1 \)) and \(m-1 \) edges incident to it. Therefore, \(G - w_1 \) does not contain any subgraph isomorphic to \(K_{m,m+2} \).

2. \(x'_1 \neq 0 \). Then \(x'_2 = 0 \) and \(u \notin Y'' \). Consequently, \(u_1 \in Y'' \) and \(y'_2 \neq 0 \). Hence \(y'_1 = 0 \). It is easy to see now that \(G \cong G_2 \).

Assume now that \(|V(G)| = m + n + 1 \). Hence \(x'_1 + x'_2 = m \) and \(y'_1 + y'_2 = n - 1 \). We have the next two possibilities.

3. \(x'_1 + y'_1 = m \). Then \(|E(G)| \geq mn + x'_1 x'_2 + y'_1 y'_2 + \deg u \geq mn + x'_1 x'_2 + y'_1 y'_2 + n + x'_1 \).

Hence
\[
|E(G)| \geq mn + (m - x'_1)(n - 1 - m + 2x'_1) + n + x'_1 =: f_1(x'_1), \quad 0 \leq x'_1 \leq m.
\]

It is not difficult to see that \(f_1(x'_1) \) obtains the smallest value for \(x'_1 = 0 \) or \(x'_1 = m \) only. Thus, \(|E(G)| \geq \min\{f_1(0), f_1(m)\} \). Note that \(f_1(0) = 2mn + n - m - m^2 \geq mn + m + n \) with equality if and only if \(n = m + 2 \). However, then there is a vertex \(y \in Y'' \) such that \(G - y \cong K_{m+1,m+1} \) so \(G - y \) does not contain any subgraph isomorphic to \(K_{m,m+2} \).

Furthermore, \(f(m) \geq mn + n + m \). Thus, \(|E(G)| \geq mn + m + n \) with equality if and only if \(x_1 = m \). Then \(G \cong G_1 \).

4. \(x'_2 + y'_2 = n \). Then \(|E(G)| \geq mn + x'_1 x'_2 + y'_1 y'_2 + n + x'_2 \). Hence,
\[
|E(G)| \geq mn + (m - x'_2)x'_2 + (x'_2 - 1)(n - x'_2) + n + x'_2 =: f_2(x'_2), \quad 1 \leq x'_2 \leq m.
\]

One can see that \(f_2(x'_2) \) obtains the smallest value for \(x'_2 = 1 \) or \(x'_2 = m \) only. Thus,
\[
|E(G)| \geq \min\{f_2(1), f_2(m)\}.
\]

Note that \(f_2(1) = mn + n + m \). Then \(G \cong G_1 \). On the other hand, \(f_2(m) = 2mn + 2m - m^2 > mn + m + n \).

Subcase 2b : \(y_2 < n \)

Thus, there is a vertex \(z \in Y' \) such that \(z \in V(G) \setminus (X \cup Y) \). This clearly forces \(m-1 \) neighbors of \(z \) in \(X \setminus \{v\} \). Consider now a graph \(G - v_1, v \neq v_1 \in X \). We repeat all preceding arguments to the graph \(G - v_1 \). Consequently, \(G \cong G_i, i = 1, 2, \) or there is a vertex \(z_1 \in V(G) \setminus (X \cup Y) \) which has \(m-1 \) neighbors in \(X \setminus \{v_1\} \). If \(z = z_1 \) then \(z \) has \(m \) neighbors in \(X \) and \(G \cong G_1 \) if \(u \in Y \) or \(G \cong G_2 \) otherwise. If \(z \neq z_1 \) then either \(\deg z + \deg z_1 \geq 2m + 1 \) if both vertices \(z \) and \(z_1 \) are involved in a \(K_m \) contained in \(G - v \) or \(G - v_1 \), or \(\deg u \geq n + 1 \) otherwise. Thus, \(|E(G)| \geq mn + 2m - 1 + n > mn + m + n \).

3 Concluding remarks

In [2, 3] it is proved that \(Q(K_{1,n}; k) = (k + 1)n \). However, for \(n \geq 3 \) the extremal graphs are not characterized.

Proposition 4 Let \(G \) be a \((K_{1,n}; k)\)-vertex stable graph with minimum size, \(n \geq 3 \). Then \(G = (k + 1)K_{1,n} \).

Proof. The proof is by induction on \(k \). The thesis is obvious for \(k = 0 \). Assume that \(k > 0 \). Let \(G \) be a \((K_{1,n}; k)\)-vertex stable graph with minimum size. Hence, \(|E(G)| = (k + 1)n \). Note that each \((K_{1,n}; k)\)-vertex stable graph contains \(k + 1 \) vertices of degree at least \(n \). Let \(v \in V(G) \) with \(\deg v \geq n \). Thus, \(G - v \) is \((K_{1,n}; k-1)\)-vertex stable graph with \(|E(G - v)| \leq kn \). Hence, \(|E(G - v)| = kn \) and \(\deg v = n \). By the induction hypothesis \(G - v = kK_{1,n} \). Note that \(v \) is not a neighbor of any vertex of degree \(n \). Suppose on the contrary, that \(uv \in E(G) \) and \(\deg u = n \). Then
$G - u$ contains only $k - 1$ vertices of degree greater than or equal to n whence is not $(K_1, n; k - 1)$-vertex stable, a contradiction. Thus, G contains $k + 1$ independent vertices of degree exactly n. We will show that these vertices have pairwise disjoint sets of neighbors. Indeed, otherwise let x be a common neighbor of two vertices of degree n. Thus, again, $G - x$ has only $k - 1$ vertices of degree greater than or equal to n, a contradiction.

In the following table we present the complete characterization of $(K_m, n; 1)$-vertex stable graphs with minimum size.

<table>
<thead>
<tr>
<th>$m; n$</th>
<th>$Q(K_m, n; 1)$</th>
<th>All $(K_m, n; 1)$-vertex stable graphs with minimum size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 1, n = 1$</td>
<td>2</td>
<td>$2K_{1,1}$</td>
</tr>
<tr>
<td>$m = 1, n = 2$</td>
<td>4</td>
<td>$K_{2,2}, 2K_{1,2}$</td>
</tr>
<tr>
<td>$m = 1, n \geq 3$</td>
<td>$2n$</td>
<td>$2K_{1,n}$</td>
</tr>
<tr>
<td>$m = 2, n = 2$</td>
<td>8</td>
<td>$K_{2,2} * K_{1,2}, K_{3,3} - e, 2K_{2,2}$</td>
</tr>
<tr>
<td>$m \geq 2, n = m + 1$</td>
<td>$(m + 1)^2$</td>
<td>$K_{m+1,m+1}$</td>
</tr>
<tr>
<td>$m \geq 3, n = m$</td>
<td>$m^2 + 2m$</td>
<td>$K_{m,m} * K_{1,m+1,m+1} - e$</td>
</tr>
<tr>
<td>$m \geq 2, n \geq m + 2$</td>
<td>$mn + m + n$</td>
<td>$K_{m,n} * K_{1,m+1,n+1} - e$</td>
</tr>
</tbody>
</table>

Acknowledgement: The research was partially supported by the University of Science and Technology grant No 11 420 04. Authors wish to express his gratitude to Gyula Y Katona for suggesting the problem.

References

