On vertex stability with regard to complete bipartite subgraphs

Aneta Dudek and Andrzej Żak

Faculty of Applied Mathematics, AGH University of Science and Technology al. Mickiewicza 30, 30–059 Kraków, Poland e-mail:{dudekane,zakandrz}@agh.edu.pl

February 23, 2010

Abstract

A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Q(H;k) denotes the minimum size among the sizes of all (H;k)-vertex stable graphs. In this paper we complete the characterization of $(K_{m,n};1)$ -vertex stable graphs with minimum size. Namely, we prove that for $m \geq 2$ and $n \geq m+2$, $Q(K_{m,n};1) = mn+m+n$ and $K_{m,n}*K_1$ as well as $K_{m+1,n+1}-e$ are the only $(K_{m,n};1)$ -vertex stable graphs with minimum size, confirming the conjecture of Dudek and Zwonek.

Key words: vertex stable, bipartite graph, minimal size Mathematics Subject Classifications (2000): 05C70; 11B50; 05C78.

1 Introduction

We deal with simple graphs without loops and multiple edges. We use the standard notation of graph theory, cf. [1]. The following notion was introduced in [2]. Let H be any graph and k a non-negative integer. A graph G is called (H;k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any of its k vertices. Then Q(H;k) denotes minimum size among the sizes of all (H;k)-vertex stable graphs. Note that if H does not have isolated vertices then after adding to or removing from a (H;k)-vertex stable graph any number of isolated vertices we still have a (H;k)-vertex stable graph with the same size. Therefore, in the sequel we assume that no graph in question has isolated vertices.

There are two trivial examples of (H, k)-vertex stable graphs, namely (k+1)H (a disjoint union of (k+1) copies of H) and $H*K_k$ (a graph obtained from $H \cup K_k$ by joining all the vertices of H to all the vertices of K_k). Therefore,

Proposition 1
$$Q(H;k) \leq \min \left\{ (k+1)|E(H)|, |E(H)| + k|V(H)| + {k \choose 2} \right\}.$$

On the other hand, the following is easily seen.

Proposition 2 Suppose that H contains k vertices which cover q edges. Then $Q(H;k) \ge |E(H)| + q$.

Recall also the following

Proposition 3 ([2]) Let δ_H be a minimal degree of a graph H. Then in any (H;k)-vertex stable graph G with minimum size, $\deg_G v \geq \delta_H$ for each vertex $v \in G$.

The exact values of Q(H;k) are known in the following cases: $Q(C_i;k) = i(k+1)$, i=3,4, $Q(K_4;k) = 5(k+1)$, $Q(K_n;k) = \binom{n+k}{2}$ for n large enough, and $Q(K_{1,m};k) = m(k+1)$, $Q(K_{n,n};1) = n^2 + 2n$, $Q(K_{n,n+1};1) = (n+1)^2$, $n \ge 2$, see [2, 3]. In this paper we complete the characterization of $(K_{m,n};1)$ vertex stable graphs with minimum size. Namely, we prove the following theorem and hence confirm Conjecture 1 formulated in [3].

Theorem 1 Let m, n be positive integers such that $m \ge 2$ and $n \ge m+2$. Then $Q(K_{m,n}; 1) = mn + m + n$ and $K_{m,n} * K_1$ as well as $K_{m+1,n+1} - e$, where $e \in E(K_{m+1,n+1})$, are the only $(K_{m,n}; 1)$ -vertex stable graphs with minimum size.

2 Proof of the main result

Proof of Theorem 1. Let $m \geq 2$ and $n \geq m+2$ be positive integers. Define $G_1 := K_{m,n} * K_1$ and $G_2 := K_{m+1,n+1} - e$ where $e \in E(K_{m+1,n+1})$. Let G = (V,E) be a $(K_{m,n},1)$ -vertex stable graph with minimum size. Thus, by Proposition 1, $|E(G)| \leq mn+m+n$. Clearly G contains a subgraph H isomorphic to $K_{m,n}$. Let $H = (X,Y;E_H)$ with vertex bipartition sets X,Y such that |X| = m and |Y| = n. Let $v \in X$. Since G is $(K_{m,n};1)$ -vertex stable, G - v contains a subgraph H' isomorphic to $K_{m,n}$. Let $H' = (X',Y';E_{H'})$ with vertex bipartition sets X',Y' such that |X'| = m and |Y'| = n. We denote $x_1 = |X \cap X'|, x_2 = |X \cap Y'|, y_1 = |Y \cap X'|, y_2 = |Y \cap Y'|$. Hence $x_1 + x_2 \leq m - 1$, $y_1 + y_2 \leq n$, $y_1 \leq m$. One can see that $|E(G)| \geq 2mn - x_1y_2 - x_2y_1$. Consider the following linear programming problem with respect to y_1 and y_2

$$\begin{cases} y_1 \le m \\ y_1 + y_2 \le n \\ y_1 \ge 0 \\ y_2 \ge 0 \\ c = x_1 y_2 + x_2 y_1 \to \max \end{cases}$$

where x_1 and x_2 are parameters such that $x_1, x_2 \ge 0, x_1 + x_2 \le m - 1$.

Fig. 1. Geometrical interpretation of the linear programming problem

The proof falls into two cases.

Case 1: $x_1 < x_2$

In this case $y_1 = m, y_2 = n - m, c = x_2m + x_1(n - m)$ is the unique optimal solution of the above linear programming problem. This can be easily checked using a geometrical interpretation of the linear programming problem, see Fig. 1. Thus $|E(G)| \ge 2mn - x_2m - x_1(n-m)$ and the inequality is strict if $y_1 \ne m$ or $y_2 \ne n-m$. We assume that $x_1+x_2=m-1$ because otherwise the size of G may only increase. Then

$$|E(G)| \ge 2mn - m^2 + m + x_1(2m - n) := f(x_1).$$

Subcase 1a: n > 2m

Then $f(x_1)$ is decreasing. Furthermore, $x_1 < \frac{m-1}{2}$ since $x_1 < x_2$. Thus

$$|E(G)| > f\left(\frac{m-1}{2}\right) = \frac{3}{2}mn + \frac{1}{2}n \ge mn + m + n.$$

Thus |E(G)| > mn + m + n, a contradiction.

Subcase 1b: n < 2m

Then $f(x_1)$ is increasing. Thus

$$E(G) \ge f(0) = 2mn - m^2 + m \ge mn + m + n$$

with equality if and only if m=2 and n=4, which is not possible in this subcase.

Subcase 1c: n=2m

In this case

$$E(G) \ge mn + m + n$$

with equality if and only if $m=2,\ n=4,\ y_1=y_2=2$. Recall that $x_1< x_2$ whence $x_1=0$ and $x_2=1$. Let $u\in Y'\setminus (X\cup Y)$. Thus $|E(G)|\geq 12+\deg u$. Hence $\deg u=2$ and |V(G)|=7 because otherwise |E(G)|>mn+m+n. However, then G is not $(K_{2,4};1)$ -stable. Indeed let w be a neighbor of u. Then G-w does not contain any subgraph isomorphic to $K_{2,4}$ since G-w has 6 vertices and one of them has degree 1. Therefore Case 1 is not possible.

Case 2: $x_1 \ge x_2$

In this case $c=x_1n$ is the optimal solution of the above linear problem, see Fig. 1. Therefore, $|E(G)| \ge 2mn - x_1n$. If $x_1 \le m-2$ then $|E(G)| \ge 2mn - (m-2)n = mn + 2n > mn + m + n$. Hence we may assume that $x_1 = m-1$ and $x_2 = 0$. Thus there is only one vertex, say u, such that $u \in X' \setminus X$.

Subcase 2a: $y_2 = n$

Thus, u have n neighbors in Y. Note that $|V(G)| \le m+n+2$. Indeed, otherwise by Proposition 3, $|E(G)| \ge mn+n+2m-1 > mn+m+n$. Consider now a graph G'' := G - w where $w \in Y$. Clearly G - w contains a subgraph H'' isomorphic to $K_{m,n}$. Let $H'' = (X'', Y''; E_{H''})$ with vertex bipartition sets X'', Y'' such that |X''| = m and |Y''| = n. Let $x'_1 = |X \cap X''|, x'_2 = |X \cap Y''|, y'_1 = |Y \cap X''|, y'_2 = |Y \cap Y''|$.

Suppose first that |V(G)| = m+n+2 and $u, u_1 \in V(G) \setminus (X \cup Y)$. Since $|E(G)| \leq mn+m+n$, deg $u_1 = m$ and deg $u \leq n+1$. In particular, $u_1 \notin X''$ and u has no neighbor in X. Furthermore, $|E(G)| \geq mn+n+m+x_1'x_2'+y_1'y_2'$. Thus, $x_1' = 0$ or $x_2' = 0$, and $y_1' = 0$ or $y_2' = 0$. We distinguish two possibilities

- 1. $x_1' = 0$. Then $y_1' \neq 0$. Indeed, otherwise $X'' = \{u, u_1\}$, a contradiction with previous observation that $u_1 \notin X''$. Hence, $y_2' = 0$. Thus, $x_2' = m$ and $u, u_1 \in Y''$ (so n = m + 2). Consequently, $y_1' = m$. However, then G is not $(K_{m,m+2}; 1)$ -stable. Indeed, let w_1 be a neighbor of $u_1, w_1 \in X'' \subset Y$. Then $G w_1$ consists of a subgraph isomorphic to $K_{m+1,m+1}$ plus one vertex (namely u_1) and m-1 edges incident to it. Therefore, $G w_1$ does not contain any subgraph isomorphic to $K_{m,m+2}$.
- 2. $x_1' \neq 0$. Then $x_2' = 0$ and $u \notin Y''$. Consequently, $u_1 \in Y''$ and $y_2' \neq 0$. Hence $y_1' = 0$. It is easy to see now that $G \cong G_2$.

Assume now that |V(G)| = m + n + 1. Hence $x'_1 + x'_2 = m$ and $y'_1 + y'_2 = n - 1$. We have the next two possibilities.

3. $x_1' + y_1' = m$. Then $|E(G)| \ge mn + x_1'x_2' + y_1'y_2' + \deg u \ge mn + x_1'x_2' + y_1'y_2' + n + x_1'$. Hence

$$|E(G)| \ge mn + (m - x_1')(n - 1 - m + 2x_1') + n + x_1' =: f_1(x_1'), \ 0 \le x_1' \le m.$$

It is not difficult to see that $f_1(x_1')$ obtains the smallest value for $x_1' = 0$ or $x_1' = m$ only. Thus, $|E(G)| \ge \min\{f_1(0), f_1(m)\}$. Note that $f_1(0) = 2mn + n - m - m^2 \ge mn + m + n$ with equality if and only if n = m + 2. However, then there is a vertex $y \in Y''$ such that $G - y \cong K_{m+1,m+1}$ so G - y does not contain any subgraph isomorphic to $K_{m,m+2}$. Furthermore, $f(m) \ge mn + n + m$. Thus, $|E(G)| \ge mn + m + n$ with equality if and only $x_1 = m$. Then $G \cong G_1$.

4. $x_2' + y_2' = n$. Then $|E(G)| \ge mn + x_1'x_2' + y_1'y_2' + n + x_2'$. Hence,

$$|E(G)| \ge mn + (m - x_2')x_2' + (x_2' - 1)(n - x_2') + n + x_2' =: f_2(x_2), \ 1 \le x_2' \le m.$$

One can see that $f_2(x_2')$ obtains the smallest value for $x_2' = 1$ or $x_2' = m$ only. Thus, $|E(G)| \ge \min\{f_2(1), f_2(m)\}$. Note that $f_2(1) = mn + n + m$. Then $G \cong G_1$. On the other hand, $f_2(m) = 2mn + 2m - m^2 > mn + m + n$.

Subcase 2b: $y_2 < n$

Thus, there is a vertex $z \in Y'$ such that $z \in V(G) \setminus (X \cup Y)$. This clearly forces m-1 neighbours of z in $X \setminus \{v\}$. Consider now a graph $G - v_1$, $v \neq v_1 \in X$. We repeat all preceding arguments to the graph $G - v_1$. Consequently, $G \cong G_i$, i = 1, 2, or there is a vertex $z_1 \in V(G) \setminus (X \cup Y)$ which has m-1 neighbors in $X \setminus \{v_1\}$. If $z = z_1$ then z has m neighbors in X and $G \cong G_1$ if $u \in Y$ or $G \cong G_2$ otherwise. If $z \neq z_1$ then either deg $z + \deg z_1 \geq 2m+1$ if both vertices z and z_1 are involved in a $K_{m,n}$ contained in G - v or $G - v_1$, or deg $u \geq n+1$ otherwise. Thus, $|E(G)| \geq mn + 2m - 1 + n > mn + m + n$.

3 Concluding remarks

In [2, 3] it is proved that $Q(K_{1,n};k) = (k+1)n$. However, for $n \geq 3$ the extremal graphs are not characterized.

Proposition 4 Let G be a $(K_{1,n};k)$ -vertex stable graph with minimum size, $n \geq 3$. Then $G = (k+1)K_{1,n}$.

Proof. The proof is by induction on k. The thesis is obvious for k=0. Assume that k>0. Let G be a $(K_{1,n};k)$ -vertex stable graph with minimum size. Hence, |E(G)|=(k+1)n. Note that each $(K_{1,n};k)$ -vertex stable graph contains k+1 vertices of degree at least n. Let $v\in V(G)$ with deg $v\geq n$. Thus, G-v is $(K_{1,n};k-1)$ -vertex stable graph with $|E(G-v)|\leq kn$. Hence, |E(G-v)|=kn and deg v=n. By the induction hypothesis $G-v=kK_{1,n}$. Note that v is not a neighbor of any vertex of degree n. Suppose on the contrary, that $uv\in E(G)$ and deg u=n. Then

G-u contains only k-1 vertices of degree greater than or equal to n whence is not $(K_{1,n}; k-1)$ -vertex stable, a contradiction. Thus, G contains k+1 independent vertices of degree exactly n. We will show that these vertices have pairwise disjoint sets of neighbors. Indeed, otherwise let x be a common neighbor of two vertices of degree n. Thus, again, G-x has only k-1 vertices of degree greater than or equal to n, a contradiction.

In the following table we present the complete characterization of $(K_{m,n};1)$ -vertex stable graphs with minimum size.

m;n	$Q(K_{m,n};1)$		All $(K_{m,n}; 1)$ -vertex stable graphs	
			with minimum size	
m = 1, n = 1	2	[3]	$2K_{1,1}$	[3]
m = 1, n = 2	4	[3]	$K_{2,2},2K_{1,2}$	[3]
$m=1, n \geq 3$	2n	[2]	$2K_{1,n}$	
m = 2, n = 2	8	[3]	$K_{2,2} * K_1, K_{3,3} - e, 2K_{2,2}$	[3]
$m \ge 2, n = m + 1$	$(m+1)^2$	[3]	$K_{m+1,m+1}$	[3]
$m \ge 3, n = m$	$m^{2} + 2m$	[3]	$K_{m,m} * K_1, K_{m+1,m+1} - e$	[3]
$m \ge 2, n \ge m + 2$	mn + m + n		$K_{m,n} * K_1, K_{m+1,n+1} - e$	

Acknowledgement: The research was partially supported by the University of Science and Technology grant No 11 420 04.

Authors wish to express his gratitude to Gyula Y Katona for suggesting the problem.

References

- [1] R. Diestel, Graph Theory, second ed., Springer-Verlag 2000.
- [2] A. Dudek, A. Szymański, M. Zwonek, (H, k) stable graphs with minimum size, Discussiones Mathematicae Graph Theory 28(1) (2008) 137-149.
- [3] A. Dudek, M. Zwonek, (H, k) stable bipartite graphs with minimum size, Discussiones Mathematicae Graph Theory, 29 (2009) 573–581.