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Abstract

A graph G is called (H; k)-vertex stable if G contains a subgraph isomorphic to H even

after removing any k of its vertices. By stab(H; k) we denote the minimum size among the

sizes of all (H; k)-vertex stable graphs. In this paper we present a general result concerning

(H; 1)-vertex stable graphs. Namely, for an arbitrary graph H we give a lower bound for

stab(H; 1) in terms of the order, connectivity and minimum degree of H. The bound is nearly

sharp.

1 Introduction

By a word graph we mean a simple graph without loops and multiple edges. A multigraph is a

graph in which multiple edges (but not loops) are allowed. Given a graph G, V (G) denotes the

vertex set of G and E(G) denotes the edge set of G. Furthermore, |V (G)| is the order of G and

|E(G)| is the size of G. Let H be any graph and k a non-negative integer. A graph G is called

(H; k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any k of its

vertices. Then stab(H; k) denotes the minimum size among the sizes of all (H; k)-vertex stable

graphs. Note that if H does not have isolated vertices then after adding to or removing from

a (H; k)-vertex stable graph any number of isolated vertices we still have a (H; k)-vertex stable

graph with the same size. Therefore, in the sequel we assume that no graph in question has isolated

vertices.

The notion of (H; k)-vertex stable graphs was introduced in [2]. So far the exact value of

stab(H; k) is known in the following cases: stab(K1,m; k) = m(k+1), stab(Ci; k) = i(k+1), i = 3, 4,

stab(K4; k) = 5(k + 1), see [2], and stab(K5; k) = 7(k + 1) for k ≥ 5 [5], stab(Kn; k) =
(

n+k
2

)

for

n ≥ 2k − 2 [6]. Furthermore, stab(Km,n; 1) = mn + m + n if n ≥ m + 2,m ≥ 2, see [4], and

stab(Kn,n+1; 1) = (n + 1)2 for n ≥ 2, stab(Kn,n; 1) = n2 + 2n for n ≥ 2, see [3]. Moreover, in all

the above examples vertex stable graphs with minimum size are characterized. On the other hand,

n+
⌈

2
√
n− 1

⌉

≤ stab(Cn; 1) ≤ n+
⌈

2
√
n− 1

⌉

+ 1, (1)
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the lower bound being attained for infinitely many n’s, see [1]. An upper and a lower bound on

stab(Cn; k) for sufficiently large n is also presented therein.

So far, the above problem has been considered only for restricted families of graphs. In this

paper we present a more general result. It is easy to see that stab(H; 1) ≥ m+ δ ≥ δ( n2 + 1) for a

graph H of order n with m edges and minimum degree δ.

Theorem 1 If H is a graph of order n ≥ 6, minimal degree δ ≥ 1 and connectivity κ ≥ 0, then

stab(H; 1) ≥ δ

2
(n− κ+ 1) +

√

δκ(n− κ+ 1) +
κ

2

Note, that since the lower bond (1) is attained for infinitely many n’s, our new bound is sharp in

these cases. In Section 3, we present more infinite families of graphs for which our new bound is

(almost) attained.

2 Proof of Theorem 1

By NG(x) we denote the set of vertices adjacent with x in G. For a vertex set X, the set NG(X)

denotes the external neighborhood of X in G, i.e.

NG(X) = {y ∈ V (G) \X : y is adjacent with some x ∈ X}.

Recall the following observation.

Proposition 2 ([2]) Let G be (H; k)-vertex stable graph with minimum size. Then each vertex as

well as each edge of G is contained in some copy of H. In particular, for each vertex v ∈ G there

is degG v ≥ δH , where δH denotes the minimum degree of H.

Proof of Theorem 1. Let G be a (H; 1) stable graph with minimum size and let |V (G)| = v. Let

x1, ..., xm ∈ V (G) be vertices of degree greater than or equal to δ + 1 in G. By Proposition 2 all

other vertices of G have degree δ. Let C1, ..., Cq be the components of G− {x1, ..., xm}.
Suppose first, that there exist a component C = Cj for some j ∈ {1, .., q} such that

|NG(V (C))| ≤ κ − 1. By Proposition 2, C intersects with some copy of H. Note, that this

copy of H may contain only vertices from C ∪NG(V (C)). Indeed, otherwise H contains a cutting

set of cardinality less than |NG(V (C))| ≤ κ−1, a contradiction. Thus, C contains at least n+1−κ

vertices,

|C| ≥ n+ 1− κ. (2)

Note that after removing from G any vertex xi ∈ NG(V (C)) each vertex of C is not any longer

a vertex of H. Indeed, after removing xi its neighbors in G have degree less than δ. Thus, they

cannot be in H. Hence, their neighbors would have degrees less than δ in H. Thus, the latter

vertices cannot be in H neither, and so on. Therefore, since G is (H; 1)-stable, G− C contains a

copy of H. Thus, |E(G− C)| ≥ |E(H)| ≥ nδ
2 . Hence, by (2),

|E(G)| ≥ nδ

2
+

|C|δ
2

≥ δ

2
(n+ 1− κ) +

nδ

2
≥ δ

2
(n− κ+ 1) +

√

δκ(n− κ+ 1) +
κ

2
,

because δ ≥ κ and n ≥ 6.
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Hence we may assume that |NG(V (Cj))| ≥ κ for all j = 1, ..., q. Thus, if m ≤ κ then, in G,

every xi, i = 1, ...,m, is connected with a vertex of each component Cj , j = 1, ..., q. Therefore, for

u ∈ {x1, ..., xm} a copy of H contained in G− u may contain only vertices from {x1, ..., xm} \ {u}.
Since m ≤ κ, δ ≤ κ− 2, a contradiction.

So we may assume that m > κ. Let A(xi) ⊂ V (G) denote the set of all vertices which are in

those components Cj , j = 1, ..., q, that satisfy xi ∈ NG(V (Cj)). Note, that

m
∑

i=1

|A(xi)| ≥ κ(v −m), (3)

because |NG(V (Cj))| ≥ κ for every j (so every vertex from V (G) \ {x1, ..., xm} belongs to at least

κ sets A(xi)). Let M = maxi |A(xi)| = |A(xt)| for some t ∈ {1, ...,m}. Thus,

m ·M ≥
m
∑

i=1

|A(xi)| ,whence,by(3),

M ≥ κ
v −m

m
. (4)

Note that since G is (H; k) stable, G−xt contains a copy of H. By the same reason as previously,

this copy cannot contain any vertex from A(xt). Thus, v − |A(xt)| − 1 = v −M − 1 ≥ n. Hence,

v ≥ (n+ 1− κ)
m

m− κ
. (5)

Furthermore,

2|E(G)| ≥ (δ + 1)m+ δ(v −m) hence

|E(G)| ≥ m

2
+

vδ

2
≥ m

2
+ (n+ 1− κ)

mδ

2(m− κ)
. (6)

Let f(x) := x/2 + (n + 1 − κ) δx
2(x−κ) , x > κ. By simple computations, one can see that f has

minimum in x0 =
√

δκ(n+ 1− κ)+κ. Hence, |E(G)| ≥ f(x0) =
δ
2 (n−κ+1)+

√

δκ(n− κ+ 1)+ κ
2 .

2

3 Tightness

Example. Let δ be an even positive integer. Let t = p2δ for some integer p ≥ 2. We will construct

a graph H(t), such that stab(H(t); 1) is near the lower bound from Theorem 1.

Then

V (H(t)) := V0 ∪ V ′

0 ∪ V1 ∪ V ′

1 ∪ . . . ∪ Vt−1 ∪ V ′

t−1

with |Vi| = |V ′

i | = δ/2 for all i = 0, . . . , t − 1. Note that |V (H(t))| = n = tδ. The set of edges is

defined in following way. For all i = 0, . . . , t− 1:

1. there is a clique Kδ built on Vi ∪ V ′

i ,

2. there is a perfect matching between V ′

i and Vi+1 (i+ 1 taken modulo t), see Fig. 1.

Claim 1 H(t) is δ-regular.

Claim 2 The vertex-connectivity of H(t) is equal to δ.
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Proof. Take any x, y ∈ V (H(t)). We show that there are δ vertex-independent paths between x

and y. Let x ∈ Vi∪V ′

i and y ∈ Vj∪V ′

j , i ≤ j. Since Vi∪V ′

i makes up a δ-clique, every vertex of this

set can be used in a different path. A half of these paths go through Vi+1, V
′

i+1, Vi+2, V
′

i+2 . . . , V
′

j−1

and the rest go through V ′

i−1, Vi−1, V
′

i−2, Vi−2 . . . , Vj+1 (all indices taken modulo t). In the end all

paths reach the clique built on Vj ∪ V ′

j and, finally the vertex y. 2

Claim 3 Let n = |H(t)|. Then
(n− δ + 2)δ

2
+ δ

√
n− δ + 1 ≤ stab(H(t); 1) ≤ (n+ 1)δ

2
+ δ

√
n

Proof. The lower bound follows from Theorem 1. Consider the following graph G(t+ p).

V (G) = V0 ∪ V ′

0 ∪ V1 ∪ V ′

1 ∪ . . . ∪ Vt+p−1 ∪ V ′

t+p−1

with |Vi| = |V ′

i | = δ
2 for all i = 0, . . . , t + p − 1. The set of edges is defined in following way. For

all i = 0, . . . , t+ p− 1:

1. There is a clique Kδ built on Vi ∪ V ′

i .

2. There is a perfect matching between V ′

i and Vi+1 (i+ 1 taken modulo t+ p).

3. There is a perfect matching between V ′

ip and Vip+p+1 for all i = 0, . . . , t
p
(indices taken

modulo t+ p), see Fig. 1.

Figure 1:

Note that |G(t+ p)| = (t+ p)δ. Moreover, without edges from item 3, the graph is δ-regular.

Hence,

||G(t+ p)|| = (t+ p)δ2

2
+

δ(t+ p)

2p
.

Since p =
√

t
δ
we obtain

||G(t+ p)|| = tδ2

2
+

δ
√
tδ

2
+

δ
√
tδ

2
+

δ

2
=

nδ

2
+ δ

√
n+

δ

2
.

Now we have to prove that G(t + p) is in fact (H(t), 1)-stable. Without loss of generality we can

consider a graph G(t+ p)− x where x ∈ Vi ∪ V ′

i , i ∈ {1, . . . , p}. Then it can be seen that

H(t) ⊂ G(t+ p)[V0 ∪ V ′

0 ∪ Vp+1 ∪ V ′

p+1 ∪ . . . ∪ Vt+p−1 ∪ V ′

t+p−1] ⊂ G(t+ p)− x.
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