Near packings of graphs

Andrzej Żak*

Faculty of Applied Mathematics AGH University of Science and Technology Kraków, Poland

zakandrz@agh.edu.pl

Submitted: Dec 18, 2012; Accepted: ?, 2013; Published: XX Mathematics Subject Classifications: 05C70

Abstract

A packing of a graph G is a set $\{G_1, G_2\}$ such that $G_1 \cong G$, $G_2 \cong G$, and G_1 and G_2 are edge disjoint subgraphs of K_n . Let \mathcal{F} be a family of graphs. A near packing admitting \mathcal{F} of a graph G is a generalization of a packing. In a near packing admitting \mathcal{F} , the two copies of G may overlap so the subgraph defined by the edges common to both copies is a member of \mathcal{F} . In the paper we study three families of graphs (1) \mathcal{E}_k - the family of all graphs with at most k edges, (2) \mathcal{D}_k - the family of all graphs with maximum degree at most k, and (3) \mathcal{C}_k – the family of all graphs that do not contain a subgraph of connectivity greater than or equal to k+1. By $m(n,\mathcal{F})$ we denote the maximum number m such that each graph of order n and size less than or equal to m has a near-packing admitting \mathcal{F} . It is well known that $m(n,\mathcal{C}_0) = m(n,\mathcal{D}_0) = m(n,\mathcal{E}_0) = n-2$ because a near packing admitting \mathcal{C}_0 , \mathcal{D}_0 or \mathcal{E}_0 is just a packing. We prove some generalization of this result, namely we prove that $m(n, \mathcal{C}_k) \approx (k+1)n$, $m(n, \mathcal{D}_1) \approx \frac{3}{2}n$, $m(n, \mathcal{D}_2) \approx 2n$. We also present bounds on $m(n, \mathcal{E}_k)$. Finally, we prove that each graph of girth at least five has a near packing admitting \mathcal{C}_1 (i.e. a near packing admitting the family of the acyclic graphs).

1 Introduction

In this paper we use the term graph to refer to simple graphs without loops or multiple edges. The vertex and edge set of a graph G is denoted by V(G) and E(G), respectively. The maximum degree of G is denoted by $\Delta(G)$. A graph is called k-connected if any two of its vertices can be joined by k internally vertex disjoint paths. A complete graph K_1 is

^{*}The author was partially supported by the Polish Ministry of Science and Higher Education.

0-connected. By $N_G(x)$ we denote the set of vertices adjacent with x in G. For a vertex set X, the set $N_G(X)$ denotes the external neighbourhood of X in G, i.e.

$$N_G(X) = \{ y \in V(G) \setminus X : y \text{ is adjacent with some } x \in X \}.$$

The degree of a vertex x is the number of vertices adjacent to x and is denoted by $d_G(x)$.

Definition 1. Let G_1 and G_2 be two graphs such that $|V(G_1)| = |V(G_2)| = n$. A packing of G_1 and G_2 is a pair of edge-disjoint subgraphs $\{H_1, H_2\}$ of K_n such that $H_1 \cong G_1$ and $H_2 \cong G_2$.

Definition 2. Let \mathcal{F} be any family of graphs and let G_1 , G_2 be two graphs such that $|V(G_1)| = |V(G_2)| = n$. A near packing admitting \mathcal{F} of G_1 and G_2 is a pair of subgraphs $\{H_1, H_2\}$ of K_n such that $H_1 \cong G_1$ and $H_2 \cong G_2$, and the subgraph having edges $E(H_1) \cap E(H_2)$ is a member of \mathcal{F} .

Given a graph G and a permutation σ of V(G), by $\sigma(G)$ we denote the graph with $V(\sigma(G)) = V(G)$ and such that $\sigma(u)\sigma(v) \in E(\sigma(G))$ if and only if $uv \in E(G)$ for any $u, v \in V(G)$. The spanning subgraph of G having edges $E(G) \cap E(\sigma(G))$ is denoted by G_{σ}^* (abbreviated to G^* if no confusion arises). Thus, in case when $G_1 \cong G_2 \cong G$ the problem of finding a near packing admitting \mathcal{F} of G_1 and G_2 is equivalent to the problem of finding a permutation σ of V(G) such that $G_{\sigma}^* \in \mathcal{F}$. Such a permutation σ of V(G) is called a near packing of G admitting \mathcal{F} .

We consider three families of graphs: (1) \mathcal{E}_k being the family of all graphs with with at most k edges, (2) \mathcal{D}_k being the family of all graphs with maximum degree at most k, and (3) \mathcal{C}_k being the family of all graphs that do not contain a subgraph of connectivity greater than or equal to k + 1. Notice that $\mathcal{D}_0 = \mathcal{C}_0 = \mathcal{E}_0$ is a family of edgeless graphs. Furthermore \mathcal{C}_1 is a family of acyclic graphs and $\mathcal{C}_1 \cap \mathcal{D}_2$ is a family of linear forests (i.e. disjoint unions of paths).

Let \mathcal{F} be any family of graphs. By $m(n, \mathcal{F})$ we denote the maximum number m such that each graph of order n and size less than or equal to m has a near-packing admitting \mathcal{F} . A classic result in this area, obtained independently in [1, 2, 7], states that

Theorem 3 ([1, 2, 7]).
$$m(n, C_0) = m(n, D_0) = m(n, E_0) = n - 2$$
,

because a near packing admitting C_0 , D_0 or \mathcal{E}_0 is just a packing. Our aim is to prove some generalizations of Theorem 3. For every $k \geq 1$, we determine $m(n, \mathcal{C}_k)$ up to a constant depending only on k. We find the problem concerning near packings admitting D_k considerably harder. We determine only $m(n, \mathcal{D}_1)$ up to a constant, while $m(n, \mathcal{D}_2)$ is determined assymptotically. We also give bounds on $m(n, \mathcal{E}_k)$.

The notion of a near packing was introduced by Eaton [3] in order to obtain some investigations concerning the following conjecture of Bollobás and Eldridge:

Conjecture 4 ([1]). If $|V(G_1)| = |V(G_2)| = n$ and $(\Delta(G_1) + 1) \cdot (\Delta(G_2) + 1) \leq n + 1$, then there is a packing of G_1 and G_2 .

The following theorem is a special case of a more general result proved by Eaton.

Theorem 5 ([3]). If $|V(G_1)| = |V(G_2)| = n$ and $(\Delta(G_1) + 1) \cdot (\Delta(G_2) + 1) \leq n + 1$, then there is a near packing admitting \mathcal{D}_1 of G_1 and G_2 .

We also investigate another conjecture of graph packing by Faudree, Rousseau, Schelp and Schuster [4]:

Conjecture 6. For every non-star graph G of girth at least 5, there is a packing of two copies of G.

In particular, Conjecture 6 is true for sufficiently large planar graphs [6]. On the other hand, the statement from the above conjecture is true if G is a non-star graph of girth at least six [5]. In this paper we prove that the statement is true if the term 'packing' is replaced by the term 'near packing admitting C_1 '. This result is in some sense best possible, since for every permutation σ of $V(K_{n,n})$ with $n \ge 3$, $K_{n,n}^*$ contains a cycle C_4 .

2 Preliminaries

Lemma 7. Let G be a graph and $k, l, q \ge 0$ integers. Suppose that G contains an independent set $U \subset V(G)$ that satisfies the following conditions:

- 1. $d_G(u) \leq k$ for each $u \in U$,
- 2. $|N_G(u) \cap N_G(v)| \leq q$ for every $u, v \in U$.

If $|U| \geqslant \frac{2(k-q)}{l-q+1}$, then for every permutation σ' of $V(G) \setminus U$ there exists a permutation σ of V(G) such that $\sigma|_{G-U} = \sigma'$ and $d_{G^*_{\sigma}}(u) \leqslant l$ for each $u \in U$.

Proof. Let G' := G - U and σ' be any permutation of V(G'). Below we show that we can extend σ' to a permutation σ as required of G.

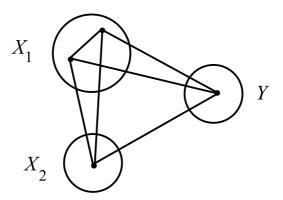
For any $v \in V(G')$ let us define $\sigma(v) := \sigma'(v)$. Then let us consider a bipartite graph B with partition sets $X := U \times \{0\}$ and $Y := U \times \{1\}$. For $u, v \in U$ the vertices (u, 0), (v, 1) are joined by an edge in B if and only if $|\sigma'(N_G(u)) \cap N_G(v)| \leqslant l$. So, if (u, 0), (v, 1) are joined by an edge in B we can put $\sigma(u) = v$. In other words, if (u, 0), (v, 1) are not neighbors in B, then $|\sigma'(N(u)) \cap N(v)| \geqslant l+1$. Therefore, since $|N_G(u) \cap N_G(v)| \leqslant q$ and $d_G(u) \leqslant k$ for $u \in U$, we have $d_B((u, 0)) \geqslant |U| - \frac{k-q}{l-q+1} \geqslant \frac{k-q}{l-q+1}$, by the assumption on |U|. Similarly, $d_B((v, 1)) \geqslant \frac{k-q}{l-q+1}$.

Let $S \subset X$. If $|S| \leq |U| - \frac{k-q}{l-q+1}$ then obviously $|N_B(S)| \geq |S|$. Notice that if $|S| > |U| - \frac{k-q}{l-q+1}$ then $N_B(S) = Y$. Indeed, otherwise let $(v,1) \in Y$ be a vertex which has no neighbour in S. Thus,

$$d_B((v,1)) \leqslant |A| - |S| = |U| - |S| < |U| - (|U| - \frac{k-q}{l-q+1}) = \frac{k-q}{l-q+1},$$

a contradiction. Hence, in any case $|S| \leq |N(S)|$. Thus, by the Hall's theorem there is a matching M in G. Therefore we can define $\sigma(u) = v$ for $u, v \in U$ such that (u, 0), (v, 1) are incident with the same edge in M.

Figure 1: $K_{2,1,1}^+$



Proposition 8. Let G be a graph of order n and size m with $m \le an - f(n)$, where a is a real number and f(n) is a non-decreasing function. If $U \subset V(G)$ and vertices from U cover at least a|U| edges, then

$$m' \leqslant an' - f(n'),$$

where n' and m' are respectively the order and the size of G-U.

Proof.

$$m' \leqslant an - f(n) - a|U| = a(n - |U|) - f(n)$$

 $\leqslant a(n - |U|) - f(n - |U|) = an' - f(n'),$

because $f(n) \ge f(n - |U|)$.

3 Near packings admitting C_k

Recall that $m(n, \mathcal{C}_0) = n - 2$. We start with the following construction. Let $K_{s,k-s,k-s}^+$ denote a graph with vertex set $V(K_{s,k-s,k-s}^+) = X_1 \cup X_2 \cup Y$ such that X_1, X_2, Y are pairwise disjoint and $|X_1| = s$, $|X_2| = |Y| = k - s$. Furthermore, $E(K_{s,k-s,k-s}^+) = E_1 \cup E_2$, where $E_1 = \{xy : x \in X_1 \cup X_2, y \in Y\}$ and $E_2 = \{xz : x \in X_1, z \in X_1 \cup X_2\}$. In other words, $K_{s,k-s,k-s}^+$ arises from a tripartite graph (with partition sets X_1, X_2 and Y) by adding all possible edges having two endpoints in X_1 , see Figure 1. It is easily seen that any two vertices of $K_{s,k-s,k-s}^+$ are joined by at least k internally vertex disjoint paths, so $K_{s,k-s,k-s}^+$ is k connected. In what follows \bar{G} denotes the complement of a graph G, i.e. a graph on the same vertex set as G and with the property that $e \in E(\bar{G})$ if and only if $e \notin E(G)$.

Lemma 9.
$$m(n, C_k) \leq (k+1)n - (k+1)\frac{k+2}{2} - 1$$

Proof. Let $G = \overline{K_{k+1}} + K_{n-k-1}$. Clearly, $|E(G)| = (k+1)n - (k+1)\frac{k+2}{2}$. We will show that G does not have a near packing admitting C_k . Consider an arbitrary permutation σ of V(G). Let $S \subset V(K_{k+1})$ be a maximal set of vertices with the property that $\sigma(S) \subset V(K_{k+1})$. Let |S| = s. Then, G^*_{σ} contains a $K^+_{s,k+1-s,k+1-s}$ with $X_1 = S$, $Y = V(K_{k+1}) \setminus S$ and $X_2 \subset V(K_{n-k-1})$.

Theorem 10. $m(n, C_k) \ge (k+1)n - 4k(k+1)^2 - 2$

Proof. For k = 0 the result follows from Theorem 3. Fix $k \ge 1$ and let $c_k = 4k(k+1)^2 + 2$. We will prove that each graph of order n and size at most $(k+1)n - c_k$ has a near packing admitting C_k .

Suppose that G is a counterexample with minimum order n. Let m denote the size of G, so $m \leq (k+1)n - c_k$. Note that if $n \leq 4(k+1)^2$, then

$$m \le (k+1)n - c_k = kn - c_k + n$$

 $\le k(4(k+1)^2) - (4k(k+1)^2 + 2) + n = n - 2.$

Hence G has a near packing admitting C_k , by Theorem 3, which contradicts our assumption on G. Thus, we may assume that $n \ge 4(k+1)^2 + 1$. Furthermore, if $\Delta(G) \le 2(k+1) - 1$ then $(\Delta(G) + 1)^2 \le 4(k+1)^2 < n+1$. Hence, G has a near packing admitting C_k by Theorem 5 (because $\mathcal{D}_1 \subset C_k$), a contradiction again. Therefore, we may assume that $\Delta(G) \ge 2(k+1)$. Let $w \in V(G)$ with $d_G(w) \ge 2(k+1)$.

Suppose first that G contains a vertex u with $d_G(u) \leq k$. By Proposition 8 and by the minimality assumption, $G' := G - \{u, w\}$ has a near packing σ' admitting \mathcal{C}_k . We claim that $\sigma := (u, w)\sigma'$ is a near packing of G admitting \mathcal{C}_k . Indeed, since $d_G(u) \leq k$ then $d_{G^*}(u) \leq k$ as well as $d_{G^*}(w) \leq k$. Hence, neither u nor w can be in a subgraph of G^* of connectivity k+1 or more. Moreover, since $\sigma|_{G'}$ is a near packing of G' admitting \mathcal{C}_k , then $G^* - \{u, w\}$ does not contain a subgraph of connectivity k+1 or more, neither. Therefore, σ is a near packing of G admitting \mathcal{C}_k .

Thus, we may assume that $d_G(u) \ge k+1$ for every $u \in V(G)$. Let S be a maximum set of vertices of G such that S is independent, $k+1 \le d_G(u) \le 2k+1$ for each $u \in S$, and $|N_G(u) \cap N_G(w)| \le k$ for every $u, w \in S$. Since S is independent, by Proposition 8 and by the minimality assumption, G - S has a near packing σ'' admitting \mathcal{C}_k . By Lemma 7 (with k, l, q replaced by 2k+1, k, k, respectively), if $|S| \ge 2k+2$ then there is a permutation σ of G, such that $\sigma|_{G-S} = \sigma''$ and $d_{G^*}(u) \le k$ for every $u \in S$. Simirarly as before, we can see that σ is a near packing of G admitting \mathcal{C}_k , a contradiction.

Therefore $|S| \leq 2k+1$ and so $|N_G(S)| \leq (2k+1)^2$. Let $V_j = \{v \in V(G) \setminus N_G(S) : d_G(v) = j\}$. Note that by the definition of S, we have $|N_G(S) \cap N_G(u)| \geq k+1$ for every $u \in V_{k+1} \cup \cdots \cup V_{2k+1}$. Hence, vertices from $N_G(S)$ are incident (in common) to at least

$$(k+1)(|V_{k+1}| + \dots + |V_{2k+1}|) \text{ edges. Thus,}$$

$$(2k+2)n - 8k(k+1)^2 - 4 \geqslant 2m$$

$$= \sum_{u \in N_G(S)} d_G(u) + \sum_{v \in V(G) \setminus N_G(S)} d_G(v)$$

$$\geqslant (k+1)(|V_{k+1}| + \dots + |V_{2k+1}|) + (k+1)|V_{k+1}| + \dots + (2k+1)|V_{2k+1}|$$

$$+ (2k+2)(n-|V_{k+1}| + \dots + |V_{2k+1}| - |N_G(S)|)$$

$$\geqslant (2k+2)n - (2k+2)(2k+1)^2,$$

a contradiction. Hence, we deduce no counterexample to Theorem 10 exists.

Theorem 11. Every graph of girth at least 5 has a near packing admitting C_1 .

Proof. Let G be a minimum counterexample to Theorem 11. Let $u \in V(G)$ with $d_G(u) = \Delta(G)$. Let G' = G - u and $U = N_G(u)$. By the girth assumption, U is an independent set in G' (as well as in G), and $N_{G'}(x) \cap N_{G'}(y) = \emptyset$ for every $x, y \in U$. By the minimality assumption G'' := G' - U has a near packing σ'' admitting C_1 . Moreover, $|U| = \Delta(G)$ and $d_{G'}(u) \leq \Delta(G) - 1$. Hence, by Lemma 7 (with $k = \Delta(G) - 1$, l = 1, q = 0), G' has a near packing σ' such that $\sigma'|_{G''} = \sigma''$ and $d_{G'^*}(u) \leq 1$ for each $u \in U$. Thus, since G''^* is also acyclic. Let u be any vertex from U. It is easy to see that the permutation σ such that $\sigma(u) = x$, $\sigma(x) = u$ and $\sigma(y) = \sigma'(y)$ for every $y \in V(G) \setminus \{u, x\}$ is a near packing of G admitting C_1 , a contradiction.

4 Near packings admitting \mathcal{D}_k

Recall that $m(n, \mathcal{D}_0) = n - 2$.

Lemma 12.
$$m(n, \mathcal{D}_k) \leqslant \left\lceil \frac{(k+2)(n-1)}{2} \right\rceil - 1.$$

Proof. Let H be a k-regular graph of order n-1 provided that k is even or n-1 is even. Otherwise, let H be a graph with all but one vertices having degree k and one vertex having degree k+1. Let $G=K_1+H$ and $V(K_1)=\{u\}$. It is easily seen that for any permutation σ of V(G), the vertex u (as well as its image) has degree at least k+1 in G_{σ}^* . Thus, G does not have a near packing admitting \mathcal{D}_k . Furthermore, $E(G)=\frac{(k+1)(n-1)+n-1}{2}=\frac{(k+2)(n-1)}{2}$ if k is even or n-1 is even, or $E(G)=\frac{(k+1)(n-2)+(k+2)+(n-1)}{2}=\frac{(k+2)(n-1)+1}{2}$ otherwise. \square

We are tempted to propose the following conjecture

Conjecture 13.

$$\frac{k+2}{2}n - c_1(k) \leqslant m(n, \mathcal{D}_k) \leqslant \frac{k+2}{2}n - c_2(k),$$

where $c_i(k)$ are constants depending only on k.

The next theorem confirms Conjecture 13 for k=1.

Theorem 14. $m(n, \mathcal{D}_1) \geqslant \frac{3}{2}n - 10$

Proof. Let G be a counterexample of minimum order n. Without loss of generality we assume that $m := |E(G)| = \frac{3}{2}n - 10$. Note that if $n \le 16$ then $\frac{3}{2}n - 10 \le n - 2$. Thus, by Theorem 3, G has a packing which contradicts our assumption on G. Hence, we may assume that $n \ge 17$. Furthermore, if $\Delta(G) \le 3$, then $(\Delta(G) + 1)^2 \le 16 < n + 1$, so G has a near packing admitting \mathcal{D}_1 by Theorem 5. Thus, we may assume that $\Delta(G) \ge 4$. Let $w \in V(G)$ with $d_G(w) \ge 4$.

Suppose first that G has a vertex u with $d_G(u) = 0$. Then, by Proposition 8 and by the minimality assumption, $G_1 := G - \{u, w\}$ has a a near packing σ_1 admitting \mathcal{D}_1 . Clearly, $(u, w)\sigma_1$ is a near packing of G admitting \mathcal{D}_1 .

So we may assume that G has no isolated vertex. Suppose now that G has a vertex u with $d_G(u) = 1$ and let v be the neighbor of u. If $d_G(v) \ge 3$ then, by Proposition 8 and by the minimality assumption, $G_2 := G - \{u, v\}$ has a near packing σ_2 admitting \mathcal{D}_1 . Clearly, $(u, v)\sigma_2$ is a near packing admitting \mathcal{D}_1 of G. Similarly, if $d_G(v) = 1$ then $(u)(w, v)\sigma_3$ is a near packing admitting \mathcal{D}_1 of G where σ_3 is a near packing admitting \mathcal{D}_1 of $G - \{u, v, w\}$ (σ_3 exists by the minimality assumption). Thus we may assume that $d_G(v) = 2$. Let x be the neighbor of v different from u. If $x \ne w$ then $(u)(v, w, x)\sigma_4$ is a near packing admitting \mathcal{D}_1 of G where σ_4 is a near packing admitting \mathcal{D}_1 of $G - \{u, v, w, x\}$ (σ_4 exists by the minimality assumption). Finally, if x = w then $(u)(v, w)\sigma_5$ is a near packing admitting \mathcal{D}_1 of G where σ_5 is a near packing admitting \mathcal{D}_1 of $G - \{u, v, w\}$ (σ_5 exists by the minimality assumption).

Therefore, we may assume that $d_G(u) \ge 2$ for each $u \in V(G)$. Let $S \subset V(G)$ be a maximal set such that S is independent in G, $d_G(v) = 2$ for every $v \in S$, and $N_G(u) \cap N_G(v) = \emptyset$ for every $u, v \in S$. Note that $S \ne \emptyset$. By Proposition 8 and by the minimality assumption, G - S has a near packing σ' admitting \mathcal{D}_1 . Note that if $|S| \ge 4$, then by Lemma 7 (with k = 2, q = 0 and l = 0), there exists a near packing of G admitting \mathcal{D}_1 , a contradiction with the assumption on G. Thus, $|S| \le 3$ and so $|N_G(S)| \le 6$. Let $V_j = \{v \in V(G) \setminus N_G(S) : d_G(v) = j\}$. Note that by the definition of S, we have $|N_G(S) \cap N_G(u)| \ge 1$ for every $u \in V_2$. Therefore,

$$3n - 20 = 2m = \sum_{u \in N_G(S)} d_G(u) + \sum_{v \in V(G) \setminus N_G(S)} d_G(v)$$

$$\geqslant |V_2| + 2|V_2| + 3(n - |V_2| - |N_G(S)|) \geqslant 3n - 18,$$

a contradiction. Hence, we deduce no counterexample to Theorem 14 exists.

The following result provides some evidence for Conjecture 13 in case when k=2. **Theorem 15** ([8]). $m(n, \mathcal{D}_2) \ge 2n - 10n^{2/3} - 7$.

5 Near packings admitting \mathcal{E}_k

The join $G = G_1 + G_2$ of graphs G_1 and G_2 with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 is the graph union $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$ together with all the edges

joining V_1 and V_2 .

Lemma 16. If
$$n \ge 2k + 2$$
 then $m(n, \mathcal{E}_{2k}) \le \left\lceil \frac{(k+2)(n-1)}{2} \right\rceil - 1$.

Proof. Let H be a k-regular graph of order n-1 provided that k is even or n-1 is even. Otherwise, let H be a graph with all but one vertices having degree k and one vertex having degree k+1. Let $G=K_1+H$ and $V(K_1)=\{u\}$. It is easily seen that for any permutation σ of V(G), the vertex u as well as $\sigma(u)$ has degree at least k+1 in G_{σ}^* . Thus, if $u \neq \sigma(u)$ then G_{σ}^* has at least 2k+1 edges. If $u=\sigma(u)$ then u has degree n-1 in G_{σ}^* . Since $n \geq 2k+2$, G_{σ}^* has at least 2k+1 edges. Therefore, G does not have a near packing admitting \mathcal{E}_{2k} . Furthermore, $E(G)=\frac{(k+1)(n-1)+n-1}{2}=\frac{(k+2)(n-1)}{2}$ if k is even or n-1 is even, or $E(G)=\frac{(k+1)(n-2)+(k+2)+(n-1)}{2}=\frac{(k+2)(n-1)+1}{2}$ otherwise.

Theorem 17.
$$m(n, \mathcal{E}_k) \geqslant \sqrt{\frac{k}{2}n(n-1)}$$
.

Proof. Let G be a graph of order n and size m. We will prove that if $m \leq \sqrt{\frac{k}{2}n(n-1)}$ then there is a near-packing of G admitting \mathcal{E}_k . Consider the probability space whose n! points are the permutations of V(G). For any two edges $e, f \in E(G)$ let X_{ef} denote the indicator random variable with value 1 if f is an image of e. Then

$$E(X_{ef}) = Prob(X_{ef} = 1) = \frac{2(n-2)!}{n!} = \binom{n}{2}^{-1}.$$

Let $X = \sum_{e,f \in E(G)} X_{ef}$. Thus, by the linearity of expectation, we have

$$E(X) = \sum_{e, f \in E(G)} E(X_{ef}) \leqslant m^2 \binom{n}{2}^{-1} \leqslant k.$$

This implies that there exists a permutation σ of V(G) such that G_{σ}^* has at most k edges. Thus, σ is a near packing of G admitting \mathcal{E}_k .

References

- [1] B. Bollobás and S. E. Eldridge, Packing of graphs and applications to computational complexity, *J. Combin. Theory Ser. B* 25:105–124, 1978.
- [2] D. Burns and S. Schuster, Every (p, p 2) graph is contained in its complement, J. Graph Theory 1:277–279, 1977.
- [3] N. Eaton, A near packing of two graphs, J. Combin. Theory Ser. B, 80:98–103, 2000.
- [4] R. J. Faudree, C. C. Rousseau, R. H. Schelp, and S. Schuster, Embedding graphs in their complements, *Czechoslovak Math. J.*, 31(106):53–62, 1981.
- [5] A. Görlich and A. Zak, A note on packing graphs without cycles of length up to five, *Electronic J. Combin.*, 16:N30, 2009.

- [6] A. Görlich and A. Żak, Sparse graphs of girth at least five are packable, *Discrete Math.*, 312:3606-3613, 2012.
- [7] N. Sauer and J. Spencer, Edge disjoint placement of graphs, *J. Combin. Theory Ser. B*, 25:295–302, 1978.
- [8] A. Żak, unpublished, 4 pages.