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Abstract

One of the classical results in packing theory states that every graph of
order n and size less than or equal to n− 2 is packable in its complement.
Moreover, the bound is sharp because the star is not packable. A similar
problem arises for digraphs, namely, to find the maximal number fD(n)
such that every digraph of order n and size less than or equal to fD(n) is
packable. So far it is known that 7

4
n − 81 ≤ fD(n) ≤ 2n − 3 where the

upper bound is sharp. In this paper we prove that fD(n) = 2n− o(n).

1 Introduction

We deal with finite, directed graphs without loops or multiple arcs. We use
standard graph theory notation. Let D be a digraph with a vertex set V (D)
and an arc set A(D). For any vertex x in V (D) let us denote by d+(v) the outer
degree of x. By d−(x) we denote the inner degree of x. The degree of a vertex
x, denoted by d(x), is defined by d(x) = d+(x) + d−(x). By N(x) we denote
the set of vertices incident with x in D. If xy and yx belong to A(D), then we
say that x and y are joined by a symmetric arc. For two permutations σ′, σ′′ a
permutation σ = σ′σ′′ is the product of σ′ and σ′′.

Let G be a graph (a digraph) with a vertex set V (G). The order of G is
denoted by |G| and the size is denoted by ||G||. We say that G is packable in

its complement (G is packable, in short) if there is a permutation σ on V (G)
such that if xy is an an edge (an arc) of G, then σ(x)σ(y) is not an edge (an
arc) in G. A graph (a digraph) is self-complementary if it is isomorphic to its
complement. Obviously, every self-complementary graph is packable.

The problem of finding the maximum number fG(n) such that every graph
G of order |G| = n and size ||G|| ≤ fG(n) is packable was independently solved
in [2, 3, 6].

Theorem 1 Let G be a graph of order n such that ||G|| ≤ n − 2. Then G is

packable.

The example of the star shows that Theorem 1 cannot be improved by raising
the size of G. However it can be improved in other ways. The following theorem
was proved in [7]:
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Theorem 2 Let G be a graph of order n such that ||G|| ≤ n − 2. Then G is

packable without fixed points, i.e. σ(x) 6= x for every x ∈ V (G).

A similar problem arises for digraphs with a corresponding function fD(n). If
a digraph D has only symmetric arcs, then by Theorem 1, D is packable if
||D|| ≤ 2n− 4. On the other hand, the example of a complete bipartite digraph
D′ with V (D′) = {v1, ..., vn} and A(D′) = {(v1, vj), (vj , v1); j = 2, ..., n} shows
that fD(n) ≤ 2n− 3. This leads to the following conjecture which in a stronger
form was formulated in [1].

Conjecture 3 Let D be a digraph of order n and size ||D|| ≤ 2n− 3. Then D
is packable.

The first result related to Conjecture 3 was that every digraph of order n ≥ 3
and size at most n is contained in a self-complementary digraph of order n, see
[1]. Hence every such digraph is packable. Clearly, a digraph of order 2 and size
equal to 0 or 1 is packable, hence we obtain:

Remark 4 Every digraph D with ||D|| < |D| is packable.

The bound on the size was improved in [8].

Theorem 5 Let D be a digraph of order n such that ||D|| ≤ 3
2 (n− 2). Then D

is contained in a self-complementary digraph of order n.

So far the best known result concerning Conjecture 3 was presented in [4].

Theorem 6 Let D be a digraph of order n and size ||D|| ≤ 7
4n − 81. Then D

is packable without fixed points, i.e. σ(x) 6= x for every x ∈ V (D).

Therefore 7
4n − 81 ≤ fD(n) ≤ 2n − 3. We shall prove that fD(n) = 2n − o(n).

Namely we shall prove the following:

Theorem 7 Let D be any digraph of order n and size ||D|| ≤ 2n− 10n2/3 − 7.
Then D is packable.

Note that our new lower bound is better than the previous one for n ≥ 63107.
Finally, we recall another classical result in packing theory [6] for it will be

used in the proof of Theorem 7.

Theorem 8 Let G1 and G2 be graphs of order n such that 2∆(G1)∆(G2) < n.
Then the complete graph Kn contains edge disjoint copies of G1 and G2.

Sketch of the proof of Theorem 7. The proof is by induction on n. Let D
be a digraph of order n and size at most 2n− 10n2/3 − 7. If 2n− 10n2/3 − 7 ≤
7
4n − 81 then D is packable by Theorem 5. The above inequality holds for

22 ≤ n ≤ 63107 (but 2n− 10n2/3 − 7 < 0 for n < 22). From now on we assume
that D is a digraph of order n ≥ 63107 and size ||D|| = b2n−10n2/3−7c, and we
assume the theorem holds for every digraph with order less than n. Moreover,
by Theorem 8 we may assume that ∆(D) ≥ 177.

The paper is organized as follows. In the next section we prove some prelimi-
nary lemmas. They will be needed in the main part of the proof of Theorem 7
presented in the third section.
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2 Lemmas

We start with a lemma which is a slight modification of Lemma 2 in [4]. In the
new form it can be applied more widely.

Lemma 9 Let G be a digraph and k ≥ 1 be any positive integer. If there is a

set U = {v1, ..., v2k} ⊂ V (G) of 2k independent vertices of G such that

1. vertices of U have degrees at most k;

2. vertices of U have mutually disjoint sets of neighbors, i.e. N(vi)∩N(vj) =
∅ for i 6= j;

3. there is a packing σ′ of G− U ,

then there exists a packing σ of G.

For completness we give the proof of the above lemma although it is analogous
to the proof of Lemma 2 in [4].
Proof. Let G′ := G− U and let σ′ be a packing of G′. Below we show that we
can find a packing σ of G.
For any v ∈ V (G′) let us define σ(v) := σ′(v). Then let us consider a bipartite
graph H with partite sets A = U × {0} and B = U × {1}. For i, j ∈ {1, ..., 2k}
the vertices (vi, 0), (vj , 1) are joined by an edge in H if and only if σ′(N(vi)) ∩
N(vj) = ∅. So, if (vi, 0), (vj , 1) are joined by an edge in H we can put σ(vi) = vj .
Because d(vi) ≤ k for i ∈ {1, ..., 2k}, d((vi, 0)) ≥ 2k − k = k and d((vi, 1)) ≥
2k − k = k. Let S ⊂ A. If |S| ≤ k then obviously |N(S)| ≥ |S|. Notice that if
|S| > k, then N(S) = B. Indeed, otherwise let (vj , 1) ∈ B be a vertex which
has no neighbour in S. Thus d((vj , 1)) ≤ |A| − |S| ≤ 2k − (k + 1) = k − 1, a
contradiction. Hence, in any case |S| ≤ |N(S)|. Thus, by Hall’s theorem there
is a matching M in H. Therefore we can define σ(vi) = vj for i, j ∈ {1, ..., 2k}
such that (vi, 0), (vj , 1) are incident with the same edge in M . �

Let T1, T2 be vertex-disjoint digraphs such that they do not contain any
symmetric arc and their underlying graphs are trees (we include isolated ver-
tices as trivial trees). Let x be a vertex belonging neither to the vertex set of
T1 nor T2 and let B be any non-empty set of nonsymmetric arcs such that if
an arc uv belongs to B then u = x or v = x. A digraph H = (V,A) we call a
starry tree if V = V (T1) ∪ V (T2) ∪ {x} and A = A(T1) ∪ A(T2) ∪ B. We call
the vertex x a middle vertex of H. Note that a starry tree need not be connected.

Lemma 10 Let H be a starry tree. Then there is a packing of H such that the

middle vertex of H is the image of its neighbor.

Proof. The proof is by induction on |T1| + |T2|. If |T1| + |T2| = 2, then the
existence of an adequate packing is obvious.
Assume that |T1| + |T2| ≥ 3. Without loss of generality we may assume that
|T1| ≥ 2. Let l be a leaf in T1 and let l′ be the neighbor of l other than x. We
distinguish two cases:
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Case 1. The middle vertex x is not joined with l.
Case 2. The middle vertex x is joined with l; we assume that there is an arc

xl in H since the case with lx in H is analogous.
In Case 1, by the induction hypothesis, there exists a packing σ′ of H ′ = H−{l}
such that x is the image of its neighbor. Then σ = (l, l′)σ′ is an adequate packing
of H if l′ is a fixed point of σ′ or otherwise, σ = (l)σ′ is an adequate packing of
H.

Consider Case 2. By Remark 4 there exist packings σ1 and σ2 of T1 and
T2, respectively. Note that every subdigraph of Ti is also packable. For every
vertex u ∈ V (Ti) let σu

i denote a packing of Ti−{u}. Let H1 = H[V (T1)∪{x}]
and H2 = H[V (T2) ∪ {x}] be two induced subdigraphs of H.

There are two possibilities:
• There is a vertex y ∈ T2, which is not joined with x or yx is an arc in T2.
• For every vertex y ∈ T2 there is an arc xy in T2.
In the first situation let σ′

1 be a packing of T1 − {l, l′}. Then (x, l)(l′, y)σ′
1σ

y
2 is

an adequate packing of H. In the second situation, no matter how the arcs in
T2 are oriented, there is a sink s in H2. Moreover, x is a source in H2. Then
σ = (x, s)σs

2σ1 is an adequate packing of H. �

Lemma 11 If there is an isolated vertex in D, then D is packable.

Proof. Let y be a vertex such that d(y) = 0. Recall that there exists a vertex
u ∈ V (D) with d(u) ≥ 177. Note, that D′ = D − {u, y} has small enough size
(we delete 2 vertices and at least 177 arcs from D). Then, by the induction
hypothesis there is a packing σ′ of a graph D′ := D−{u, y}. Then (u, y)σ′ is a
packing of D. �

Lemma 12 If D contains at least eight vertices with degree 1, then D is pack-

able.

Proof. Let W = {v1, ..., v8} ⊂ V (D) be a set of vertices such that d(v1) =
... = d(v8) = 1. Let yi be the only neighbor of vi. Let u be a vertex such that
d(u) ≥ 177. We distinguish two cases:

Case 1. There is i ∈ {1, ..., 8} such that yi ∈ W . Then by the induction
hypothesis, D′ = D − {vi, yi, u} is packable. Let σ′ be a packing of D′. Then
σ = (vi, yi, u)σ′ is a packing of D.

Case 2. W is a set of independent vertices. If there is i ∈ {1, ..., 8} such
that d(yi) ≥ 4, then by the induction hypothesis there is a packing σ1 of D1 =
D − {vi, yi} and (vi, yi)σ1 is a packing of D.

Assume that d(yi) < 4 for each i = 1, ..., 8. In particular, u is not a neighbor
of any vi. Suppose next that a vertex y is a common neighbor of two vertices
v, v′ ∈ W . Then there exists a packing σ2 of D2 = D − {v, v′, y, u}, whence
(v, u)(v′, y)σ2 is a packing of D.

Consequently, we assume that yi 6= yj if i 6= j. Let w ∈ W and let z
be the neighbor of w. Recall that d(z) ≤ 3. Therefore, there are at least 5
vertices v1, ..., v5 ∈ W such that N(vi) ∩ N(z) = ∅. Consider now digraphs
D3 = D − {v1, ..., v5, w, z, u} and D4 = D − {v1, ..., v5, z}. Clearly, D3 satisfies
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the induction assumption, hence there exists a packing σ3 of D3. Then σ4 =
(u,w)σ3 is a packing of D4. Vertices v1, ..., v5, z are independent vertices which
have degrees less than or equal to 3 and with mutually disjoint sets of neighbours.
Thus, by Lemma 9, D is packable. �

3 Proof of Theorem 7

Proof. Let k =
⌊

n1/3
⌋

. We assume that d(v) ≥ 2 for each vertex v in D except
at most seven of degree one because otherwise D is packable by Lemma 12.

Let us consider a set K of vertices in D with degrees greater than or equal
to 2 and less than or equal to k. We choose the set S with maximum cardinality
among all sets of independent vertices in K which have disjoint sets of neighbors.
By Lemma 9, |S| ≤ 2k. Hence |N(S)| ≤ 2k2 ≤ 2n2/3. Let Vj := {v ∈ V (D) \
N(S) : d(v) = j}. Clearly, every vertex from V2 ∪ ... ∪ Vk has a neighbor in
N(S). Furthermore, the number m of vertices of degree greater than k does not
exceed 2n2/3. Indeed

4n− 20n2/3 − 14 ≥ 2||D|| ≥ 7 + 2(n− 7 −m) + m
(

n1/3 − 1
)

,

hence

m ≤
2n− 20n2/3 − 7

n1/3 − 3
< 2n2/3.

Therefore

|N(N(S))| ≥ |V2 ∪ ... ∪ Vk| ≥ n− 7 −m− |N(S)| > n− 7 − 4n2/3. (1)

Thus, vertices from N(S) cover at least n− 7 − 4n2/3 arcs.
Let C be the set of components in D−N(S). Let T = {T ∈ C : (xy ∈ A(T ) ⇒

yx /∈ A(T )) ∧ (||T || = |T | − 1) ∧ (∀x ∈ V (T ) : |N(x) ∩ N(S)| ≤ 1)}. So, every
component T in T does not contain symmetric arcs and the underlying graph
of T is a tree (in particular, we consider an isolated vertex as a trivial tree).
Furthermore, each vertex of T is incident with at most one arc joining it and a
vertex in N(S). We call components in T minimal components of D − N(S).
Let R := C − T . Let r denote the sum of the number of arcs in R and the
number of components in R such that they do not contain symmetric arcs and
their underlying graphs are trees. Then r ≥ |R|. Moreover, r counts all arcs
in R and some arcs between R and N(S) which are not counted in inequality
(1). Indeed, each of the considered r− ||R|| components of R contains a vertex
which is joined with N(S) by at least two arcs (and only one of them is counted
in (1)) because components of R are not minimal.

Let p denote the cardinality of T . Note that there are at least n− |N(S)| −
|R| − p arcs in T . Below we show that p is at least 2|N(S)| − |R| + r. By the
assumption and by inequality (1), the size of D satisfies:

2n− 10n2/3 − 7 ≥ ||D|| ≥ n− 7 − 4n2/3 + (n− |N(S)| − p− |R|) + r

> 2n− 6n2/3 − 7 − p− |R| + r.
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Thus

p > 4n2/3 − |R| + r ≥ 2|N(S)| − |R| + r. (2)

In the next part of the proof we part a digraph D into two vertex-disjoint
subdigraphs D′ and D′′ this way that D′ and D′′ are packable. Moreover, we
can extend these packings into a packing of D.

Let us denote p minimal components in T by T1, ..., Tp. Let D′ = D[V (T1)∪
...∪ V (T2|N(S)|)∪N(S)]. Below we show that there exists a packing of D′ such
that the image of every vertex in N(S) is not in N(S). If in D′ there are |N(S)|
vertex-disjoint starry trees H1, ..., H2|N(S)| with middle vertices in N(S), then
we pack every starry tree as in Lemma 10. Let σi denote a packing of Hi. We
claim that σ = σ1....σ2|N(S)| form a packing of D′ as well. Note that only arcs
between different starry trees (but not between their middle vertices) may spoil
the packing of D′. These arcs are of the form xy where x is the middle vertex of
some starry tree and y is a non-middle vertex of another starry tree. However,
since the middle vertex of each starry tree is the image of its neighbor in the
same starry tree and this neighbor has no other neighbors outside its minimal
component, this is indeed a packing of D′. Otherwise, suppose that l < |N(S)|
is the largest number of vertex-disjoint starry trees in D′ with middle vertices
in N(S) and let L with cardinality l denote some set of such starry trees. This
time we pack starry trees from L as in Lemma 10. By Theorem 2, each of
the remaining vertices from N(S) together with two minimal components can
be packed without fixed points. We claim that the product of these packings
is a proper packing of D′. Suppose for the contrary that the image of an arc
a in D′ coincides with some other arc a′ in D′. Hence a′ must join a vertex
z ∈ N(S) which is not in any starry tree from L with a non-middle vertex of
some starry tree H. Moreover, a must join the middle vertex of H with some
minimal component which is not in any starry tree from L. Thus D′ contains
more than l starry trees and we get a contradiction. Hence D′ is packable.

Below we show that D′′ = D − D′ is also packable. Note that D′′ = R ∪
T2|N(S)|+1 ∪ ... ∪ Tp. Then, by inequality (2):

||D′′|| = ||R ∪ T2|N(S)|+1 ∪ ... ∪ Tp|| = ||R|| + |T2|N(S)|+1| + ... + |Tp| − (p− 2|N(S)|)

< ||R|| + |T2|N(S)|+1| + ... + |Tp| − (r − |R|)

≤ |R| + |T2|N(S)|+1| + ... + |Tp|

= |R ∪ T2|N(S)|+1 ∪ ... ∪ Tp| = |D′′|.

Thus, by Remark 4, D′′ is packable.
Let σ′, σ′′ denote packings of D′ and D′′, respectively. Then σ = σ′σ′′

is a packing of D. Suppose for the contrary that the image of an arc xy in
D coincides with some other arc σ(x)σ(y) in D. Then x, σ(x) ∈ V (D′) and
y, σ(y) ∈ V (D′′). By construction of D′ and D′′ it implies that x and σ(x)
belong to N(S). Then we get a contradiction, since the image of every vertex
in N(S) is not in N(S). �
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