A note on packing graphs without cycles of length up to five.

Agnieszka Görlich, Andrzej Zak

University of Science and Technology AGH, Al. Mickiewicza 30, 30-059 Kraków, Poland

February 24, 2009

Abstract

The following statement was conjectured by Faudree, Rousseau, Schelp and Schuster: if a graph G is a non-star graph without cycles of length $m \leq 4$ then G is a subgraph of its complement.

So far the best result concerning this conjecture is that every non-star graph G without cycles of length $m \leq 6$ is a subgraph of its complement. In this note we show that $m \leq 6$ can be replaced by $m \leq 5$.

1 Introduction

We deal with finite, simple graphs without loops and multiple edges. We use standard graph theory notation. Let G be a graph with the vertex set V(G) and the edge set E(G). The order of G is denoted by |G| and the size is denoted by ||G||. We say that G is packable in its complement (G is packable, in short) if there is a permutation σ on V(G) such that if xy is an edge in G then $\sigma(x)\sigma(y)$ is not an edge in G. Thus, G is packable if and only if G is a subgraph of its complement. In [2] the authors stated the following conjecture:

Conjecture 1 Every non-star graph G without cycles of length $m \leq 4$ is packable.

In [2] they proved that the above conjecture holds if $||G|| \leq \frac{6}{5}|G| - 2$. Woźniak proved that a graph G without cycles of length $m \leq 7$ is packable [6]. His result was improved by Brandt [1] who showed that a graph G without cycles of length $m \leq 6$ is packable. Another, relatively short proof of Brandt's result was given in [3]. In this note we prove the following statement.

Theorem 2 If a graph G is a non-star graph without cycles of length $m \leq 5$ then G is packable.

The basic ingredient for the proof of our theorem is the lemma presented below. This lemma is both a modification and an extension of Lemma 2 in [4].

Lemma 3 Let G be a graph and $k \ge 1$, $l \ge 1$ be any positive integers. If there is a set $U = \{v_1, ..., v_{k+l}\} \subset V(G)$ of k+l independent vertices of G such that

- 1. k vertices of U have degree at most l and l vertices of U have degree at most k;
- 2. vertices of U have mutually disjoint sets of neighbors, i.e. $N(v_i) \cap N(v_j) = \emptyset$ for $i \neq j$;
- 3. G U is packable

then there exists a packing σ of G such that U is an invariant set of σ , i.e. $\sigma(U) = U$.

Proof. Let G' := G - U and σ' be a packing of G'. Below we show that we can find an appropriate packing σ of G.

For any $v \in V(G')$ we define $\sigma(v) := \sigma'(v)$. Then let us consider a bipartite graph B with partition sets $X := \{v_1, ..., v_{k+l}\} \times \{0\}$ and $Y := \{v_1, ..., v_{k+l}\} \times \{1\}$. For $i, j \in \{1, ..., k+l\}$ the vertices $(v_i, 0), (v_j, 1)$ are joined by an edge in B if and only if $\sigma'(N(v_i)) \cap N(v_j) = \emptyset$. So, if $(v_i, 0), (v_j, 1)$ are joined by an edge in B we can put $\sigma(v_i) = v_j$.

Without loss of generality we can assume that $k \leq l$. Note that if deg $v_i \leq l$ in G then deg $(v_i, 0) \geq k$ in B. Furthermore, if deg $v_i \leq k$ in G then deg $(v_i, 0) \geq l$ in B. Thus X contains k vertices of degree $\geq k$ and l vertices of degree $\geq l$. In the similar manner we can see that Y contains kvertices of degree $\geq l$ and l vertices of degree $\geq k$. In particular, every vertex in Y has degree $\geq k$. Let $S \subset X$. If $|S| \leq k$ then obviously $|N(S)| \geq |S|$. Suppose that $k < |S| \leq l$. Then there is at least one vertex of degree l in S thus $|N(S)| \geq l \geq |S|$. Finally, we show that if |S| > l + 1, then N(S) = Y. Indeed, otherwise let $(v_j, 1) \in Y$ be a vertex which has no neighbor in S. Thus $\deg(v_j, 1) \leq |X| - |S| \leq k + l - (l + 1) = k - 1$, a contradiction. Hence, for any $S \subset X$ we get $|S| \leq |N(S)|$. Therefore, by the famous Hall's theorem [5], there is a matching M in B. We define $\sigma(v_i) = v_j$ for $i, j \in \{1, ..., k + l\}$ such that $(v_i, 0), (v_j, 1)$ are incident with the same edge in M. \Box

2 Proof of Theorem 2

Proof. Assume that G is a counterexample of Theorem 2 with minimal order. We choose an edge $xy \in E(G)$ with the maximal sum deg $x + \deg y$ of degrees of its endvertices among all edges of G. Since G is not a star deg $x \ge 2$ and deg $y \ge 2$. Let U be the union of the sets of neighbors of x and y different from x, y. Define $k := \deg x - 1$, $l := \deg y - 1$. We may assume that $k \le l$. Consider graph $G' := G - \{x, y\}$. Note that because of the choice of the edge xy, U contains k vertices of degree $\le l$ and l vertices of degree $\le k$ in G'. Moreover, since G has no cycles of length ≤ 5 , the vertices of U are independent in G' and have mutually disjoint sets of neighbors in G'. By our assumption G' - U is packable or it is a star.

Assume that G' - U is packable. Thus, by Lemma 3, there is a packing σ' of G' such that $\sigma'(U) = U$. This packing can be easily modified in order to obtain a packing of G. Namely, note that there are vertices $v, w \in U$ where v is a neighbor of x and w is a neighbor of y such that $\sigma'(v)$ is a neighbor of x and $\sigma'(w)$ is a neighbor of y, or $\sigma'(v)$ is a neighbor of y and $\sigma'(w)$ is a neighbor of x. In the former case $(x\sigma'(v)y\sigma'(w))\sigma'$ is a packing of G and in the latter case $(x\sigma'(v))(y\sigma'(w))\sigma'$ is a packing of G. Thus we get a contradiction.

Assume now that G' - U is a star (with at least one edge). Note that since G has no cycles of lengths up to five, every vertex from U has degree ≤ 2 in G. Moreover, G has a vertex which is at distance at least 3 from y. Let z denote a vertex which is not in U and is at distance 2 from x, or if such a vertex does not exist let z be any vertex which is at distance at least 3 from y. Furthermore, let W denote the set of neighbours of y. Consider a graph $G'' := G - \{y, z\}$. Thus Wconsists of l vertices of degree ≤ 1 in G'' and one vertex of degree $k \leq l$ in G''. Note that G'' - Whas an isolated vertex, namely a neighbour of x. Thus G'' - W is not a star, hence it is packable. Moreover vertices from W are independent and have mutually disjoint sets of neighbours in G''. Thus by Lemma 3 there is a packing σ'' of G'' such that $\sigma''(W) = W$. Then $(yz)\sigma''$ is a packing of G. Therefore, we get a contradiction again, so the proof is finished.

References

- S. Brandt, Embedding graphs without short cycles in their complements, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics, and Application of Graphs, 1 (1995) 115–121
- [2] R. J. Foudree, C. C. Rousseau, R. H. Schelp, S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31 (106) (1981) 53–62
- [3] A. Görlich, M. Pilśniak, M. Woźniak, I. A. Zioło, A note on embedding graphs without short cycles, Discrete Math. 286 (2004) 75–77.
- [4] A. Görlich, M. Pilśniak, M. Woźniak, I. A. Zioło, Fixed-point-free embeddings of digraphs with small size, Discrete Math. 307 (2007) 1332–1340.

- [5] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26–30.
- [6] M. Woźniak, A note on embedding graphs without short cycles, Colloq. Math. Soc. Janos Bolyai 60 (1991) 727–732.