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Abstract

We say that a graph is embeddable if it is a subgraph of its complement.
One of the classic results on graphs embedding says that each graph on n

vertices with at most n−2 edges is embeddable. The bound on the number
of edges cannot be increased because, for example, the star on n vertices
is not embeddable. The reason of this fact is the existence of a vertex with
very high degree. In this paper we prove that by forbidding such vertices,
one can significantly increase the bound on the number of edges. Namely,
we prove that if ∆(G) + |E(G)| ≤ 2n− f(n), where f(n) = o(n), then G

is embeddable. Our result is asymptotically best possible, since for the
star Sn (which is not embeddable) we have ∆(Sn)+ |E(Sn)| = 2n−2. As
a corollary, we obtain that a digraph embedding conjecture by Benhocine
and Wojda 1985 is true for digraphs with sufficiently many symmetric
arcs.

1 Introduction

We deal with finite, simple graphs without loops or multiple edges. The vertex
and edge sets of a graph G are denoted by V (G) and E(G). The order of G is
the number of vertices of G and is denoted by |G|. The size of G is the number
of edges of G and is denoted by ||G||. By NG(x) we denote the set of vertices
adjacent to x in G. The degree (in G) of a vertex x is denoted by dG(x) and is
equal to |NG(x)|. The maximum degree of G is denoted by ∆(G) and is equal

∗The author was partially supported by the Polish Ministry of Science and Higher Educa-

tion.

1



to the maximum among degrees of all vertices of G. For a vertex set X, the set
NG(X) denotes the external neighbourhood of X in G, i.e.

NG(X) = {y ∈ V (G) \X : y is adjacent to some x ∈ X}.

We say that G is embeddable in its complement (G is embeddable, in short) if
there is a permutation σ on V (G) such that if xy is an edge in G, then σ(x)σ(y)
is not an edge in G. Thus, G is embeddable if and only if G is a subgraph of its
complement. If there exists a map σ with σ(x) 6= x for every vertex x ∈ V (G),
then we say that G is fixed-point-free embeddable. In the sequel we use the
permutation cycle notation.

One of the classical results in the theory of graph embedding is the following
theorem, proved independently in [2, 3, 9].

Theorem 1 ([2, 3, 9]) Every n-vertex graph having at most n − 2 edges is

embeddable.

This theorem cannot be improved by raising the size of G since, for example, a
star on n vertices is not embeddable. In [4] and [5], all non-embeddable graphs
with order n and size n− 1 or n are presented, see also [11]. Among them there
are 7 infinite families, see Figure 1. It is clear from the examples that the strong
restriction on the number of edges in Theorem 1 is a result of the existence of
a vertex with very high degree. It seems to be very likely that by forbidding
such vertices, one can significantly improve the bound on the size of a graph in
the statement of Theorem 1. We confirm this intuition by proving the following
theorem.

Theorem 2 Let G be an n-vertex graph. If ||G|| + ∆(G) ≤ 2n − 14n2/3 − 20
then G is embeddable.

Note that the bound in Theorem 2 is asymptotically best possible. Indeed, it
cannot be larger than 2n − 6 which follows from Figure 1 b). Furthermore, it
cannot be essentially improved even with a stronger bound on the maximum
degree. Indeed, consider the following example.

Example Let V1, ..., Vt−1 be pairwise disjoint subsets with |Vi| = t for i =
1, ..., t−2 and |Vt−1| = n−t(t−2). Furthermore, let x ∈ Vt−1. Let G be a graph
with V (G) = V1 ∪ · · · ∪ Vt−1 such that each Vi, i = 1, ..., t− 2, induces a clique,
Vt−1 induce a star with center x and there are no other edges in G. Observe
that G is not embeddable if n is sufficiently large. Indeed, suppose that σ is
an embedding of G. If σ(x) ∈ Vi for some i ∈ {1, ..., t− 2}, then the remaining
vertices of Vi must be images of vertices from different sets Vj , j 6= t − 1.
However, there are not enough sets Vj . Suppose that σ(x) ∈ Vt−1. If σ(x) 6= x,
then x must be an image of a vertex from some set Vi with i ∈ {1, ..., t − 2}.
Thus, the remaining vertices of Vi have to be mapped on vertices from different
sets Vj with j 6= t − 1. However, there are not enough such sets Vj . Finally,
if σ(x) = x, then the neighbors of x have to be mapped on the vertices from
V1 ∪ · · · ∪ Vt−2, which is impossible if n is sufficiently large.
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Figure 1: Infinite families of non-embeddable graphs of order n and size n − 1
or n
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Furthermore, ∆(G) = n− t(t− 2)− 1, ||G|| = t(t−1)
2 (t− 2)+n− t(t− 2)− 1.

Hence, ∆(G) + ||G|| = 2n− 2 + t(t− 2) t−5
2 .

Therefore, the coefficient 2 in Theorem 2 cannot be increased. Note that for
t = 4, the bound on ∆(G) + ||G|| is strongest. Let, g(n) denote the maximum
number such that every graph G of order n satisfying ∆(G) + ||G|| ≤ g(n)
is embeddable. Thus, we have that g(n) = 2n − o(n). We conjecture that
g(n) = 2n− 7, i.e.

Conjecture 3 Let G be an n-vertex graph. If ||G||+∆(G) ≤ 2n− 7 then G is

embeddable.

2 The idea of the proof of Theorem 2

We apply the idea that was used in [7] and [8]. We suppose that G is a coun-
terexample of minimal order n. In Section 3 we prove some basic properties of
G. The main proof has 5 parts.

Part a). Using the basic properties of G and Lemma 4, we first prove that
G has a small set U ⊂ V (G) that covers almost n edges.

Part b). As a consequence, we obtain that G− U has fewer edges than ver-
tices. Hence, G−U has sufficiently many components that are trees. This allows
us to partition V (G) into three sets U , F and X such that G[F ] (the subgraph
of G induced by F ) is a forest with 3|U | components. The key property is that
there are no edges between F and X.

Part c). Let G′ = G[U ∪ F ] and G′′ = G[X], see Figure 2. Since, G′ has a
very specific structure, it is possible to prove that it has an embedding σ′ such
that σ′(U) ⊂ F .

Part d) Here we prove that G′′ is a sparse graph, so it has an embedding σ′′

by Theorem 1.

Part e) Since σ′(U) ⊂ F and there are no edges between F and X, the
product σ′σ′′ is an embedding ofG, which is a contradiction with the assumption
on G.
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Figure 2: A partition of V (G)

σ′(U)

3 Lemmas

We use the following result from [6].

Lemma 4 ([6]) Let G be a graph and k, l non-negative integers. If G has an

independent set U of cardinality k + l such that

1. U has k vertices with degree at most l, and its other l vertices have degree

at most k,

2. the neighborhoods of the vertices of U are pairwise disjoint,

3. there is an embedding σ′ of G− U ,

then there exists an embedding σ of G.

We will need also the following two known results, the former one is a special
case of a more general theorem from [9].

Theorem 5 ([9]) Every n-vertex graph G satisfying 2(∆(G))2 < n is embed-

dable.

Theorem 6 ([10]) Every n-vertex graph having at most n − 2 edges is fixed-

point-free embeddable.

For convenience, let α(n) = 14n2/3 + 20. In many places in the proofs we
will use the following observation.

Proposition 7 Let G be a graph of order n such that ||G||+∆(G) ≤ 2n−α(n).
If G′ is a graph that arises from G by deleting m vertices and at least 2m edges,

then ||G′||+∆(G′) ≤ 2n′ − α(n′), where n′ is the order of G′.
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Proof. . Note that α(n) is increasing with respect to n. Thus,

||G′||+∆(G′) ≤ 2n− α(n)− 2m = 2(n−m)− α(n) ≤ 2n′ − α(n′).

�

Lemma 8 Let G be a graph of order n such that ||G||+∆(G) ≤ 2n− α(n). If

n ≤ 2744, then G is embeddable.

Proof. Note that if n ≤ 2744 then 2n − 14n2/3 − 20 ≤ n − 2. Hence G is
embeddable by Theorem 1. �

Lemma 9 Let G be a graph of order n such that ||G||+∆(G) ≤ 2n− α(n). If

∆(G) ≤ 37, then G is embeddable.

Proof. If n ≤ 2744, then G is embeddable by Lemma 8. So we may assume that
n ≥ 2745. Note that if ∆(G) ≤ 37, then 2(∆(G))2 < 2745 ≤ n. Hence G is
embeddable by Theorem 5. �

A starry tree is a graph H such that (1) V (H) can be partitioned into four
nonempty sets W1, W2, W3 and {x} that each induce a tree, (2) there is at
least one edge incident to x, (3) all edges not belonging to the trees induced by
W1, W2 and W3 are incident to x and (4) there are no edges between x and
W2 ∪W3. A vertex x we call a middle vertex of H. Note that a starry tree is
always disconnected.

Lemma 10 Every starry tree admits an embedding such that its middle vertex

is the image of one of its neighbors.

Proof. Let H be a starry tree and let T1, T2 and T3 be trees induced by W1,
W2 and W3 respectively. The proof is by induction on |T1| + |T2| + |T3|. If
|T1|+ |T2|+ |T3| = 3, then the existence of an embedding as required is obvious.
Assume that |T1|+ |T2|+ |T3| ≥ 4. We distinguish two cases:
Case 1. There exists a leaf l in T1 such that the middle vertex x is adjacent to
l.
Case 2. No leaf of T1 is adjacent to x.

Consider Case 1. Let u ∈ W2, v ∈ V (T3) be vertices such that T2 − u or
T3 − v either is disconnected or has at most one vertex. Thus, by Theorem 1
(or trivially in the latter situation), there is an embedding σ2 of T2 − {u} and
there is an embedding σ3 of T3 − {v}.

Suppose first that |T1| = 1 with W1 = {l}. Then, the product (l, x, v, u)σ2σ3

is an embedding as required of H. Suppose next that |T1| = 2 with W1 = {l, l′}.
Then, (l, x, u)(l′, v)σ2σ3 is an embedding as required of H.

So we may assume that |T1| ≥ 3. Let l′ be the neighbor of l in T1. Let
y ∈ W1 such that T1−{l, l′, y} either is disconnected or has at most one vertex.
Thus, by Theorem 1 (or trivially in the latter situation), there is an embedding
σ1 of T1 − {l, l′, y}. Then the product (l, x, u, y)(l′, v)σ1σ2σ3 is an embedding
as required of H.
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Consider Case 2. Let L be the set of the leaves of T1, L = {l1, ..., ls}. Note,
that |T1| ≥ 3. Suppose first that all the leaves of T1 have a common neighbor
y. Since H is a starry tree (so there is at least one edge incident to x) and the
leaves of T1 are not joined with x, xy is an edge of H. Let H ′ = H−L. Clearly,
H ′ is a starry tree. Thus, by the induction hypothesis there is an embedding
as required σ′ of H ′. Furthermore, since y is the only neighbor of x in H ′, we
have σ′(y) = x. In particular y is not a fixed point of σ′. Thus the product
(l1) · · · (ls)σ

′ (i.e. l1, ..., ls are fixed points) is an embedding as required of H.
So we may assume that there are l1, l2 ∈ L with neighbors (in T1) y1, y2,

respectively, such that y1 6= y2, y1 6= l2 and y2 6= l1 (recall that |T1| ≥ 3 in
this case). Let H ′′ = H − {l1, l2}. Clearly, H ′′ is a starry tree. Hence, by
the induction hypothesis, there is an embedding as required σ′′ of H ′′. Then
(l1, l2)σ

′′ is an embedding as required of H if σ′′(y1) = y1 or σ′′(y2) = y2.
Otherwise, (l1)(l2)σ

′′ is an embedding as required of H. �

Lemma 11 Let G be a graph with minimum order n such that G is a non-

embeddable graph with ||G|| + ∆(G) ≤ 2n − α(n). Then G has no isolated

vertices.

Proof. Suppose for a contradiction, that y is an isolated vertex of G. By Lemma
9, there is x ∈ G with dG(x) ≥ 38. Let G′ = G − {x, y}. By Proposition 7,
||G′|| + ∆(G′) ≤ 2|G′| − α(|G′|). Thus, by the minimality assumption there is
an embedding σ′ of G′. Then (xy)σ′ is an embedding of G, a contradiction. �

Lemma 12 Let G be a graph with minimum order n such that G is a non-

embeddable graph with ||G||+∆(G) ≤ 2n− α(n). If two vertices of G of degree

1 have mutually different neighbors, then G has at most 20 vertices of degree 1.

Proof. Let V1 denote the set of all vertices of G with degree 1. Suppose for a
contradiction, that |N(V1)| ≥ 2 and |V1| > 20. By Lemma 9 we may assume
that G contains a vertex x with dG(x) ≥ 38. Let x1, x2 ∈ V1 and y1, y2 with
y1 6= y2, be the neighbors of x1 and x2 respectively.

Note that y1 and y2 cover at most 7 edges. Indeed, otherwise G′ := G −
{x1, x2, y1, y2} arises from G by deleting 4 vertices and at least 8 edges. Hence,
||G′|| + ∆(G′) ≤ 2|G′| − α(|G′|), by Proposition 7. Thus, by the minimality
assumption, there is an embedding σ′ of G′. Then, (x1, y1, x2, y2)σ

′ is an em-
bedding of G. On the other hand, if dG(y1) = 1, then G′′ := G − {x, x1, y1}
also satisfies ||G′′||+∆(G′′) ≤ 2|G′′| −α(|G′′|) by Proposition 7. Hence, by the
minimality assumption there is an embedding σ′′ of G′′. Then (x, x1, y1)σ

′′ is
an embedding of G. The same argument holds if dG(y2) = 1.

Therefore, we may assume that 2 ≤ dG(y1) ≤ 6 and 2 ≤ dG(y2) ≤ 6, G
has no isolated edges and x is not a neighbor of any vertex from V1. Moreover,
dG(y1)+dG(y2) ≤ 8 if y1y2 is an edge of G, and dG(y1)+dG(y2) ≤ 7 otherwise.
In particular, y2 has at most 7 − dG(y1) neighbors in V1. Analogously, every
vertex other than y1 of G has at most 7− dG(y1) neighbors in V1. Let V

′
1 ⊂ V1

be the set of all vertices of degree 1 which are at distance equal to 1 or 2 from
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y1. Let V
′′
1 = V1 \ V

′
1 . Thus, |V

′
1 | ≤ (dG(y1)− 1)(7− dG(y1)) + 1. Hence,

|V ′′
1 | ≥ |V1| − (dG(y1)− 1)(7− dG(y1))− 1. (1)

Since every vertex other than y1 of G has at most 7 − dG(y1) neighbors in V1

and vertices from V1 have no neighbors in V1, we have

|N(V ′′
1 )| ≥

|V ′′
1 |

7− dG(y1)
≥

|V1| − (dG(y1)− 1)(7− dG(y1))− 1

7− dG(y1)
, (2)

by (1). Note that if |V1| ≥ 20 then |V1| ≥ 2 (dG(y1)− 1) (7− dG(y1)) + 2,
since the largest number of vertices of degree 1 is needed when dG(y1) = 4.
Therefore, if |V1| ≥ 20 then |N(V ′′

1 )| ≥ dG(y1), by (2). Let {z1, ..., zq} ⊂ N(V ′′
1 )

with q = dG(y1) and let li ∈ V ′′
1 be a neighbor of zi, i = 1, ..., q. Clearly, W :=

{l1, ..., lq} is an independent set of G, W ⊂ V1 and vertices of W have different
neighbors. Moreover, since W ⊂ V ′′

1 , we have that W ∪{y1} is independent and
NG(li) ∩NG(y1) = ∅ for every i = 1, ..., q.

Consider now a graph G′′′ := G − (W ∪ {x, x1, y1}). Note that in order
to obtain G′′′ we remove from G, dG(y1) + 3 vertices and at least dG(y1) +
(dG(y1) + dG(x) − 1) ≥ 2(dG(y1) + 3) edges. Therefore, by Proposition 7,
||G′′′|| + ∆(G′′′) ≤ 2|G′′′| − α(|G′′′|). Hence, by the minimality assumption,
there is an embedding σ′′′ of G′′′. Furthermore, (x, x1)σ

′′′ is an embedding of
G−(W ∪{y1}). Then, by Lemma 4, there is an embedding of G, a contradiction.
�

4 Proof of Theorem 2

Proof. . Assume that G is a counterexample to Theorem 2 with minimum order
n. By Lemma 8, n ≥ 2745 and, by Lemma 9, ∆(G) ≥ 38. Moreover, by Lemma
11, G has no isolated vertices. Let k = bn1/3c.

Part a). We first prove that G has a small set U of vertices that covers
almost n edges. Let S denote a maximal independent set of G such that

i) if v ∈ S then 2 ≤ dG(v) ≤ k,
ii) if u, v ∈ S then NG(u) ∩NG(v) = ∅.

By Proposition 7, ||G−S||+∆(G−S) ≤ 2|G−S|−α(|G−S|). Thus, if S 6= ∅,
then, by the minimality assumption, G− S is embeddable. Hence,

|S| ≤ 2k − 1. (3)

because otherwise G is embeddable by Lemma 4 (with l = k), Clearly, (3) holds
also if S = ∅. Thus,

|N(S)| ≤ 2k2 − k ≤ 2n2/3 − n1/3 < 2n2/3. (4)

Let Vj := {v ∈ V (G) \ N(S) : dG(v) = j}. By the definition of S, every
vertex from V2 ∪ · · · ∪ Vk has a neighbor in N(S). Furthermore, the number
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nk of vertices of degree greater than k does not exceed 4n2/3 because 2||G|| =∑
v∈V (G) dG(v) < 4n. Therefore and since |V0| = 0, we have

|N(N(S))| ≥ |V2 ∪ · · · ∪ Vk| ≥ n− |V1| − nk − |N(S)| ≥ n− |V1| − 4n2/3 − |N(S)|.
(5)

Suppose first that all the vertices of degree 1 have a common neighbor x. In
this case we define U = N(S) ∪ {x}. By (3), (4) and (5) we have that |U | ≤
2n2/3 − n1/3 + 1 and |N(U)| ≥ n− 6n2/3. On the other hand, if two vertices of
degree 1 have different neighbors, then we define U = N(S). Note that U 6= ∅.
Indeed, otherwise

4n− 28n2/3 − 40 ≥ 2||G|| =
∑

u∈V (G)

dG(u) ≥ 20 + (n− 20)n1/3 (6)

because in this case there are at most 20 vertices of degree 1, see Lemma 12.
However, for n ≥ 2745 inequality (6) is false. Therefore, by (5) and (4) and
since |V1| ≤ 20, we have that |U | ≤ 2n2/3 − n1/3 and |N(U)| ≥ n− 20− 6n2/3.
Hence in each case, G contains a set U such that

|U | ≤ 2n2/3 − n1/3 + 1

|N(U)| ≥ n− 6n2/3 − 20. (7)

Part b). Now, we will prove that G − U contains a forest with sufficiently
many components that have an important additional property. Let T1,...,Tp

denote connected components of G−U which are trees such that each vertex of
Ti is adjacent to at most one vertex in U . We call these components minimal

components of G−U . Let R := G−U − V (T1)− · · · − V (Tp). Let r denote the
sum of the size of R and the number of all vertices in R which are joined (in G)
with U by at least two edges. Since R does not contain minimal components,
every component of R which is a tree contains a vertex joined with U by at
least two edges. On the other hand, every component of R which is not a tree
has at least as many edges as vertices. Hence,

r ≥ |R|. (8)

Moreover, r counts all edges in R and some edges between R and N(S) which
are not counted in inequality (7), because this inequality counts only the number
of vertices in N(U) and ignores the number of connections.

Note that there are exactly n − |U | − |R| − p edges in
⋃p

i=1 Ti. Below we
show that p is greater than or equal to 3|U |+∆−|R|+r+2. By the assumption
and by (7), we have

2n− 14n2/3 − 20−∆ ≥ ||G|| ≥ |N(U)|+ (n− |U | − p− |R|) + r

≥ 2n− 8n2/3 + n1/3 − 21− p− |R|+ r.

Thus

p ≥ 6n2/3 + n1/3 − 1− |R|+ r +∆ ≥ 3|U |+∆− |R|+ r + 2, (9)
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because n is sufficiently large.
We will now partition V (G) into two sets each of which induces an embed-

dable subgraph. First, we assign to as many as possible vertices of U different
minimal components in such a way that if a minimal component Tj is assigned
to a vertex u ∈ U then there is at least one edge (in G) joining Tj and u. Let
l be the maximum number of minimal components assigned to vertices of U in
this way and let M = {M1, ...,Ml} be the set of these minimal components.
If l < |U |, then we assign an arbitrary minimal component to every remaining
vertex of U . Let M′ be the set of minimal components not yet assigned. Now,
we assign 2|U | different minimal components to vertices from U in such a way
that every vertex u ∈ U has two minimal components in M′ such that there is
no edge (in G) between u and these two minimal components. This is possible
because |M′| ≥ ∆ + 2|U |. So, we have constructed l starry trees with middle
vertices in U . Note, that l is the maximum number of starry trees with middle
vertices in U . Without loss of generality we may assume that we have assigned
T1, ..., T3|U |.

Part c). Let G′ := G[U ∪ V (T1) ∪ · · · ∪ V (T3|U |)] and G′′ := G − V (G′).
Below we will show that there exists an embedding of G′ such that every vertex
from U is mapped outside of U .

Suppose first that l = |U |. Then we pack every starry tree in such a way that
the middle vertex is the image of one of its neighbors in the same starry tree (the
required embedding exists by Lemma 10). Let σi be the required embedding of
Mi. We claim that the product σ = σ1 · · ·σ|U | is an embedding of G′ as well.
Since σi is an embedding of Mi, only edges between different starry trees may
spoil the embedding of G′. Furthermore, every middle vertex is mapped on a
non-middle vertex. Since there are no edges between Ti and Tj for i 6= j, the
edges between middle vertices do not spoil the embedding. It remains to check
the edges of the form xy where x is the middle vertex of some starry tree and y

is a non-middle vertex of another starry tree. However, since the middle vertex
of each starry tree is the image of one of its neighbors in the same starry tree
and this neighbor has no other neighbors outside its minimal component, these
edges also do not spoil the embedding.

Suppose now, that l < |U |. Again, we pack every starry tree in such a
way that the middle vertex is the image of one of its neighbors. Moreover,
since M is maximal, each remaining vertex of U has no neighbors in each of
the remaining minimal components (otherwise, we would have an extra starry
tree). Hence, by Theorem 6, each of the remaining vertices from U together with
three non-trivial minimal components (not involved in any starry tree) can be
embedd without fixed points. We claim that the product of these embeddings
is a proper embedding of G′. Suppose for a contradiction that the image of
an edge e in G′ coincides with some other edge e′ in G′. Using the previous
argument, e′ must join a vertex z ∈ U which is not in any starry tree from M
with a non-middle vertex of some starry tree Mj . Moreover, e must join the
middle vertex of Mj with some minimal component which is not in any starry
tree from M. However, now we can exchange the two minimal components that
contain one of the endvertices of the edges e and e′. This way we obtain more
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than l starry trees and we get a contradiction. Hence G′ is embeddable.
Part d). Here we prove that G′′ is embeddable as well. Recall that r ≥ ||R||.

Furthermore, by (9) we have

||G′′|| = ||R ∪ T3|U |+1 ∪ · · · ∪ Tp|| = ||R||+ |T3|U |+1|+ · · ·+ |Tp| − (p− 3|U |)

≤ ||R||+ |T3|U |+1|+ · · ·+ |Tp| − (r − |R|+∆)− 2

≤ |R|+ |T3|U |+1|+ · · ·+ |Tp| − 2 = |R ∪ T3|U |+1 ∪ · · · ∪ Tp| − 2 = |G′′| − 2.

Thus, by Theorem 1, G′′ is embeddable.
Part e). Let σ′, σ′′ denote embeddings of G′ and G′′, respectively. Then

σ = σ′σ′′ is an embedding of G. Suppose for a contradiction that the image of
an edge xy in G coincides with some other edge σ(x)σ(y) in G. Then x, σ(x) ∈
V (G′) and y, σ(y) ∈ V (G′′). By construction of G′ and G′′ we have that x and
σ(x) belong to U . Then we get a contradiction, since the image of every vertex
in U is not in U . The embedding σ contradicts the assumption that G was
non-embeddable, so we deduce no counterexample to Theorem 2 exists. �

5 Concluding remarks

Let D be a digraph with a vertex set V (D) and an arc set A(D). For a vertex x

of V (D), let N+(x) = {y ∈ V (D) : xy ∈ A(D)} and N−(x) = {y ∈ V (D) : yx ∈
A(D)}. Then d+(x) = |N+(x)| is the out degree of x and d−(x) = |N−(x)| is
the in degree of x. The degree of a vertex x, denoted by d(x), is defined by
d(x) = d+(x) + d−(x). If xy and yx belong to A(D), then we say that x and y

are joined by a pair of symmetric arcs.
Similarly as in case of graphs, we say that D is embeddable (in its comple-

ment) if there is a permutation σ of V (D) such that if xy is an an arc of D,
then σ(x)σ(y) is not an arc of D.

If a digraphD has only symmetric arcs, then by Theorem 1, D is embeddable
if ||D|| ≤ 2n− 4. This leads to the following conjecture.

Conjecture 13 ([1]) Let D be a digraph of order n. If D has at most 2n− 4
arcs, then D is embeddable.

Conjecture 13 is asymptotically true, see [7].

Theorem 14 ([7]) Let D be a digraph of order n. If D has at most 2n −
10n2/3 − 7 arcs, then D is packable.

As a corollary of Theorem 2 we obtain that Conjecture 13 is true for digraphs
that have sufficiently many symmetric arcs. Let d∗(x) = |N+(x) ∪N−(x)| and
let ∆∗ = max{d∗(x) : x ∈ V (D)}.

Corollary 15 Let D be a digraph of order n and size m with m ≤ 2n − 4. If

the number of pairs of symmetric arcs of D is at least ∆∗ +14n2/3 +16 then D

is embeddable.
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Proof. Let s denote the number of pairs of symmetric arcs in D. Construct a
graph G(D) by replacing every arc or every pair of symmetric arcs of D by an
edge with the same endvertices. Note that ||G(D)|| = m−s and ∆(G(D)) = ∆∗.
By the assumption on n and on s we have

||G(D)||+∆(G(D)) = m− s+∆∗ ≤ 2n− 4− (14n2/3 + 16 +∆∗) + ∆∗ = 2n− 14n2/3 − 20

Thus, by Theorem 2, G is embeddable. Therefore, D is embeddable as well. �
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