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Abstract

A packing of graphs G1 and G2, both on n vertices, is a set {H1, H2} such that H1
∼= G1,

H2
∼= G2, and H1 and H2 are edge disjoint subgraphs of Kn. In 1978 Sauer and Spencer

[Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295–302] proved
that if |E(G1)| + |E(G2)| <

3

2
n − 1 then there is a packing of G1 and G2. Independently,

Bollobás and Eldridge [Packing of graphs and applications to computational complexity, J.
Combin. Theory Ser. B 25 (1978), 105–124] obtained a stronger result. Namely, they proved
that if |E(G1)| + |E(G2)| ≤ 2n − 4 then there is a packing of G1 and G2, provided that
∆(G1) < n − 1 and ∆(G2) < n − 1. In the paper we prove that for sufficiently large n, if
|E(G1)| + |E(G2)| + max{∆(G1),∆(G2)} < 5

2
n − 2 then there is a packing of G1 and G2.

The bound is tight. Furthermore, we prove that if |E(G1)|+ |E(G2)|+max{∆(G1),∆(G2)} ≤
3n−α(n) where α(n) = o(n), then there is a packing ofG1 andG2, provided that ∆(G1) < n−1
and ∆(G2) < n− 1. The bound is asymptotically tight.

1 Introduction

We deal with finite, simple graphs without loops or multiple edges. The vertex and edge sets of
a graph G are denoted by V (G) and E(G). The order of G is the number of vertices of G and is
denoted by |G|. The size of G is the number of edges of G and is denoted by ||G||. By NG(v) we
denote the set of vertices adjacent to v in G. The degree (in G) of a vertex v is denoted by dG(v)
and is equal to |NG(v)|. A vertex v is called total if dG(v) = |G| − 1. The maximum degree of G
is denoted by ∆(G) and is equal to the maximum among degrees of all vertices of G. For a vertex
set X, the set NG(X) denotes the external neighborhood of X in G, i.e.

NG(X) = {y ∈ V (G) \X : y is adjacent to some x ∈ X}.

A packing of G and G′ is a bijection f : V (G′) → V (G) such that for every u′v′ ∈ E(G′) we
have f(u′)f(v′) 6∈ E(G). If there is a packing of G and G′ then we say that G and G′ pack. The
graph G′

f is defined by V (G′
f ) = V (G) and E(G′

f ) = {f(u′)f(v′) : u′v′ ∈ E(G′)}.
Our starting point are two well known theorems concerning packing of two graphs with

bounded sum of sizes.

Theorem 1 ([9]) Let G and G′ be two graphs of order n. If ||G|| + ||G′|| < 3
2n − 1 then G and

G′ pack.

∗The author was partially supported by the Polish Ministry of Science and Higher Education.
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The bound on the sum of sizes is tight because G = S2n (the star on 2n vertices) and G′ = nK2

(matching) obviously do not pack. However if one forbids total vertices in both graphs, then the
bound on the sum of sizes can be significantly larger. Namely

Theorem 2 ([2]) Let G and G′ be two graphs of order n such that ∆(G) ≤ n−2 and ∆(G′) ≤ n−2.
If ||G||+ ||G′|| ≤ 2n− 4 then G and G′ pack.

Again, the bound is tight because G = Sn − e (the star on n vertices with one edge deleted) and
G′ = Cn (the cycle) do not pack. It is obvious from the examples that a high maximum degree in
one of the two graphs in question is the main reason that they do not pack. This is confirmed also
by the following

Theorem 3 ([9]) Let G and G′ be two graphs of order n. If 2∆(G)∆(G′) < n then G and G′

pack.

In the paper we consider analogues of Theorems 1 and 2 that arise by replacing the sum ||G||+||G′||
by the sum ||G||+ ||G′||+max{∆(G),∆(G′)}. We obtain the following theorems.

Theorem 4 Let G and G′ be two graphs of order n ≥ 1010. If ||G||+ ||G′||+max{∆(G),∆(G′)} <
5
2n− 2, then G and G′ pack.

The bound is tight, which can be seen by taking (again) G = S2n and G′ = nK2.

Theorem 5 Let G and G′ be two graphs of order n such that ∆(G) ≤ n− 2 and ∆(G′) ≤ n− 2.
If ||G||+ ||G′||+max{∆(G),∆(G′)} ≤ 3n− 96n3/4 − 65, then G and G′ pack.

The bound is asymptotically sharp, because the coefficient 3 cannot be increased. This follows from
the example G = Sn − e and G′ = Cn. Furthermore, the bound cannot be essentially improved
even with a stronger restriction on the maximum degree. Indeed, consider the following example
from [12].

Example [12] Let V1, ..., Vt−1 be pairwise disjoint subsets with |Vi| = t for i = 1, ..., t − 2 and
|Vt−1| = n − t(t − 2). Furthermore, let x ∈ Vt−1. Let G be a graph with V (G) = V1 ∪ · · · ∪ Vt−1

such that each Vi, i = 1, ..., t− 2, induces a clique, Vt−1 induce a star with center x and there are
no other edges in G. In [12] it was proved that two copies of G do not pack provided that n is

sufficiently large. Furthermore, ∆(G) = n − t(t − 2) − 1, ||G|| = t(t−1)
2 (t − 2) + n − t(t − 2) − 1.

Hence, if G′ = G then ||G||+ ||G′||+max{∆(G),∆(G′)} = 3n− 3 + t(t− 2)(t− 4).
Therefore, the coefficient 3 in Theorem 5 cannot be increased. Note that for t = 3, the bound

on ||G||+ ||G′||+max{∆(G),∆(G′)} is strongest.
We conjecture that

Conjecture 6 Let G and G′ be two graphs of order n such that ∆(G) ≤ n−2 and ∆(G′) ≤ n−2.
If ||G||+ ||G′||+max{∆(G),∆(G′)} ≤ 3n− 7, then G and G′ pack.

In fact Theorem 4 is a simple consequence of Theorems 1 and 5. Indeed, if ∆(G) = n − 1 or
∆(G′) = n − 1, then the assumption ||G|| + ||G′|| + max{∆(G),∆(G′)} < 5

2n − 2 implies that
||G||+ ||G′|| < 3

2n− 1. Thus G and G′ pack by Theorem 1. On the other hand, if ∆(G) < n− 1,

∆(G′) < n− 1 and n ≥ 1010, then 5
2n− 2 ≤ 3n− 96n3/4 − 65, so G and G′ pack by Theorem 5.

For simplicity in the sequel let α(n) = 96n3/4 + 65.

2 Preliminaries

In many places in the proofs we will use the following observation.

Proposition 7 Let G and G′ be graphs of order n such that ||G||+ ||G′||+max{∆(G),∆(G′)} ≤
3n−α(n). Let F and F ′ arises from G and G′, respectively, by deleting m vertices from G and m
vertices from G′. If the total number of edges covered (in G and G′) by deleted vertices is at least
3m, then ||F ||+ ||F ′||+max{∆(F ),∆(F ′)} ≤ 3n′ − α(n′), where n′ is the order of F and F ′.
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Proof. Note that α(n) is increasing with respect to n. Thus,

||F ||+ ||F ′||+max{∆(F ),∆(F ′)} ≤ 3n− α(n)− 3m = 3(n−m)− α(n) ≤ 3n′ − α(n′).

�

Lemma 8 Let G and G′ be graphs of the same order and k ≥ 1 be any positive integer. If there
is an independent set U = {u1, ..., u2k} ⊂ V (G) and a set U ′ = {u′

1, ..., u
′
2k} ⊂ V (G′) such that

1. dG(ui) ≤ k and dG′(u′
i) ≤ k for i = 1, ..., 2k,

2. NG(ui) ∩NG(uj) = ∅ and NG′(u′
i) ∩NG′(u′

j) = ∅ for i 6= j (i.e. vertices of U and U ′ have
pairwise disjoint neighborhoods in G and G′, respectively),

3. there is a packing of G− U and G′ − U ′,

then there exists a packing of G and G′.

Proof. Let F := G − U , F ′ = G′ − U ′ and let f1 be a packing of F and F ′. Below we show that
we can find a packing f of G and G′ by extending f1.
For any v′ ∈ V (F ′) let us define f(v′) := f1(v

′). Then let us consider a bipartite graph B with
partite sets U and U ′. For i, j ∈ {1, ..., 2k} the vertices v′i ∈ U ′, vj ∈ U are joined by an edge in
B if and only if f1(NG′(v′i)) ∩ NG(vj) = ∅. So, if v′i, vj are joined by an edge in B we can put
f(v′i) = vj .
Since dG′(v′i) ≤ k for i ∈ {1, ..., 2k} and vi have disjoint neighborhoods in G, dB(v

′
i) ≥ 2k− k = k.

Similarly, dB(vj) ≥ 2k − k = k. Let S′ ⊂ U ′. If |S′| ≤ k then obviously |NB(S
′)| ≥ |S′|. Notice

that if |S′| > k, then NB(S
′) = U . Indeed, otherwise let vj ∈ U be a vertex of B which has no

neighbor in S′. Thus dB(vj) ≤ |U ′| − |S′| ≤ 2k − (k + 1) = k − 1, a contradiction. Hence, in any
case |S′| ≤ |N(S′)|. Thus, by Hall’s theorem there is a matching M in B. Therefore we can define
f(v′i) = vj for i, j ∈ {1, ..., 2k} such that v′i, vj are incident with the same edge in M . �

An embedding of G is a permutation σ of its vertices such that for every uv ∈ E(G) we have
σ(u)σ(v) 6∈ E(G). In other words an embedding of G is a packing of two copies of G. If σ(x) 6= x
for every vertex x ∈ V (G), then we say that G is fixed-point-free embeddable. Later we will need
the following

Theorem 9 ([10]) Every graph of order n and size at most n− 2 is fixed-point-free embeddable.

A starry tree is a graph H such that (1) V (H) can be partitioned into four sets V1, V2, V3 and
{x} that each induce a tree, (2) there is at least one edge incident to x, (3) all edges not belonging
to the trees induced by V1, V2 and V3 are incident to x and (4) there are not edges between x and
V2 ∪ V3. A vertex x we call a middle vertex of H. Note that a starry tree is always disconnected.

The following lemma was proved in [12]

Lemma 10 ([12]) Every starry tree admits an embedding such that its middle vertex is the image
of one of its neighbors.

For completeness we repeat the proof from [12].
Proof. Let H be a starry tree and let the tree components induced by V1, V2 and V3 be denoted by
T1, T2 and T3, respectively. The proof is by induction on |V1|+ |V2|+ |V3|. If |V1|+ |V2|+ |V3| = 3,
then the existence of an embedding as required is obvious. Assume that |V1|+ |V2|+ |V3| ≥ 4. We
distinguish two cases:

Case 1. There exists a leaf l in T1 such that the middle vertex x is adjacent to l.
Let u ∈ V (T2), v ∈ V (T3) be vertices such that T2 − u as well as T3 − v either is disconnected
or has at most one vertex. Thus, by Theorem 9 (or trivially in the latter situation), there is an
embedding σ2 of T2 − {u} and there is an embedding σ3 of T3 − {v}.
Suppose first that |T1| = 1 with V (T1) = {l}. Then, the product (l, x, v, u)σ2σ3 is an embedding
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as required of H. Suppose next that |T1| = 2 with V (T1) = {l, l′}. Then, (l, x, u)(l′, v)σ2σ3 is an
embedding as required of H. So we may assume that |T1| ≥ 3. Let l′ be the neighbor of l in T1.
Let y ∈ V (T1) such that T1 − {l, l′, y} either is disconnected or has at most one vertex. Thus, by
Theorem 9 (or trivially in the latter situation), there is an embedding σ1 of T1 − {l, l′, y}. Then
the product (l, x, u, y)(l′, v)σ1σ2σ3 is an embedding as required of H.

Case 2. No leaf of T1 is adjacent to x.
Let L be the set of the leaves of T1, L = {l1, ..., ls}. Note, that |T1| ≥ 3. Suppose first that all
the leaves of T1 have a common neighbor y. Since H is a starry tree (so there is at least one edge
incident to x) and the leaves of T1 are not joined with x, xy is an edge of H. Let H ′ = H − L.
Clearly, H ′ is a starry tree. Thus, by the induction hypothesis there is an embedding as required
σ′ of H ′. Furthermore, since y is the only neighbor of x in H ′, we have σ′(y) = x. In particular
y is not a fixed point of σ′. Thus the product (l1)...(ls)σ

′ (i.e. l1, ..., ls are fixed points) is an
embedding as required of H.

So we may assume that there are l1, l2 ∈ L with neighbors (in T1) y1, y2, respectively, such
that y1 6= y2, y1 6= l2 and y2 6= l1 (recall that |T1| ≥ 3 in this case). Let H ′′ = H−{l1, l2}. Clearly,
H ′′ is a starry tree. Hence, by the induction hypothesis, there is an embedding as required σ ′′ of
H ′′. Then (l1, l2)σ

′′ is an embedding as required of H if σ′′(y1) = y1 or σ′′(y2) = y2. Otherwise,
(l1)(l2)σ

′′ is an embedding as required of H. �

Let H be a graph and let S ⊂ V (H). We call a connected component F of H − S a
minimal component (with respect to S) if F is a tree and every vertex of F has at most one
neighbor in S. Let M1,...,Mp denote all the minimal components of H − S. We define R(S) =
H − S − V (M1) − ... − V (Mp). Furthermore, let r(S) denote the sum of the number of edges of
R(S) and the number of all vertices in R(S) which are joined with S by at least two edges. Clearly,

r(S) ≥ ||R(S)||. (1)

Moreover,

r(S) ≥ |R(S)|. (2)

Indeed, since R(S) does not contain minimal components, every component of R(S) which is a
tree contains a vertex joined with S by at least two edges. On the other hand, every component
of R(S) which is not a tree has at least as many edges as vertices.
Finally,

Lemma 11 If ||H|| − |NH(S)| ≤ |H − S| − c then H − S has at least c+ r(S)− |R(S)| minimal
components.

Proof. Note that r(S) counts all edges in R(S) and some edges between R(S) and S which are
not counted in |NH(S)| because |NH(S)| counts only the neighbors and ignores the number of
connections. Furthermore, there are exactly |H| − |S| − |R(S)| − p edges in

⋃p
i=1 Mi. Hence, by

the assumption on ||H||, we have

|NH(S)|+ |H − S| − c ≥ ||H|| ≥ (|NH(S)|+ r(S)) + (|H| − |S| − p− |R(S)|).

Therefore, p ≥ c+ r(S)− |R(S)|. �

3 Some properties of (eventual) minimum counterexamples

Throughout this section we assume that n is the minimum number for which there exist graphs G
and G′, both of order n with ∆(G) < n−1, ∆(G′) < n−1 and ||G||+ ||G′||+max{∆(G),∆(G′)} ≤
3n − α(n), which do not pack. By Vi, V

′
i we denote the sets of the vertices of degree i in G and

G′, respectively. Furthermore, vi := |Vi| and v′i := |V ′
i |.
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Lemma 12 ∆(G) + ∆(G′) ≥ 13034

Proof. Note that if n ≤ 964 then 3n− α(n) ≤ 2n− 4. Thus G and G′ pack by Theorem 2. Hence,
we may assume that n > 964. Furthermore, if 2∆∆′ < n, then G and G′ pack by Theorem 3.
Thus, ∆∆′ ≥ n/2 ≥ 964/2. Since ∆ + ∆′ is minimum when ∆ = ∆′ (with the assumption that
∆∆′ = const), the claim follows. �

Lemma 13 ∆(G) ≤ n− α(n) + 4 and ∆(G′) ≤ n− α(n) + 4.

Proof. Otherwise ||G||+ ||G′|| ≤ 2n− 4 and so G and G′ pack by Theorem 2. �

Lemma 14 v0 ≤ 1 and v′0 ≤ 1.

Proof. Suppose v0 ≥ 2 and let x, y be isolated vertices of G. Furthermore, let x′ ∈ V (G′) with
dG′(x′) = ∆′. If dG′(x′) ≥ 3 then, by Proposition 7 and by the minimality assumption, there is a
packing g of G− x and G− x′. Clearly, a bijection f1 such that f1(x

′) = x and f1(v
′) = g(v′) for

every v′ ∈ V (G′) \ {x′} is a packing of G and G′.
So we may assume that 1 ≤ ∆′ ≤ 2. Then, by Lemma 12, ∆ > 4. Let z ∈ V (G) with

dG(z) = ∆ > 4. Let {y′, z′} includes the neighbors of x′. By Proposition 7 and by the minimality
assumption, there is a packing h of G − {x, y, z} and G − {x′, y′, z′}. Hence, a bijection f2 such
that f2(x

′) = z, f2(y
′) = y, f2(z

′) = x and f2(v
′) = h(v′) for every v′ ∈ V (G′) \ {x′, y′, z′} is a

packing of G and G′.
Similar arguments hold in case when v′0 ≥ 2. �

Lemma 15 v1 ≤ 61 or v′1 ≤ 61 or |NG(V1)| = 1 or |NG′(V ′
1)| = 1.

Proof. Suppose for a contradiction, that |NG(V1)| ≥ 2, |V1| ≥ 62, |NG′(V ′
1)| ≥ 2 and |V ′

1 | ≥ 62. By
Lemma 12 we may assume that G contains a vertex x with deg x ≥ 6000 or G′ contains a vertex
x′ with deg x′ ≥ 6000. Let x1, x2 ∈ V1 and y1, y2 with y1 6= y2, be the neighbors of x1 and x2

respectively. Furthermore, Let x′
1, x

′
2 ∈ V ′

1 and y′1, y
′
2 with y′1 6= y′2, be the neighbors of x′

1 and
x′
2 respectively. Since, |NG(V1)| ≥ 2 and |V1| > 2, we may also assume that y1 6= x2. Similarly,

y′1 6= x′
2.
Note that the sum of edges covered by y1 and y2 in G, and by y′1 and y′2 in G′, is at most 12.

Indeed, otherwise by the minimality assumption there is a packing g of H := G − {x1, x2, y1, y2}
and H ′ := G′ − {x′

1, x
′
2, y

′
1, y

′
2}. Then a bijection f such that f(x′

1) = y1, f(x
′
2) = y2, f(y

′
1) = x2,

f(y′2) = x1 and f(v) = g(v) for v ∈ V (H ′) is a packing of G and G′.
Therefore, we may assume that dG(y1) + dG(y2) ≤ 10, dG′(y′1) + dG′(y′2) ≤ 10, dG(y1) +

dG′(y′2) ≤ 10 and dG′(y′1) + dG(y2) ≤ 10. In particular x is not a neighbor of any vertex from
V1, or x′ is not a neighbor of any vertex from V ′

1 . Suppose, without loss of generality, that
dG(y1) = max{dG(y1), dG(y2), dG′(y′1), dG′(y′2)}. Since dG(y1) + dG(y2) ≤ 10, y2 has at most
10 − dG(y1) neighbors in V1. Thus, every vertex other than y1 of G has at most 10 − dG(y1)
neighbors in V1. Moreover, since dG(y1) + dG′(y′2) ≤ 10, y′2 has at most 10 − dG(y1) neighbors in
V ′
1 . Analogously, every vertex of G′ has at most 10− dG(y1) neighbors in V ′

1 .
Let W1 ⊂ V1 be the set of all vertices of degree 1 which are at distance equal to 1 or 2 from

y1. Let W ′
1 ⊂ V ′

1 be the set of all vertices of degree 1 which are at distance equal to 1 or 2 from
y′1. Let X1 = V1 \ W1 and X ′

1 = V ′
1 \ W ′

1. Thus, |W1| ≤ (dG(y1) − 1)(10 − dG(y1)) + 1. Hence,
|X1| ≥ |V1| − (dG(y1) − 1)(10 − dG(y1)) − 1. Since every vertex other than y1 of G has at most
10− dG(y1) neighbors in V1, we have

|NG(X1)| ≥
|V1| − (dG(y1)− 1)(10− dG(y1))− 1

10− dG(y1)
.
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Therefore, if |V1| ≥ (dG(y1)− 1) (10− dG(y1))+1+2 (dG(y1)− 1) (10− dG(y1))+1 then |NG(X1)| ≥
dG(y1), so we can find an independent set U ⊂ V1 of 2dG(y1)−1 vertices of degree 1 that have differ-
ent neighbors and are at distance at least 3 from y1. Analogously, if |V

′
1 | ≥ (dG′(y′1)− 1) (10− dG(y1))+

1 + 2 (dG(y1)− 1) (10− dG(y1)) + 1 then |N(X ′
1)| ≥ 2dG(y1) − 1, so we can find an independent

set U ′ ⊂ V ′
1 of 2dG(y1) − 1 vertices of degree 1 that have different neighbors and are at distance

at least 3 from y′1. It is easy to check that the above statement is true if |V1| ≥ 62 and |V ′
1 | ≥ 62

since the largest number of vertices of degree 1 is needed when dG(y1) ∈ {5, 6}.
Let z = x if x 6= y1, or z be an arbitrary vertex from V \ (U ∪ {x1, y1}) otherwise. Similarly,

let z′ = x′ if x′ 6= y′1, or z
′ be an arbitrary vertex from V ′ \ (U ′ ∪ {x′

1, y
′
1}) otherwise. Recall that

{z, z′} 6= {y1, y
′
1}. Consider now graphs F := G−(U∪{z, x1, y1}) and F ′ := G′−(U ′∪{z′, x′

1, y
′
1}).

By the minimality assumption, there is a packing h2 of F and F ′. Furthermore, h3 such that
h3(z

′) = x1, h3(x
′
1) = z and h3(u

′) = h2(u
′) for each u′ ∈ V (G′) \ (U ′ ∪ {y′1}) is a packing of

G − (U ∪ {y1}) and G′ − (U ′ ∪ {y′1}). Then, by Lemma 8, there is a packing of G and G′, a
contradiction. �

4 Proof of Theorem 5

Proof. The proof is by a contradiction. We assume that n is the minimum number such that
there exist G and G′ both of order n with ∆(G) < n − 1, ∆(G′) < n − 1 and ||G|| + ||G′|| +
max{∆(G),∆(G′)} < 3n− α(n), which do not pack.

Let V = V (G), V ′ = V (G′), ∆ = ∆(G) and ∆′ = ∆(G′). For any bijection f : V ′ → V , in
order to refer to the edge sets E(G), E(G′

f ) and E(G) ∩E(G′
f ) more easily, we color the edges in

E(G) red and the edges in E(G′
f ) blue, so that the edges in E(G)∩E(G′

f ) have been colored both
blue and red, making them purple. If a vertex u in V (G) has a neighbor opposite a red (blue) edge,
we call it a red (blue) neighbor of u. Also, for any vertex u, let Ru denote the set of red neighbors
of u and Bu, the set of blue neighbors of u. Note that Ru and Bu need not be disjoint. Given
u, v ∈ V (G), an {u, v}-swap is a new bijection g′ := g ◦ f from V (G′) to V (G) where g(u) = v,
g(v) = u and g(w) = w for all remaining vertices in V (G).

By Lemma 15, without loss of generality we may assume that |NG′(V ′
1)| = 1 or |V ′

1 | ≤ 61.
Let S ⊂ V be a maximal independent set of vertices that have pairwise disjoint neighborhoods
and such that

1 ≤ dG(v) ≤ n1/4 for each v ∈ S.

Furthermore, let S′ ⊂ V ′ be a maximal independent set of vertices that have pairwise disjoint
neighborhoods and such that

2 ≤ dG′(v′) ≤ n1/4 for each v′ ∈ S′.

We will show that there exist a set A that satisfies

A ⊂ V

|A| ≤ |NG(S)| (3)

|NG(A)| ≥ n− 6n3/4 − |NG(S)|.

Indeed, by the maximality of S every vertex v ∈ V \NG(S) with 1 ≤ dG(v) ≤ n1/4 has a neighbor
in NG(S). Let A = NG(S). Since v0 ≤ 1 and there are (by far) less than 6n3/4 vertices of degree
greater than n1/4 in G (as well as in G′), (3) follows.

Similar, but a bit more complicated calculations are made for G′ as well. Namely there is a
set A′ that satisfies

A′ ⊂ V ′

|A′| ≤ |NG′(S′)|+ 1 (4)

|NG′(A′)| ≥ n− 6n3/4 − 61− |NG′(S′)|.
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Indeed, by the maximality of S ′ every vertex v′ ∈ V ′ \ NG′(S′) with 2 ≤ dG′(v′) ≤ n1/4 has a
neighbor in NG′(S′). Let A′ = NG′(S′) if |NG′(V ′

1)| ≥ 2 or A′ = NG′(S′)∪ {y′} if NG′(V ′
1) = {y′}.

Since v′0 ≤ 1 and there are less than 6n3/4 vertices of degree greater than n1/4 in G′, and at most
61 vertices of degree 1 in G′ if |NG′(V ′

1)| ≥ 2, (4) follows.
From now on we no longer use the assumption that |NG′(V ′

1)| = 1 or |V ′
1 | ≤ 61. It was used

only to construct the set A′ and in the sequal we will use only properties (4). It will be important
later. The proof falls into three cases depending on how big the sets S and S ′ are.

Suppose first that |S| ≥ 14n1/2. If |S′| ≥ 2n1/4 then it is possible to choose sets U ⊂ V
and U ′ ⊂ V ′ that satisfy conditions of Proposition 7 and Lemma 8. Indeed, for U and U ′ we may
take any 2bn1/4c-subsets of S and S′, respectively. By the definition of S and S ′, vertices from
U and U ′ cover in common at least 3|U | edges of G and G′. Thus, by Proposition 7 and by the
minimality assumption, G− U and G′ − U ′ pack. Hence, by Lemma 8 the graphs G and G′ pack
which is a contradiction. Thus, |S ′| < 2n1/4 and so |NG′(S′)| < 2n1/2. Therefore, by (4) we have

|A′| < 2n1/2 + 1 (5)

|NG′(A′)| ≥ n− 6n3/4 − 61− 2n1/2 − 1.

We construct a set B′ ⊂ V ′ by adding to A′ all vertices u′ ∈ V ′ \ A′ with dG′(u′) ≥ n1/2. The
number of such vertices is (by far) less than 6n1/2 − 1. Thus,

|B′| < 2n1/2 + 1 + 6n1/2 − 1 = 8n1/2

|NG′(B′)| ≥ n− 6n3/4 − 62− 2n1/2.

Finally, we construct a set C ′ ⊂ V ′ by removing from B′ all vertices u′ with dG′(u′) ≤ 2n1/4.
Hence, we obtain C ′ ⊂ V ′ such that

|C ′| < 8n1/2

|NG′(C ′)| ≥ |NG′(B′)| − 2n1/4|A′| ≥ n− 11n3/4, (6)

dG′(u′) > 2n1/4 if u′ ∈ C ′ and dG′(u′) < n1/2 if u′ 6∈ C ′.

We modify also a set S. Recall that S is independent, |S| ≥ 14n1/2 and vertices from S have
pairwise disjoint neighborhoods in G. Since at most 6n1/2 vertices of G may have degree greater
than or equal to n1/2, at most 6n1/2 vertices from S may have a neighbor of degree greater than
or equal to n1/2. We remove such vertices from S (note that we still have at least 8n1/2 > |C ′|
vertices that remain). Additionally we remove certain number of vertices in order to obtain a set
of cardinality equal to |C ′|. Concluding, we have obtained a set C ⊂ V such that

|C| = |C ′| =: t < 8n1/2

C is independent in G and NG(u) ∩NG(v) = ∅ for u, v ∈ C, u 6= v (7)

dG(u) ≤ n1/4 if u ∈ C and dG(u) < n1/2 if u ∈ NG(C).

Let C = {c1, ..., ct} and C ′ = {c′1, ..., c
′
t}. We distinguish three possibilities

a) ||G|| ≤ n −∆′ − n1/2 − |C ′|. Then G has at least ∆′ + n1/2 + |C ′| components that are
trees. Since v0 ≤ 1 (and |C ′| ≥ 1), we may assume that G has s components T1, ..., Ts that are
non-trivial trees (i.e. trees with at least two vertices) where s ≥ ∆′ + n1/2 and s ≥ |C ′|. Let
L = {l1, ..., ls} be a set of pendant vertices of G such that li ∈ Ti. Let B = {l1, ..., lt} (recall that
t = |C ′| ≤ s) be any t-element subset of L. Every bijection g : V ′ → V satysfying g(C ′) = B and
such that g|V (G′)\C′ is a packing of G−B and G′ −C ′, is called B-admissible. First we show that
every t-element subset B of L has a B-admissible bijection. By the assumption and (6), we have

||G−B||+ ||G′ − C ′|| ≤ 3n− α(n)−max{∆,∆′} − |NG′(C ′)|

< 3n− α(n)− (n− 11n3/4) (8)

< 2n− 16n1/2 − 4 ≤ 2(n− t)− 4,
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because t = |C ′| ≤ 8n1/2. Furthermore, since |G−B| = |G′−C ′| ≥ n−8n1/2, by Lemma 13 neither
G−B nor G′ −C ′ has a total vertex. Hence, by Theorem 2, G−B and G′ −C ′ pack for any such
B. Let fB be a packing of G−B and G′ − C ′. Thus, any extension of fB is B-admissible. Given
B ⊂ L, by gB we denote a B-admissible bijection that has the minimum number of purple edges.
Let B = {b1, ..., bt} be a t-element subset of L for which gB has the minimum number of purple
edges. We will show that gB is a packing of G and G′. Suppose, for the contrary, that gB(c

′)gB(x
′)

is a purple edge. Since gB is a packing of G−B and G′ −C ′, gB(x
′) ∈ B or gB(c

′) ∈ B. We may
assume that gB(c

′) =: b ∈ B. Let x = gB(x
′). Since B is independent in G and xb is a purple

edge, x ∈ NG(B). Thus, x is the only red neighbor of b (clearly, x is also a blue neighbor of b).
We will show that there exists z ∈ L such that Bz ∩ Rb = ∅ and Rz ∩ Bb = ∅. Indeed, recall
that dG′(u′) < n1/2 if u′ 6∈ C ′. In particular x has fewer than n1/2 blue neighbors. Moreover,
|Rb| = 1. Thus there are fewer than n1/2 vertices z ∈ L such that Rb ∩Bz 6= ∅. Furthermore, since
bi have pairwise different red neighbors, there are at most ∆′ vertices z ∈ L such that Bb∩Rz 6= ∅.
Since, |L| ≥ ∆′ + n1/2, we can find a vertex z ∈ L such that Bz ∩ Rb = ∅ and Rz ∩ Bb = ∅. Let
Z = B \ {b} ∪ {z} if z 6∈ B or Z = B, otherwise. Note that an (b, z)-swap is Z-admissible and has
fewer purple edges than gB , which contradicts the choice of B or the definition of gB .

b) n −∆′ − n1/2 − |C ′| < ||G|| ≤ n − n3/4. Then G has at least n3/4 components that are
trees. Thus there is a tree with at most n1/4 vertices. Let T be such a tree. Furthermore by (6),
and by the assumption on ||G||, we have

||G′|| − |NG′(C ′)| ≤ 3n− α(n)−max{∆,∆′} − ||G|| − (n− 11n3/4)

< 2n−max{∆,∆′}+ 11n3/4 − α(n)− n+∆′ + n1/2 + |C ′|

< n+ 11n3/4 − α(n) + 9n1/2 < n− 9n1/2 ≤ |G′ − C ′| − n1/4.

Thus, by Lemma 11 and (2), G′ − C ′ contains at least n1/4 minimal components. Let M ′
1,...,M

′
p′

denote the minimal components of G′−C ′, with p′ ≥ n1/4 > |T |. Let L′ = {l′1, ..., l
′
|T |−1} be leaves

from pairwise different components M ′
i , i = 1, ..., |T |−1. Recall that all vertices in C ′ have degrees

greater than 2n1/4 in G′. Furthermore, by (6) and Lemma 13, we have |C ′| ≥ 2. Since each vertex
from L′ has at most one neighbor in C ′ (by the definition of minimal component), there is c′ ∈ C ′

which is connected with at most |T |−1
2 vertices from L′. Note, that dG′(c′)+||T || > 2n1/4+|T |−1 ≥

3|T |−1. Thus, by Proposition 7 and by the minimality assumption, there is a packing of G−V (T )
and G′ − ({c′} ∪ L′). Let f1 be the packing. Furthermore, since ||G′[{c′} ∪ L′]|| < |T |/2 and
||T || = |T | − 1, by Theorem 1, there is a packing, say f2, of T and G′[{c′} ∪ L′]. It is easily seen
now that g such that g(u′) = f1(u

′) for u ∈ V ′ \ ({c′} ∪ L′) and g(u′) = f2(u
′) for u′ ∈ ({c′} ∪ L′)

is a packing of G and G′.
c) ||G|| > n− n3/4. Then, by (6) and by the assumption on ||G||, we have

||G′|| − |NG′(C ′)| < 3n− α(n)−max{∆,∆′} − ||G|| − (n− 11n3/4)

≤ n− α(n)−max{∆,∆′}+ 12n3/4

≤ n− 8n1/2 − 18n3/4 −max{∆,∆′} ≤ |G′ − C ′| − 18n3/4 −max{∆,∆′}.

Thus, by Lemma 11 and (2), G′ −C ′ contains at least 18n3/4 +max{∆,∆′} minimal components.
Let M ′

1,...,M
′
p′ be the minimal components of G′ − C ′ with

p′ ≥ 18n3/4 +max{∆,∆′}. (9)

Suppose first that at most 18n3/4 minimal components consist of only one vertex. Thus we
have at least max{∆,∆′} minimal components that are of order greater than or equal 2. Hence
each of these components has at least two leaves. We create a set L′ = {l′1, ..., l

′
q′} by choosing

exactly two leaves from every minimal component of order greater than or equal to 2, and by
choosing the one vertex from each minimal component of order 1. Note that

|L′| = q′ ≥ 18n3/4 + 2max{∆,∆′} ≥ 18n3/4 +∆+∆′. (10)
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Let s = |NG(C)|. Given a s-element subset X ′ of L′, a bijection f : V ′ → V is called X ′-admissible
if f(X ′) = NG(C) and for every purple edge xy we have x ∈ NG(C) and y 6∈ C. First we will show
that there exists a set X ′ for which we can find an X ′-admissible bijection. Indeed, recall that by
(7),

s = |NG(C)| =
t∑

i=1

dG(ci) < 8n3/4. (11)

We consecutively assign s different minimal components to vertices from C ′ in such a way that
every vertex c′i obtains dG(ci) minimal components disjoint with c′i. This is possible because,
by (9), p′ > ∆′ + n1/4|C ′| and dG(ci) ≤ n1/4. Without loss of generality we assume that M ′

i ,
i = 1, ..., s, are assigned minimal components and X ′ = {x′

1, ..., x
′
s} with x′

i ∈ M ′
i ∩ L′.

Let F = G − (C ∪ NG(C)) and F ′ = G′ − (C ′ ∪ X ′). We will show that F and F ′ satisfy the
assumptions of Theorem 2. Since |X ′| = |NG(C)|, by (6), (7) and (11) , we have

|F | = |F ′| ≥ n− 8n1/2 − 8n3/4 ≥ n− 9n3/4, (12)

This and Lemma 13 imply in particular that neither F nor F ′ has a total vertex. Furthermore, by
(6),

||F ||+ ||F ′|| ≤ 3n− α(n)− |NG′(C ′)| (13)

≤ 3n− α(n)− (n− 11n3/4) ≤ 2n− 18n3/4 − 4 ≤ 2|F | − 4.

Hence, by Theorem 2, there is a packing h of F and F ′. Let NG(C) = {x1, ..., xs} where the first
dG(c1) elements are in NG(c1), the next dG(c2) are in NG(c2) and so on (by (7), NG(ci) are pairwise
disjoint). We define an X ′-admissible bijection f in the following way: f(c′i) = ci, f(x

′
i) = xi and

f(w′) = h(w′) for w′ ∈ V (F ′). Since C is an independent set of G and there are no edges between
c′i and the minimal components assigned to c′i, this is indeed an X ′-admissible bijection.

Given an s-element subset X ′ of L′ let gX′ (if exists) denote a X ′-admissible bijection which
has minimum number of purple edges. Let X ′ be an s-element subset of L′ for which gX′ exists
and has minimum number of purple edges. We will show that gX′ is a packing of G and G′.
Suppose, for the contrary, that ux is a purple edge. Since gX′ is X ′-admissible, u ∈ NG(C) and
x 6∈ C (or x ∈ NG(C) and u 6∈ C, which is analogous). We will show that there is an z ′ ∈ L′

such that R(z) ∩B(u) = ∅ and B(z) ∩R(u) = ∅ where z = gX′(z′). By (7) there are at most n1/2

red edges incident to u and exactly one of them is incident with C = gX′(C ′). Thus, there are at
most 2(n1/2 − 1) + ∆′ vertices z ∈ gX′(L′) such that Ru ∩Bz 6= ∅. (this is because at most two l′i
may belong to a fixed minimal component of G′ − C ′). Furthermore, there are at most two blue
edges incident to u (recall that u is an image of some l′i which is a pendant vertex in G′ −C ′, and
since l′i belongs to a minimal component of G′ − C ′, it is joined with C ′ by at most one edge).
So, one edge incident to u has the second end in the same blue minimal component as u, and
the second (if exists) is incident with C. Since vertices of C have degrees at most n1/4 there are
at most n1/4 + ∆ vertices z ∈ gX′(L′) such that Bu ∩ Rz 6= ∅. Therefore, since by (10) we have
|L′| > ∆+∆′+2n1/2+n1/4, there is a vertex z ∈ gX′(L′) such that Ru∩Bz = ∅ and Bu∩Rz = ∅.
Let u′, z′ ∈ L′ be such that gX′(u′) = u and gX′(z′) = z. Let Z ′ = X ′ \ {u′} ∪ {z′} if z′ 6∈ X ′

or Z ′ = X ′ otherwise. Note that (u, z)-swap is a Z ′-admissible bijection. Moreover, it has fewer
purple edges than gX′ which is a contradiction with the choice of X ′ or the definition of gX′ . Thus
gX′ is a packing of G and G′.

Suppose now that more than 18n3/4 minimal components consist of only one vertex. Without
loss of generality we assume that |M ′

1| = |M ′
2| = ... = |M ′

q′′ | = 1 where q′′ = d18n3/4e. Assume

that c′t ∈ C ′ has the largest number of neighbors in M′ :=
⋃q′′

i=1 M
′
i . Thus if i ≤ t− 1 then c′i has

at most 9n3/4 neighbors in M′. Again we consecutively assign s different minimal components to
vertices from C ′ in such a way that every vertex c′i obtains dG(ci) minimal components disjoint
with c′i. However this time we require that if i ≤ t− 1 then the minimal components assigned to c′i
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are from M′. This is possible since the number of minimal components assigned to all c′i is equal
to s ≤ 8n3/4 (see (11)), |M′| ≥ 18n3/4, dG(ci) ≤ n1/4 and each c′i with i ≤ t− 1 has at most 9n3/4

neighbors in M′. Moreover, since by (9), p′ ≥ tn1/4 + max{∆,∆′}, we can assign further dG(ct)
arbitrary (but disjoint with c′t) minimal components to c′t. Let X

′ = {x′
1, ..., x

′
s} with x′

i belonging
to corresponding different minimal components assigned to c′i, i = 1, ..., t. Furthermore, let Y be
a set of all vertices of G that are at distance 2 from ct and do not belong to NG(C), i.e.

Y = NG (NG(ct)) \NG(C).

Let Y = {y1, ..., yr}. Note that, by (7), r ≤ n3/4. Finally, let Y ′ = {y′1, ..., y
′
r} such that {y′i} =

M ′
s+i, and NG(C) =: X = {x1, ..., xs}.

This time F := G− (C ∪X ∪ Y ) and F ′ := G′ − (C ′ ∪X ′ ∪ Y ′). Thus, as before

|F | = |F ′| ≥ n− 8n1/2 − 8n3/4 − n3/4 ≥ n− 10n3/4 and

||F ||+ ||F ′|| ≤ 3n− α(n)− |N ′
G(C

′)| ≤ 2|F | − 4.

Moreover, by Lemma 13, neither F nor F ′ has a total vertex. Therefore, F and F ′ satisfy the
assumptions of Theorem 2. Thus, there exist a packing, say h, of F and F ′. Define a bijection
f : V → V ′ in the following way: f(c′i) = ci, f(x′

i) = xi, f(y′i) = yi and f(w′) = h(w′) for
w′ ∈ V (F ′). We claim that f is a packing of G and G′. By the choice of x′

i, there are no purple
edges incident to C. Furthermore, since there are no blue edges contained in (X ∪ Y ) there are
no purple edges contained in (C ∪ X ∪ Y ) neither. Clearly, there are no purple edges contained
in V (F ) as well. Hence, the only purple edges may appear between X ∪ Y and V (F ). However,
the only blue edges between X ∪ Y and V (F ) are incident with NG(ct). Moreover, all red edges
incident to NG(ct) are contained in (NG(ct)∪Y ) ⊂ (X ∪Y ). Thus, there are no purple edges, and
so f is a packing of G and G′. Thus in any case when |S| ≥ 14n1/2 we obtained a packing of G
and G′, a contradiction.

The case when |S′| ≥ 14n1/2 is analogous. Note that A has all the properties of A′, cf. (3)
and (4). Since the assumption that |NG′(V ′

1)| = 1 or |V ′
1 | ≤ 61 was not used after A′ had been

constructed, we may proceed as before and obtain a packing of G and G′, and thus a contradiction.
So we may assume that |S| < 14n1/2 and |S′| < 14n1/2. Thus, |NG(S)| < 14n3/4 and

NG′(S′) < 14n3/4. By (3) and (4) we have A ⊂ V (G) and A′ ⊂ V (G′) with

|A′| = |A| ≤ 14n3/4 + 1 (14)

|NG(A)|+ |NG′(A′)| ≥ 2n− 40n3/4 − 61

(we may assume that |A| = |A′| because otherwise we may increase the smaller set by adding an
adequate number of arbitrary vertices without spoiling the properties of A and A′).

Let f : V ′ → V be a bijection satisfying f(A′) = A. Define G′′
f (in short G′′) to be a graph

with V (G′′
f ) = V (G) and E(G′′

f ) = E(G) ∪ E(G′
f ). Furthermore, let cf = |E(G) ∩ E(G′

f )| be the
number of purple edges in G′′

f . Let ∆
′′ = ∆(G′′

f ) and A′′ = A.
Clearly,

∆′′ ≤ ∆+∆′,

||G′′|| = ||G||+ ||G′|| − cf , (15)

|A′′| = |A| ≤ 14n3/4 + 1,

|NG′′(A′′)| ≥ |NG(A)|+ |NG′(A′)| − cf ≥ 2n− 40n3/4 − 61− cf

Let a ∈ A′′ and x, y ∈ V \ A′′, x 6= y. If x ∈ (Ra \ Ba) and y ∈ (Ba \ Ra) then we call the
path xay a critical red-blue path. Let f : V ′ → V be a bijection satisfying f(A′) = A with the
minimum number of critical blue-red paths. Note that

||G′′|| − |NG′′(A′′)| ≤ ||G||+ ||G′|| − cf − (|NG(A)| − |NG′(A′)| − cf )

≤ 3n− α(n)−max{∆(G),∆(G′)} − (2n− 40n3/4 − 61)

< n− 56n3/4 −max{∆,∆′} ≤ |G′′ −A′′| − 3|A′′| −max{∆,∆′}.

10



Thus, by Lemma 11, G′′ − A′′ contains at least 3|A′′| + max{∆,∆′} + r(A′′) − |R(A′′)| minimal
components. Let M ′′

1 ,...,M
′′
p′′ be minimal components of G′′ −A′′ with

p′′ ≥ 3|A′′|+max{∆,∆′}+ r(A′′)− |R(A′′)|. (16)

Let M′′ =
⋃p′′

i=1 M
′′
i . Observe that there is no critical blue-red path xay such that x, y ∈ V (M′′).

Indeed, otherwise the {x, y}-swap has fewer critical blue-red paths than f , because each vertex
of M′′ has at most one neighbor in A′′ (by the definition of minimal components). This is a
contradiction with the choice of f . Therefore, every a ∈ A′′ has at most max{∆,∆′} neighbors in
M′′.

In the next part of the proof we will show that G′′ is embeddable. This fragment follows
almost exactly the lines of the parts c), d) and e) of the proof of the main result in [12] pp. 16–17.
Note that this is sufficient to prove that G and G′ pack. Indeed, we take a subgraph isomorphic
to G from one copy of G′′ and a subgraph isomorphic to G′ from the other one.

We assign to a vertex u′′ of A′′ a minimal component which is connected with u′′. Let l′′ be
the maximum number of minimal components assigned to vertices of A′′ in this way. If l′′ < |A′′|,
then we assign an arbitrary minimal component to every remaining vertex of A′′. Let N ′′ be the
set of minimal components not yet assigned. Now, we assign 2|A′′| different minimal components
to vertices from A′′ in such a way that every vertex u′′ ∈ A′′ has two minimal components in
N ′′ disjoint with u′′. This is possible because |N ′′| ≥ max{∆,∆′} + 2|A′′| and u′′ has at most
max{∆,∆′} neighbors in the set of minimal components. So, we have constructed l′′ starry trees
with middle vertices in A′′. Note, that l′′ is the maximum number of starry trees with middle
vertices in A′′. Let L′′ be a set of such starry trees with |L′′| = l′′.

Without loss of generality we may assume that we have assigned M ′′
1 , ...,M

′′
3|A′′|. Let G

′′
1 :=

G′′[A′′ ∪ V (M ′′
1 ) ∪ ... ∪ V (M ′′

3|A′′|)] and G′′
2 := G′′ − V (G′′

1). Note that all edges of G′′ between

V (G′′
1) and V (G′′

2) are incident to A′′. Below we will show that there exists an embedding of G′′
1

such that every vertex from A′′ is the image of its neighbor outside of A′′.
Suppose first that l′′ = |A′′|. Then we pack every starry tree J ′′

i in such a way that the middle
vertex is the image of one of its neighbors in the same starry tree (the required embedding exists by
Lemma 10). Let σ′′

i be the required embedding of J ′′
i . We claim that the product σ′′ = σ′′

1 ....σ
′′
|A′′|

is an embedding of G′′
1 as well. Since σ′′

i is an embedding of J ′′
i , only edges between different

starry trees may spoil the embedding of G′′
1 . Furthermore, every middle vertex is mapped on a

non-middle vertex. Since there are no edges between M ′′
i and M ′′

j for i 6= j, the edges between
middle vertices do not spoil the embedding. It remains to check the edges of the form xy where
x is the middle vertex of some starry tree and y is a non-middle vertex of another starry tree.
However, since the middle vertex of each starry tree is the image of one of its neighbors in the
same starry tree and this neighbor has no other neighbors outside its minimal component, these
edges also do not spoil the embedding.

Suppose now, that l′′ < |A′′|. Again, we pack every starry tree in such a way that the middle
vertex is the image of one of its neighbors. Moreover, since L is maximal, each remaining vertex
of A′′ has no neighbors in each of the remaining minimal components (otherwise, we would have
an extra starry tree). Hence, by Theorem 9, each of the remaining vertices from A′′ together with
three non-trivial minimal components (not involved in any starry tree) can be packed without fixed
points. We claim that the product of these embeddings is a proper embedding of G′′

1 . Suppose for
a contradiction that the image of an edge e′′1 in G′′

1 coincides with some other edge e′′2 in G′′
1 . Using

the previous argument, e′′2 must join a vertex z′′ ∈ U ′′ which is not in any starry tree from L′′ with
a non-middle vertex of some starry tree H. Moreover, e′′1 must join the middle vertex of H with
some minimal component which is not in any starry tree from L′′. However, now we can exchange
the two minimal components that contain one of the endvertices of the edges e′′1 and e′′2 . This way
we obtain more than l′′ starry trees and we get a contradiction. Hence G′′

1 is embeddable.
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Now we prove that G′′
2 is embeddable as well. By (1) and (16) we have

||G′′
2 || = ||R(A′′) ∪M ′′

3|A′′|+1 ∪ · · · ∪M ′′
p′′ || = ||R(A′′)||+ |M ′′

3|A′′|+1|+ · · ·+ |M ′′
p′′ | − (p′′ − 3|A′′|)

≤ ||R(A′′)||+ |M ′′
3|A′′|+1|+ · · ·+ |M ′′

p′′ | − (r(A′′)− |R(A′′)|+max{∆,∆′})

≤ |R(A′′)|+ |M ′′
3|A′′|+1|+ · · ·+ |M ′′

p′′ | − 2 = |R(A′′) ∪M ′′
3|A′′|+1 ∪ · · · ∪M ′′

p′′ | − 2 = |G′′
2 | − 2.

Thus, by Theorem 2, G′′ is embeddable.
Let σ′, σ′′ denote embeddings of G′′

1 and G′′
2 , respectively. Then σ = σ′σ′′ is an embedding of

G′′. Suppose for a contradiction that the image of an edge xy in G′′ coincides with some other edge
σ(x)σ(y) in G′′. Then x, σ(x) ∈ V (G′′

1) and y, σ(y) ∈ V (G′′
2). By construction of G′′

1 and G′′
2 we

have that x and σ(x) belong to A′′. Then we get a contradiction, since the image of every vertex
in A′′ is not in A′′. As we mentioned earlier, the embedding of G′′ contradicts the assumption that
G and G′ do not pack. Hence we deduce no counterexample to Theorem 5 exists. �
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[12] A. Żak, On embedding graphs with bounded sum of size and maximum degree, Discrete Math.
329 (2014) 12–18.

12


