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Abstract

We prove that the number of non-similar triangles T which can be

dissected into 2, 3 or 5 similar non-right triangles is equal 0, 1 and 9

respectively. We find all these triangles. Moreover, every triangle can

be dissected into n similar triangles whenever n = 4 or n ≥ 6. In the

last section we allow dissections into right-triangles but we add another

restrictions. We prove that in any perfect, prime and simplicial dissection

into at least three tiles the tiles must have one of only three possible

shapes.
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1 Introduction

Let P and P ′ be polygons in the Euclidean plane. A dissection (tiling) of P into
P ′ is a decomposition of P into finitely many, internally disjoint polygons P ′

1,
..., P ′

n (n ≥ 2) such that all of the P ′
i
are similar to P ′. A dissection is perfect

if the P ′
i
are pairwise incongruent. The perfect decomposition of rectangles and

squares into squares has been extensively studied (see [3] for a detailed account of
the history of this problem). The first example of a dissection of a rectangle into
nine pairwise incongruent squares was given by Z. Moroń [7] in 1925. In 1939
Sprague [10] found the perfect squaring of a square into 55 tiles. Less is known
about dissections of polygons other than the square. Tutte [11] proved that an
equilateral triangle has no perfect dissections into smaller equilateral triangles.
In 1991 Kaiser [5] observed that every non-equilateral triangle has a perfect
dissection into at least 6 or 8 tiles similar to it. His elementary construction
is schown in figure 1. Laczkovich [6] showed that the number of non-similar
triangles 4 such that a non-equilateral triangle T has a dissection into 4, is at
most 6 (he also showed that for the equilateral triangle T there are infinitely
many such 4).
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In this paper we consider the following question: for every n (n ≥ 2) find
those triangles T that can be dissected into n similar non-right triangles. Let
us denote by f(n) the number of such T and by g(n) the number of non-right
triangles that have a dissection into n parts similar to the original. We prove
that

• f(2) = g(2) = 0 (see corollary 1),

• f(3) = 1 and g(3) = 0 (see theorem 1),

• f(n) = g(n) = ∞ whenever n = 4 or n ≥ 6 (see figure 1 if n is even; to
obtain remaining n’s dissect one tile into 4 parts),

• f(5) = 9 and g(5) = 1 (see figures 2-10, theorem 3).

The reason why we allow only non-right tiles is that every right or isosceles tri-
angle can be easily dissected into an arbitrary number of similar right triangles.
Moreover, in every decomposition of T into similar right triangles, T is right or
isosceles (this follows straightforwardly from theorems 4.1 and 5.1 to be found
in the paper of Laczkovich).

We can also conclude that 5 is the least number of tiles in any perfect tiling
of T into 4, whenever 4 is non-right. There are only two triangles, shown in
figures 2 and 8, which can be dissected in this way. Moreover, no non-right
triangle T has a perfect dissection into less than 6 tiles similar to it. In figure
16 we present a perfect decomposition into 6 triangles similar to the original.
We want to point out, that our question is related to the following problem raised
by Paul Erdös [9, Problem 6.7, p. 46]: find those integers n for which there are
triangles T and 4 such that T can be dissected into n triangles congruent to
4.

In the last section we consider some special dissections. We call a dissection
prime if no k tiles, 2 ≤ k ≤ n − 1, form a triangle similar to them. We
prove that in any perfect, prime and simplicial (i.e. the intersection of two
distinct triangles is either empty or a vertex or an edge of both of them)
tiling into at least 3 tiles, the tiles have to be one of three types given in
theorem 5. We add those supplementary restrictions in view to exclude all
trivial dissections. In exchange we can allow decompositions into right triangles.

2 Notation and some preparatory remarks

We sometime mean by the word dissection a graph obtained as a result of a
dissection of a k-gon into n (n ≥ 2) l-gons. Let v and e denote the number of
its vertices and edges, respectively. Let us distinguish two sets among boundary
vertices

V2 - set of vertices of a given k-gon,
Vb - set of vertices lying on the boundary of a given k-gon, but different from
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its vertices.
Let v2 and vb denote the cardinalities of the above sets. Thus, v2 = k.
Similarly let us distinguish two sets among internal vertices

V4 - set of vertices which are internal points of sides of l-gons,
V3 - remaining vertices lying in the interior of a given k-gon.

Let v4 and v3 denote the cardinalities of those sets.
The above notation will be justified in proposition 2. Note that for a sim-

plicial dissection v4 = 0.
Summing the angles of n l-gons we obtain

n(l − 2) · π = (k − 2) · π + vb · π + v3 · 2π + v4 · π.

Thus
vb + 2v3 + v4 = n(l − 2)− k + 2 (1)

and for k = l = 3
vb + 2v3 + v4 = n− 1. (2)

Using Euler’s formula e = n+ v− 1 = n+ v2 + v3 + v4 + vb − 1 and formula (1)
we obtain

e = n(l − 1) + 1− v3 (3)

and for k = l = 3
e = 2n+ 1− v3. (4)

Proposition 1 A dissection of any polygon P into a non-right triangle 4 can-

not contain two angles which form a straight angle.

Proof. This is because the sum of two angles (not necessary different) of a
non-right triangle is always different from π.

Corollary 1 No triangle can be decomposed into two similar non-right trian-

gles.

Let us recall the following definition. The degree of a vertex x, deg x, is the
number of edges incident to it, another words the number of edges with x as an
endpoint.

Proposition 2 Every dissection of a polygon P into a non-right triangle 4
satisfies the following conditions

1. if x ∈ V2 then deg x ≥ 2

2. if x ∈ V3 then deg x ≥ 3

3. if x ∈ V4 or x ∈ Vb then deg x ≥ 4

Proof. Properties 1 and 2 are obvious, and 3 results from proposition 1.
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Proposition 3 If a dissection of a triangle T into a non-right triangle 4 does

not contain internal vertices (v3 + v4 = 0) then vb = 3.

Proof. First note that no vertex x ∈ Vb can be directly connected (by edges)
with two vertices lying on the same side of T (including one of its end vertices).
For in this case one of these two vertices must be directly connected with another
vertex lying on the same side as x (because deg x ≥ 4 if x ∈ Vb). Moreover, this
new vertex must be directly connected with yet another one lying on the same
side of T as the latter etc. This operation has no end. Therefore, every vertex
from the set Vb must be connected by edges with exactly two vertices lying on
different sides of T . That means that vb = 3.

Proposition 4 Suppose that a triangle T has been decomposed into a non-right

triangle. If v3 = 0 and v4 = 1 then vb ≥ 4.

Proof. Since v3 = 0 then, by formula (4), e = 2n + 1. On the other hand, by
proposition 2 and (2)

e =

∑

deg x

2
≥ 4(v4 + vb) + 2v2

2
=

4(n− 1) + 6

2
= 2n+ 1.

Since the number of edges equals 2n+ 1, every vertex has its minimal possible
degree given in proposition 2. Thus, the vertex from V4 can be connected by
edges only with vertices from the set Vb. Since for each x ∈ V4 deg x ≥ 4, vb ≥ 4.

To simplify further discussion let us distinguish the following situation

(**) there is a segment, different from any side of a triangle T , that connects
one of the vertices of T with the side opposite to it.

3 Dissection into 3 and 4 non-right tiles

Theorem 1 Only an equilateral triangle T can be dissected into three non-right

similar triangles - this dissection is unique (figure 11).

Proof. It is obvious that v4 = 0 . Hence, by formula (2), v3 = 1 − vb/2. If
vb = 2 then v3 = 0 but this is a contradiction to proposition 3. Hence, v3 = 1
and vb = 0. Let D ∈ V3. It must be connected with all vertices of T . Since
the sum of any two angles around the vertex D is greater than π, they must be
equal. Thus, all three angles at D are equal, hence are 2

3
π.

If the angles at one of the nodes of the triangle T are equal, then the two tiles
that share this node are congruent. Thus the third tile is isosceles (as well as
the previous ones) with angles 2

3
π and π

6
.

If at every node of T two angles are different then, because their sum is π

3
, T is

equilateral. Thus the three tiles are congruent, hence are isosceles, contradicting
the assumption that the angles are not equal.
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Theorem 2 Every non-right triangle has a dissection into four similar non-

right triangles – this dissection (figure 1) is unique with regard to the isomor-

phism of adequate graphs. Only one right triangle, the one with angles π

2
, π

3
, π

6
,

has such a decomposition (figure 12).

Proof. Obviously v4 ≤ 1, so formula (2) permits the following four cases:

1. v4 = 0, vb = 1, v3 = 1,

2. v4 = 0, vb = 3, v3 = 0,

3. v4 = 1, vb = 0, v3 = 1,

4. v4 = 1, vb = 2, v3 = 0.

In case 1 the vertex from Vb is connected by edges with at least four vertices.
Thus, it must be connected by edges with all nodes of T . Hence, one of these
edges divides T into two triangles. Now we have to divide one of them into three
non-right similar triangles. This is possible only in the way shown in theorem
1 (figure 11). The whole situation is presented in figure 12.

Case 2 is a decomposition from figure 1. The necessity of marking these and no
other edges arises from the proof of proposition 3.

In case 3 the vertex from the set V3 must be connected by segments with all
vertices of T . Now we have three triangles so we have to divide one of them
into two non-right similar triangles but this is not possible.

Case 4 is eliminated by proposition 4.

It is now easy to check that

Corollary 2 There is no perfect tiling of a triangle into less than 5 non-right

tiles.

4 Dissection into 5 non-right tiles

Lemma 1 There are four non-similar triangles T which can be dissected into

non-right triangle 4 in the way that gives the graph isomorphic to the one from

figure 13.

Proof. Let α, β, γ be angles of 4. In the proof we assume that α ≤ γ and β ≤ γ.
Thus, three of the angles around the vertex D must equal γ (the largest) with
γ > π/2. Owing to symmetry we can assume that the fourth is β. Thus
β = 2π − 3γ and α = 2γ − π, hence

{

sinα = −2 sin γ cos γ
sinβ = sin γ(4 sin2 γ − 3)

(5)
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Let us apply the law of sines (four times) to the tiles that form the quadrangle
AEFC. Thus the product of the sines of the angles marked by ”∗” in figure 13
is equal to the product of the sines of the angles marked by ”◦” in this figure.
Since the angles around the middle (vertex D) are β and three times γ, the
remaining ones are γ, three times β and four times α. Thus, we obtain four
possible equations.

1. sin4 α = sin3 β sin γ,

2. sin3 α sinβ = sinα sin2 β sin γ,

3. sin3 α sin γ = sinα sin3 β,

4. sin2 α sin2 β = sin2 α sinβ sin γ.

In case 1 sin γ =
√
a+3

2
(i.e. 4 sin2 γ − 3 = a) where a is the unique real number

that satisfy a3−a2+2a−1 = 0. Moreover, only those vertices of the quadrangle
AEFC whose angle is α+ β can be nodes of the original triangle T (otherwise,
the sum of angles of T exceeds π). Hence, it can be easily checked that the
angles of T are α+ β, α+ β, α (figure 2).

In case 2 sin γ =
√

7

8
. Checking that in this case the angles of T are 2α, α+β, β

(figure 5) or 2α, 2β, α (figure 4) is left to the reader. Note however, that the
angles of T cannot be α+ γ, 2α, α because then γ = 5

9
π which is impossible for

sin γ =
√

7

8
.

In case 3 sin γ =
√
a+3

2
where a is the unique real number that satisfy a3+a−1 =

0. In this case the angles of T are 2α, α+ β, β (figure 3).

Case 4 can be excluded because then β = γ = π

2
and α = 0.

Lemma 2 There are three non-similar triangles T that can be dissected into

non-right triangle 4 in the way that gives the graph isomorphic to the one from

figure 14.

Proof. Let α, β, γ be angles of 4. In the proof we assume that α ≤ γ and
β ≤ γ. Since there exists a vertex x ∈ V3 with deg x = 3, all 3 angles at this
vertex must equal 2

3
π, hence γ = 2

3
π and α + β = π

3
. Note also that only α

and β can be components of the angles of T . Without loss of generality we can
assume that 6 ACF = β. Thus, after every possible distribution of α, β, γ we
obtain that the angles of T are equal to

a) α+ β, α+ β, α+ β or b) α+ β, 2α, 2β
Let us apply the law of sines to the 5 tiles and to T . Thus, in five small triangles

a1
sinF

=
a2

sinC
,

a2
sinE

=
a3

sinA
,

a3
sinD

=
a4

sinF
,

a4
sinB

=
a5

sinE
,

a5
sinC

=
a6

sinD

and in T
a1

sinB
=

a6
sinA

.
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Therefore, in case b), we obtain 3 possibilities

a6 = a1
4 sin3 β

3 sinα
and

a1
sin 2α

=
a6

sin(α+ β)

or

a6 = a1
4 sin3 α

3 sinβ
and

a1
sin(α+ β)

=
a6

sin 2α

or

a6 = a1
4

3
sin2 α and

a1
sin 2β

=
a6

sin 2α
.

Thus,

16 sin3 β cosα = 3
√
3 α+ β =

π

3
or

3 cosα sinβ =
√
3 sin2 α α+ β =

π

3
or

2 sinα sin 2β = 3 cosα α+ β =
π

3
.

In the first two equations left sides are decreasing and right sides are non-
decreasing when α changes from 0 to π/3. Hence, each of these equations has at
most one solution, in fact exactly one. Adequate decompositions are in figures
7 and 8. The third equation does not have any solution for

2 sinα sin 2β <
√
2 <

3

2
< 3 cosα if α ∈

(

0,
π

4

]

and

2 sinα sin 2β <

√
3

2
<

3

2
< 3 cosα if α ∈

(π

4
,
π

3

)

.

In case a) T is equilateral. Althought the shape of tiles does not affect the shape
of T , we can make analogous calculations and obtain that at most one triangle
4 realises this dissection. In fact, excactly one, as was shown in figure 6.

Theorem 3 There are nine non-similar triangles (shown in figures 2-10) that

can be decomposed into 5 similar non-right triangles.

Proof. Obviously v4 ≤ 1. Thus, formula (2) and proposition 3 permit the
following four possibilities:

1. v4 = 1, vb = 3, v3 = 0,

2. v4 = 1, vb = 1, v3 = 1,

3. v4 = 0, vb = 2, v3 = 1,

4. v4 = 0, vb = 0, v3 = 2.
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Case 1 is eliminated by proposition 4.

Case 4 can also be easily excluded. Let x, y ∈ V3. Euler’s formula gives e = 9,
so the dissection contains six ”internal” edges. Thus, deg x = 4 and deg y = 3.
Hence, the three angles at the vertex y are equal 2

3
π. However, it is impossible

now to distribute proper values for four angles that form a full angle around the
vertex x.

If (**) occurs, then the adequate segment divides T into two triangles. Thus,
we have to divide one of them into four similar, non-right triangles. That could
be done in two ways mentioned in theorem 2. However, here only the one from
figure 12 is adequate – otherwise a vertex x ∈ Vb with deg x = 3 occurs. The
triangle from figure 12 can be placed within T in two ways giving two dissections
shown in figures 9 and 10.

If (**) does not occur, then in case 3 we obtain the graph from figure 13, hence,
by lemma 1, we obtain four decompositions (figures 2-5). In case 2 the vertex
from the set Vb must be connected by edges with two vertices – one from V3 and
one from V4. The latter must lie on the segment connecting the vertex from V3

with one of vertices of T . Hence, the graph of this tiling is the one from figure
14. Thus, by lemma 2, we obtain the next three dissections.

5 Some special decompositions

The construction from figure 1 shows that every triangle T has a dissection into
any even, greater than or equal to 4 number of tiles. Thus, by dividing one tile
into 4 pieces we obtain a dissection into any odd, greater than or equal to 7
number of tiles. The dissection from figure 1 is mostly perfect (cf [5]). More-
over, by dividing the smallest tile in a perfect way we obtain again a perfect
dissection.
To eliminate all trivial dissections let us consider only perfect, prime and sim-
plicial decompositions into at least 3 tiles. In exchange we allow right tiles.
Theorem 5 shows that these decompositions are very rare. Figures 2 and 16
present two examples. In particular figure 16 presents a nice perfect, prime and
simplicial dissection into tiles similar to the original. Note also that by sticking
on a new tile to the triangle from figure 2 we obtain a perfect and prime (but not
simplicial) dissection of this triangle into six tiles (see figure 15). By repetition
of this operation we can obtain a perfect and prime dissection of this triangle
into any greater than or equal to 5 number of tiles.

Proposition 5 In every perfect, prime and simplicial dissection of a triangle

T into at least 3 similar triangles deg x ≥ 4 for each vertex x ∈ Vb.

Proof. Suppose that deg x = 3 for some x ∈ Vb. Thus, by proposition 2, the
tiles are right triangles. Since a dissection is simplicial then two tiles have a
common leg. Therefore they are congruent or form a triangle similar to them.
Anyway the dissection cannot be perfect as well as prime.
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Lemma 3 In every perfect, prime and simplicial dissection of a triangle T into

at least 3 similar triangles one of the following statements is true

1. there exists a vertex x ∈ V3 such that deg x ≤ 5,

2. set V3 is empty,

3. for all x ∈ V3 deg x = 6, for all x ∈ Vb deg x = 4 and for all x ∈ V2

deg x = 2.

Proof. By formula (4)

4n+ 2− 2v3 = 2e =
∑

v∈V3

deg v +
∑

v∈Vb

deg v +
∑

v∈V2

deg v ≥

≥
∑

v∈V3

deg v + 4vb + 6.

Applying formula (2) we obtain

∑

v∈V3

deg v ≤ 4n+ 2− 2v3 − 6− 4 · (n− 1− 2v3).

Thus,
v3 · min

v∈V3

deg v ≤ 6 · v3

and the equality holds if and only if for all x ∈ V3 deg x = 6, for all x ∈
Vb deg x = 4 and for all x ∈ V2 deg x = 2.

Theorem 4 In every perfect, prime and simplicial dissection of a triangle T
into at least 3 similar triangles there exists a vertex x ∈ V3 such that deg x = 4
or deg x = 5.

Proof. If for some x ∈ V3 deg x = 3 then, since the dissection is simplicial,
we obtain a triangle dissected into 3 triangles as in figure 11. Hence tiles are
congruent.

If v3=0 then, since deg x ≥ 4 if x ∈ Vb, we can repeat the proof of proposition
3 and obtain that the dissection is the one from figure 1 with n = 4. It is easy
to check that it cannot be perfect.

Therefore, let us consider case 3 from the previous lemma. Assume that α, β, γ
are the angles of each tile. Note that α, β and γ must be pairwise different to
have any chance for a perfect dissection. Thus, the distribution of angles α, β, γ
at every vertex from Vb can be

i) 1-1-1 or ii) 3-0-0
and at every vertex from V3

a) 2-2-2 or b) 3-3-0 or c) 4-1-1 or d) 5-1-0 or e) 6-0-0
(with a suitable permutation of α, β, γ). Since the dissection is simplicial, six
triangles which have a common node in some vertex x ∈ V3 form a hexagon.
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In case b) all six angles marked by ”∗” in figure 18 or all six angles marked by
”◦” are equal, say they are equal γ (γ = π

3
). Indeed, otherwise two adjacent

triangles share an ”α, β-side”, hence are congruent. Moreover, the angles at the
middle are 3 times α and 3 times β. Let us apply the law of sines (six times)
to this hexagon. Thus,

sin6 γ = sin3 α sin3 β hence, sin2 γ = sinα sinβ.

Thus,
3

4
= sinα sin

(

2

3
π − α

)

.

Checking that α = π

3
is left to the reader. Therefore, α = β = γ so a dissection

cannot be perfect, hence case b) can be excluded.

Assume now situation ii) or c) or d) or e). Since the number of angles α at some
vertex x ∈ V3 ∪ Vb is pretty large, there exists another vertex y ∈ V3 ∪ Vb that
compensates the total number of α’s. Thus the number of α’s at y is less than
2 if y ∈ V3 or equal 0 if y ∈ Vb. Indeed, otherwise the global number of α’s is
greater than or equal to

2 +
∑

v∈V3

2 +
∑

v∈Vb

1 = 2 + 2v3 + vb

which, by (2), is equal to n + 1. This, however, is a contradiction because
there are exactly n α’s for there are n tiles and α, β, γ are pairwise different.
Therefore one of the following systems of equations holds





4 1 1
p q r
2 2 2









α/π
β/π
γ/π



 =





2
2
2



 or





5 1 0
p q r
2 2 2









α/π
β/π
γ/π



 =





2
2
2





or





6 0 0
p q r
2 2 2









α/π
β/π
γ/π



 =





2
2
2





where p ≤ 1 and p + q + r = 6. Note that the all above-mentioned cases are
included because cases ii) and e) are equivalent here. Since α = β = γ = π/3
is a solution of each above system (a solution being not allowed for us) then
at least one of those systems must have infinitely many solutions. Thus the
adequate determinant equals 0. Hence also at least one of determinants given
below equals 0 (otherwise the system in question has no solution). In the first
case

det





4 1 2
p q 2
2 2 2



 = 0 ⇐⇒ 2q + p = 6.

Since p ≤ 1, (p, q, r) = (0, 3, 3) but this distribution of angles is not possible for
us. In the second case

det





5 1 2
p q 2
2 2 2



 = 0 ⇐⇒ 3q + p = 8.
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However, there is no pair (p, q) with p ≤ 1 which satisfies this condition. In the
third case

det





6 0 0
p q r
2 2 2



 = 0 ⇐⇒ q = r.

Hence, again (p, q, r) = (0, 3, 3) which is not possible here.

Therefore, a distribution of angles at every vertex x is 2-2-2 if x ∈ V3 and 1-1-1
if x ∈ Vb. Let us consider a part of our dissection shown in figure 17. Without
loss of generality we can assign the angles at the vertex V by α, β, γ as in this
figure. Suppose now that the angle 6 V UX equals α (the assumption that it is
equal to γ leads to the analogous argumentation but then the distribution of
remaining angles is different). Hence, the remaining angles assigned by α, β or γ
are uniquely determined (if 6 UZY does not equal γ, then 4Y UZ is congruent
with 4XUY or with 4AVX). Since the angles around U are α, α, β, β, γ, γ,
the angles marked by ”∗” coincide as well as the angles marked by ”◦”. But
now two angles at the vertex W ∈ Vb are equal, hence, the distribution of angles
at this vertex is not 1-1-1. Therefore, in case 3, in each possible situation we
obtained a contradiction with the assumption that a dissection is perfect.

Theorem 5 In every perfect, prime and simplicial dissection of a triangle T
into at least three triangles similar to 4, the angles of 4 satisfy one of the

following conditions (with a suitable permutation of α, β and γ)

1. sin4 γ = sin3 β sinα, β = 2π − 3α, γ = 2α− π

2. sin5 γ = sin3 β sin2 α, α = 2γ, β = π − 3γ

3. sin5 γ = sin4 β sinα, β = 2π − 4α, γ = 3α− π.

Proof. We know that a dissection in question contains a vertex x ∈ V3 with
deg x = 4 or deg x = 5. If deg x = 4 then, with a suitable permutation of
α, β, γ, 3α+ β = 2π because the angles that form a full angle around x cannot
be other. Moreover, the angles marked by ”∗” (or the angles marked by ”◦”) in
figure 19 are equal, say they are equal to γ (if not, then at least two triangles
are congruent). Thus, α, β, γ satisfy the first condition. It can be easily checked
that it has only one solution (cf figure 2).
If deg x = 5, then the angles around x can be the following (with a suitable
permutation of α, β and γ): a) 3α + β + γ = 2π or b) 3α + 2β = 2π or c)
4α + β = 2π. In case a) α = π/2, hence, three of five angles at the middle of
the pentagon are right. Thus, the dissection contains two right triangles that
share a leg, so it cannot be perfect as well as prime and simplicial. Moreover,
the angles marked by ”∗” (or the angles marked by ”◦”) in figure 20 are equal.
Thus, one of the two remaining conditions of the theorem must occur. It can
be easily checked that each of them has exactly one solution.

11



References

[1] R. L. Brooks, C. A. B. Smith, A. H. Stone, W. T. Tutte, The dissection of
rectangles into squares, Duke Math. Journal 7 (1940) 312-340.

[2] A. J. W. Duijvestijn, Simple perfect squared square of lowest order, J.
Combinatorial Theory B 25 (1978) 260-263.

[3] P. J. Federico, Squaring rectangles and squares - A historical review with
annotated bibliography, Graph Theory and Related Topics (A. J. Bondy
and U. S. R. Murty, Eds.), Academic Press, 1979, 173-196.

[4] R. W. Freese, A. K. Miller, Z. Usiskin, Can every triangle be divided into
n triangles similar to it?, Amer. Math. Monthly 77 (1970) 867-869.

[5] H. Kaiser, Perfekte Dreieckszerlegungen, El. Math. 46 (1991) 106-111.

[6] M. Laczkovich, Tilings of triangles, Discrete Math. 140 (1995) 79-94.
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