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Faculty of Applied Mathematics, AGH University of Science and Technology

al. Mickiewicza 30, 30–059 Kraków, Poland

e-mail: zakandrz@uci.agh.edu.pl

tel./fax 48 12 6173168

April 2, 2008

Abstract

In the paper we present purely combinatorial conditions that allow us to recognize the
topological equivalence (or non-equivalence) of two given dissections. Using a computer pro-
gram based on this result, we are able to generate a set which contains all topologically
non-equivalent dissections of a p0-gon into convex pi-gons, i = 1, ..., n, where n, p0, ..., pn are
integers such that n ≥ 2, pi ≥ 3. By analyzing generated structures, we are able to find all
(up to similarity) dissections of a given type. Since the number of topologically non-equivalent
dissections is huge even if the number of parts is small, it is necessary to find additional combi-
natorial conditions depending on the type of sought dissections, which will allow us to exclude
the majority of generated structures. We present such conditions for some special dissections
of a triangle into triangles. Finally we prove two new results concerning perfect dissections of
a triangle into similar triangles.
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1 Introduction

A dissection of a planar polygon P0 is a finite set of pairwise internally disjoint polygons Pi,
i = 1, ..., n, whose union is P0. Polygon P0 is called a divided polygon and polygons P1, ..., Pn

are called tiles. A P -dissection of P0 is a dissection of a polygon P0 in which all tiles are similar
to a given polygon P . In what follows we consider only dissections into convex polygons. Two
dissections are said to be congruent if one of them can be made to coincide with the other or its
reflection by a rigid motion of the plane. Two dissections are said to be equal if one of them can
be changed in scale so as to be congruent to the other.

The purpose of this paper is to present a computer aided method which will allow us to find
all non-equal dissections with some given properties.

The first step in our method is to find all possible but essentially different ways of dividing
a p0-gon into pi-gons for given integers p0, p1, ..., pn, pi ≥ 3, n ≥ 2 (see Fig. 2 for all possible
ways of dividing a triangle into four triangles). This step is performed with the help of our
computer program. The algorithm is based on Theorem 1 (Section 3) in which we present purely
combinatorial conditions that allow us to determine whether or not two dissections are topologically
equivalent.

The second step is also performed with the help of a computer. Since the number of distinct
dissections is huge even if the number of tiles is relatively small (for example there are 20198
topologically non-equivalent dissections of a triangle into 7 triangles [7, 10]) then it is necessary to
find strong criteria depending on the type of sought dissections, which will allow us to eliminate
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the majority of generated structures. Such criteria are presented in Section 4 in which we consider
dissections of a triangle into similar triangles.

a) b)

c)

Fig. 1. Equal dissections, but only a) and b) are congruent

The last step is made without a computer. At this stage we deal with a small number of
dissections, hence, we can analyze them in detail.

In Section 5 we present two applications of the described method. We prove that there
are exactly two non-right triangles T that have a perfect (i.e. all tiles are pairwise incongruent)
T -dissection into 7 tiles (it is known that there are infinitely many non-right triangles T having
a perfect T -dissection into n, n = 6, 8 or n ≥ 10, tiles (cf. [3]), and that there are no non-right
triangles T having a perfect T -dissection into less than six tiles [13]). We also prove that there are
exactly two non-right triangles 4 such that an equilateral triangle has a perfect 4-dissection into
7 tiles (it is known [14] that 7 is the smallest possible number of tiles in such dissection).

Fig. 2. Different ways of dividing a triangle into 3 triangles.

2 Notation

A graph G is a pair of sets, V (G) and E(G) (in short V and E), where E(G) is a set of 2-elements
subsets of V (G). The elements of the set V (G) are called vertices of G, the elements of the set
E(G) are the edges of G. An edge {x, y} is usually written as xy or yx. A vertex x is incident with
an edge e if x ∈ e. A vertex x is a neighbor of a vertex y in G if xy ∈ E(G). The degree of a vertex
x in G, degG x (in short deg x), is the number of neighbors of x in G. If U is any set of vertices of
G, we write G−U for a graph obtained from G by deleting all the vertices in U and their incident
edges. Two graphs G and G′ are isomorphic if there exists a bijection ι : V (G) → V (G′) with
xy ∈ E(G) ⇔ ι(x)ι(y) ∈ E(G′) for all x, y ∈ V (G). Such a map ι is called an isomorphism. A path
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is a non-empty graph P = (V, E) of the form V = {x0, x1, ..., xk}, E = {x0x1, x1x2, ..., xk−1xk}; if
k ≥ 2 then the graph {V, E ∪ {xkx0}} is called a cycle. A non-empty graph G is called connected
if any two of its vertices are linked by a path in G. G is called k-connected if |V | > k and G − X
is connected for every set X ⊆ V (G) with |X | < k.

The usual way to picture a graph is by drawing a dot for each vertex and joining two of these
dots by a line if the corresponding two vertices form an edge. A graph which is drawn in the plane
in such a way that no two edges meet in a point other than a common end is called plane. An
abstract graph that can be drawn in this way is called planar. For plane graph G, the regions of
a set R

2 \ G are the faces of G. Exactly one face is unbounded and is called the outer face.
In what follows n, p0, ..., pn are positive integers such that n ≥ 2, pi ≥ 3 for i = 0, ..., n. Con-

sider a dissection of a p0-gon P0 into pi-gons Pi. Every dissection appoints a plane graph, called
its dissection-graph. Its vertices are corners of polygons P0, ..., Pn, its edges are segments joining
two vertices and containing no other vertex, its bounded faces are interiors of polygons P1, ..., Pn.
The unbounded face equals R

2 \ P0. The cycles of a dissection-graph G bounding the faces of G
are said to be facial. We distinguish two sets among boundary vertices of a dissection-graph

V2—set of corners of P0,
Vb—set of vertices lying on the boundary of P0, but different from its corners.

Let v2 and vb denote the cardinalities of the above sets. Thus, v2 = p0.
Similarly let us distinguish two sets among internal vertices

V4—set of vertices each of which is an internal point of a side of some tile,
V3—set of vertices (lying in the interior of P0) each of which is a corner of every tile it belongs

to.

Let v4 and v3 denote the cardinalities of those sets.
Recall the following known way of counting vertices of a dissection graph. Note that the sum

of angles of tiles at every vertex from V3 is equal to 2π and the sum of angles of tiles at every
vertex from Vb ∪ V4 is equal to π. Moreover, the sum of angles at the corners of P0 is equal to
(p0 − 2)π. Thus, summing angles of n tiles we obtain

n∑

i=1

(pi − 2) · π = (p0 − 2)π + v3 · 2π + (vb + v4) · π.

Thus

2v3 + v4 + vb =

n∑

i=1

(pi − 2) − p0 + 2. (1)

Using Euler’s formula |E| = n + |V | − 1 = n + v2 + v3 + v4 + vb − 1 and formula (1) we obtain

|E| = 1 − v3 +
n∑

i=1

(pi − 1). (2)

3 Topologically non-equivalent dissections

Recall the following definition. Let G = (V, E) and G′ = (V ′, E′) be plane graphs and let F and F ′

be the faces of G and G′, respectively. Suppose that G and G′ are isomorphic as abstract graphs
and consider any abstract isomorphism ι : V −→ V ′ between G and G′. We call ι a topological
isomorphism if there exists a homeomorphism h from the plane R

2 to itself that induces ι on
V ∪ E (that means h agrees with ι on V , and maps every plane edge xy ∈ G onto the plane
edge ι(x)ι(y) ∈ G′). We call graphs G and G′ topologically equivalent if there exists a topological
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isomorphism between G and G′. Note that different dissections can have topologically equivalent
graphs, see Fig. 2 a) and c). Therefore, let us introduce the following

Definition 1 Let P0 =
⋃n

i=1 Pi and P ′

0 =
⋃n

i=1 P ′

i be two dissections of polygons P0 and P ′

0 into
n polygons denoted by Pi, P ′

i , respectively. We call those two dissections topologically equivalent if

1. their dissection-graphs are topologically equivalent, with h being a corresponding homeomor-
phism of the plane, and

2. for every polygon Pi, i = 0, ..., n, a vertex y is a corner of Pi if and only if h(y) is a corner
of h[Pi].

Clearly, h maps the faces of G onto the faces of G′ and preserves the adjacency of vertices,
edges and faces. Thus, the correspondence Pi 7→ h[Pi] is a bijection between sets of tiles of two
topologically equivalent dissections. Moreover, h[P0] = P ′

0. Hence, the following proposition is
easy to see.

Proposition 1 Let P0 =
⋃n

i=1 Pi and P ′

0 =
⋃n

i=1 P ′

i be two dissections of polygons P0 and P ′

0, and
h a corresponding homeomorphism of the plane. Let G and G′ be their dissection-graphs. Then
the two dissections are equal if and only if they are topologically equivalent and for any two edges
e, f ∈ E(G)

• the lengths of e, f , h[e] and h[f ] satisfy |e|/|h[e]| = |f |/|h[f ]|,

• the angle between e and f is equal to the angle between h[e] and h[f ].

2

Therefore, we can obtain all non-equal dissections by examining topologically non-equivalent
ones. However, Definition 1 is inconvenient and cannot be applied to a computer program. Our
next aim is to find a more convenient (for the use of a computer) combinatorial characterization
of topologically equivalent dissections.

Let G be a graph of a dissection of a p0-gon P0 into polygons. Then G̃ denotes a plane graph
which arises from G by adding a new vertex x on the outer face of G together with p0 arcs which
connect x with every corner of P0. We use the same notation for the planar graph isomorphic to
each plane graph G̃.

Lemma 1 Let G be a dissection-graph and {x1, ..., xk} be a subset of V (G). If x1, ..., xk are
collinear then the planar graph G̃ − {x1, ..., xk} is connected.

Proof. In the proof we use the following definition. Let A be a plane graph and let y be a vertex of
A. We call y a strongly-convex vertex of A if all inner points of all edges of A, which are incident to
y, lie on some open half-space determined by a line containing y. Since tiles are convex polygons,
the only possible strongly-convex vertices in G̃ are corners of P0 and x (x being an additional
vertex of G̃).
Assume that vertices x1, ..., xk separate G̃. Let S be a component of G̃ − {x1, ..., xk} which does
not contain x . Thus, S does not contain any strongly-convex vertex of G̃. Consider a subgraph
H of a graph G̃ induced by vertices x1, ..., xk and all vertices of S, V (S). Note that H contains
all edges of G̃ which are incident to V (S). Hence, vertices x1, ..., xk and V (S) are not collinear
because the degree of each vertex of S in H is greater than or equal to 3. Thus, the convex hull of
the vertices of H is a convex non-degenerate polygon Q. The corners of Q are some vertices of H
(extreme points of H). Note that at most two vertices from x1, ..., xk can be corners of Q. Thus
at least one vertex of S is a corner of Q. Let s be such a vertex. Moreover, since every edge of H
is an edge of G, all the edges of H are line segments. Thus, Q contains a subgraph H . Hence s is
a strongly-convex vertex of H . Since H contains all edges of G̃ which are incident to V (S), then
s is also a strongly-convex vertex of G̃, a contradiction with previous observations. 2
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Corollary 1 Let G be a dissection-graph. Then G̃ is 3-connected.

Proof. Suppose x1 and x2 separate G̃. Clearly, G is 2-connected, hence x1 6= x and x2 6= x, (x
being an additional vertex of G̃). Thus, x1 and x2 are vertices of G. Hence, by Lemma 1 they do
not separate G̃, a contradiction. 2

Theorem 1 Let P0 =
⋃n

i=1 Pi and P ′

0 =
⋃n

i=1 P ′

i be two dissections of polygons P0 and P ′

0 into
n polygons denoted by Pi, P ′

i , respectively. Let respectively G and G′ be their dissection-graphs.
Furthermore, let Xi, X ′

i, i = 0, ..., n, denote the sets of corners of every polygon Pi and of every
polygon P ′

i , respectively. Then, these two dissections are topologically equivalent if and only if

1. G and G′ are isomorphic as abstract graphs, and

2. there exists a graph isomorphism ι : V (G) → V (G′) such that ι[X0] = X ′

0 and {ι[Xi] : i = 1, ...n} =
{X ′

i : i = 1, ..., n}.

2 3
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Fig. 3. Topologically equivalent dissections; ι =
`

123456789

543217689

´
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Proof. Obviously, topologically equivalent dissections satisfy both items of the theorem. We
will show that if two dissections satisfy both condition then they are topologically equivalent. We
show first that their dissection-graphs are topologically equivalent. Let G̃, G̃′ be plane graphs
resulting from G and G′ by adding vertices x and x′ on the outer face of G and G′, respectively,

together with suitable arcs. Furthermore, let ι̃ : V
(

G̃
)

→ V
(

G̃′

)

be a graph isomorphism which

is a natural extension of ι, namely ι̃|V (G) = ι and ι̃(x) = x′. Since G̃ and G̃′ are 3-connected then,
by Whitney’s known theorem [12], they are uniquely embeddable in the sphere. That means that
their facial cycles are uniquely determined and that any graph isomorphism of G̃ and G̃′ which map
the outer cycle of G̃ to the outer cycle of G̃′, can be extended to a homeomorphism of whole plane.
Thus, C is a facial cycle of G̃ if and only if ι̃[C] is a facial cycle of G̃′. Let C = xyv1...vkzx be a
facial cycle of G̃. Then y, z ∈ X0 and v1, ..., vk ∈ V (G)\X0. Moreover, ι̃(x)ι̃(y)ι̃(v1)...ι̃(vk)ι̃(z)ι̃(x)
is a facial cycle of G̃′. Hence, ι̃(y), ι̃(z) ∈ X ′

0 and {ι̃(v1), ..., ι̃(vk)} ∩ X ′

0 = ∅. Therefore, we can
redraw (if necessary) the arcs from x and x′ to the corners of P0 and P ′

0 in such a way that
xyv1...vkzx is the outer cycle of G̃, and ι̃(x)ι̃(y)ι̃(v1)...ι̃(vk)ι̃(z)ι̃(x) is the outer cycle of G̃′. Hence,
there exists a homeomorphism h of the plane which induces ι̃ on G̃. Thus, h induces also ι on G.
Thus, G and G′ are topologically equivalent graphs.
The second item in Definition 1 arises from the fact that h[Pi] ∈ {P ′

1, ..., P
′

n}, i = 1, ..., n, and
h(y) = ι(y) if y ∈ V (G). 2

Therefore, we have obtained a combinatorial characterization of topologically equivalent dis-
sections, which can be applied to a computer algorithm.

Given positive integers n, p0, ..., pn, we generate the set Γ(p0; p1, ..., pn) of all possible triples

(H, Y0, {Y1, ..., Yn}) ,
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where H is a graph and Yi ⊂ V (H), i = 0, ..., n. At that point, we consider two triples
(H, Y0, {Y1, ..., Yn}) and (H ′, Y ′

0 , {Y ′

1 , ..., Y ′

n}) being the same, if they satisfy items 1 and 2 of
Theorem 1 (with G = H , G′ = H ′, Xi = Yi and X ′

i = Y ′

i , i = 0, ..., n). Furthermore, we require
that the triples satisfy the following conditions resulting from their geometrical interpretation.

1. for every i = 0, ..., n, the set Yi = {vi,1, ..., vi,pi
} is a set of pi distinct vertices of the graph

H ,

2. H is planar and 2-connected,

3. • |E(H)| ≤ 1 +
∑n

i=1(pi − 1)

• |E(H)| − |V (H)| = n − 1,

4. the graph H̃ := (V (H) ∪ {x}, E(H) ∪ {(x, v0,1), ..., (x, v0,p0
)}) is planar and 3-connected,

5. for every i ∈ {1, ..., n} vertices vi,1, ..., vi,pi
belong to the same and not containing x facial

cycle of H̃ (facial cycles of H̃ are, uniquely determined because of Whitney’s theorem and
Lemma 1).

6. • every vertex u ∈ V (H) is an element of at most as many sets Yi, i ∈ {0, ..., n}, as is its
degree degH u in H , and at least as many sets Vi as is its degree minus 1, degH u − 1;

• if u ∈ Y0, then u is an element of exactly as many sets Yi, i ∈ {0, ..., n} as is the degree
of u in H .

All above conditions are satisfied by every dissection (of a p0-gon into convex pi-gons, i =
1, ..., n) for which H is isomorphic to its dissection-graph, Y0 corresponds to the set X0, and sets Yi

correspond to the sets Xi. Condition 2 is obvious. Condition 3 follows from the Euler formula and
formula (1). Condition 4 is a consequence of Corollary 1, and conditions 1, 5 and 6 follows from the
geometrical interpretation of sets Yi. Thus, by Theorem 1, it follows that the set Γ(p0; p1, ..., pn)
contains all topologically non-equivalent dissections of a p0-gon into convex pi-gons, i = 1, ..., n. It
should be pointed out, however, that Γ(p0; p1, ..., pn) may contain triples that do not correspond
to any dissection of a p0-gon into pi-gons, i = 1, ..., n. For example, there are 180 topologically
non-equivalent dissections [7, 10] of a triangle into 5 triangles, while the number of triples in a
corresponding set Γ is equal to 181. Conditions 1-6 are not sufficient to guarantee the existence of
a dissection corresponding to a given triple from the set Γ. It would be an interesting problem to
find such conditions even in the case of dissections of a triangle into triangles.

We give some explanation about the application of our algorithm. The generation of all
elements satisfying conditions 1-4 is performed with the help of the program Plantri [6]. Using
Plantri we generate all non-isomorphic 3-connected planar graphs of size less than or equal to
1+

∑n
i=1(pi−1)+p0 and satisfying Euler formula with the number of inner faces equal to n+p0−1.

We next take only those generated graphs that contain at least one vertex of degree equal to p0.
From each of those graphs, we remove, in all possible ways, a vertex of degree p0 (together with
adjacent edges). In this way we obtain all pairs (H, Y0) (Y0 being a set of neighbors of a removed
vertex) satisfying conditions 1-4. Note that at this stage some of these pairs may repeat. We
next find for each pair (H, Y0) the faces of the corresponding graph H̃ . Since H̃ is 3-connected
its facial cycles are uniquely determined. Moreover, the facial cycles of H̃ are exactly its induced
and non-separating cycles (that means such cycles C which do not contain a chord and with the
property that H̃ − V (C) is connected), see [1] p. 89. Let C1, ..., Cn denote those facial cycles of H̃
that do not contain the special vertex x. We consider every permutation σ of the set 1, ..., n and
choose, in all possible ways, pσ(i) vertices from each facial cycle Ci. We keep only those choices
which satisfy condition 6. The equivalence of two triples is verified by examining every bijection
between V (H) and V (H ′).
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4 4-dissections

In this section we present some combinatorial criteria that have to be satisfied in every dissection
of a triangle into similar triangles. In what follows, T denotes a divided triangle and 4 denotes a
triangle which is a common shape of all tiles. The following deep theorem of Laczkovich [5] will
be useful in proving some of our further results.

Theorem 2 ([5]) Suppose that the triangle T can be dissected into finitely many triangles with
angles α, β, γ. If α, β, γ are rational multiples of π, then, with a suitable permutation of α, β, γ,
one of the following statements is true:

1. the angles of T are α, β, γ,

2. γ = π/2 and the angles of T are α, α, 2β,

3. (α, β, γ) equals one of the triples

(
π

6
,
π

6
,
2π

3

)

,

(
π

3
,

π

12
,
7π

12

)

,

(
π

3
,

π

30
,
19π

30

)

,

(
π

3
,
7π

30
,
13π

30

)

,

and T is equilateral,

4. (α, β, γ) = (π/6, π/6, 2π/3) and the angles of T are π/6, π/3, π/2,

5. (α, β, γ) = (π/10, 3π/10, 6π/10) and the angles of T are 3π/10, 3π/10, 4π/10,

6. (α, β, γ) = (π/10, 2π/10, 7π/10) and the angles of T are π/10, π/10, 8π/10,

7. (α, β, γ) equals one of the triples

(
π

8
,
π

4
,
5π

8

)

,

(
π

4
,
π

3
,
5π

12

)

,

(
π

12
,
π

4
,
2π

3

)

,

and T is the isosceles right triangle.

In the case when all the pi, i = 0, ..., n, in formulas (1) and (2), are equal to 3, we have

2v3 + v4 + vb = n − 1, (3)

and
|E(G)| = 2n + 1 − v3. (4)

We will use also the following known proposition which is very simple but is also very efficient.

Proposition 2 ([13]) Every 4-dissection of a polygon P0 into non-right triangles satisfies the
following conditions

1. if x ∈ V2 then deg x ≥ 2,

2. if x ∈ V3 then deg x ≥ 3,

3. if x ∈ V4 or x ∈ Vb then deg x ≥ 4.

Table 1 presents the number of topologically non-equivalent dissections of a triangle into n
triangles [7, 10] for 2 ≤ n ≤ 7, and the number of those dissections which satisfy Proposition 2.
The set of dissections satisfying Proposition 2 was obtained using a computer program described
in the previous section. Independently, the same set of dissections was found by Vicher who used
his own computer program. We have checked that both sets are the same. A complete list of
dissections satisfying Proposition 2 can be found in [11].
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the number of tiles n 2 3 4 5 6 7
the number of dissections 1 4 23 180 1806 20198
the number of dissections
satisfying Proposition 2 0 1 2 7 39 224

Table 1.

a) b) c) d)

e) f) g)

Fig. 4. Dissections into 5 tiles, satisfying Proposition 2.

Proposition 3 Consider a dissection of a triangle T0 into n triangles Ti, i = 1, . . . , n. If the
degree of every vertex x ∈ Vb ∪ V4 is greater than or equal to 4, then

∑

x∈V2

deg x +
∑

x∈V3

deg x ≤ 6 + 6v3 (5)

with equality if and only if for all x ∈ Vb ∪ V4, deg x = 4.

Proof. Using (3) and (4), we obtain

4n + 2 − 2v3 = 2e =
∑

x∈V2

deg x +
∑

x∈V3

deg x +
∑

x∈Vb∪V4

deg x ≥

∑

x∈V2

deg x +
∑

x∈V3

deg x + 4(vb + v4) =
∑

x∈V2

deg x +
∑

x∈V3

deg x + 4n − 4 − 8v3.

Thus,
∑

x∈V2

deg x +
∑

x∈V3

deg x ≤ 6 + 6v3

with equality if and only if for all x ∈ Vb ∪ V4, deg x = 4. 2

In the following theorem we present next, very easy to check, conditions that must be satisfied in
every 4-dissection of T .

Theorem 3 Let 4 be a non-right triangle and assume that in a 4-dissection of a triangle T ,
∑

x∈V2
deg x ≥ 7. Then one of the following statements is true

• for each vertex y ∈ V3 with deg y ≤ 5 the following formula holds

deg y +
∑

x∈V2

deg x = 12, (6)

•
∑

x∈V2
deg x = 7 and T is an isosceles right triangle.
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Proof. Let A, B, C be angles of T and α, β, γ angles of 4. Note that each angle in the dissection
is a linear combination of α, β and γ with non-negative integer coefficients. In particular π =
A + B + C = pα + qβ + rγ, p, q, r ≥ 0. Since deg A +deg B + deg C ≥ 7 then p + q + r ≥ 4. Hence,
at least one of coefficients p, q, r is equal to 0. Without loss of generality we assume that r = 0.

Assume now that not all of the angles α, β, γ are rational multiples of π. Let y ∈ V3 with
deg y ≤ 5. Thus,





1 1 1
p q 0
p′ q′ r′









α/π
β/π
γ/π



 =





1
1
2





where p, q, p′, q′, r′ are non-negative integers such that p + q ≥ 4 and 3 ≤ p′ + q′ + r′ ≤ 5. Because
not all of the angles α, β, γ are rational multiples of π then the determinant

det





1 1 1
p q 0
p′ q′ r′



 = 0.

Moreover, if there is a solution then also

det





1 1 1
1 q 0
2 q′ r′



 = 0.

Thus, {
p(r′ − q′) = q(r′ − p′)
r′ − q′ = q(r′ − 2).

(7)

Note that because deg y ≤ 5 and 4 is non-right, a distribution of α, β, γ around y can be 5-0-0,
4-1-0, 3-2-0, 3-1-0 or 3-0-0 (with a suitable permutation of α, β, γ). In particular, two positive
coefficients among p′, q′, r′ are always different and at least one of p′, q′, r′ is equal to 0. If p′ = 0
then r′ 6= q′. Thus, by (7), r′ 6= 2 and

p =
r′

r′ − 2
and q =

r′ − q′

r′ − 2
.

Thus r′ = 0, r′ = 3 or r′ = 4. It is easy to see that if r′ = 3 then p + q + r + p′ + q′ + r′ = 9, hence
(6) holds. If r′ = 4 then q′ = 1, but now q = 3/2, a contradiction. If r′ = 0 then q′ = 5 or q′ = 3,
hence q is not an integer, a contradiction. In the case when q′ = 0 we argue analogously. Finally,
suppose that p′ 6= 0, q′ 6= 0 and r′ = 0. Then by (7), q′ = 2q and p′ = 2p which is not possible
because then p′ + q′ = 2(p+ q) ≥ 8, a contradiction. Thus we have completed the proof in the case
when not all of the angles α, β, γ are rational multiples of π.

To prove our theorem when α, β, γ are all rational multiples of π we will carefully follow
Laczkovich’s proof of Theorem 2, see [4] pp. 90–92. Let α = aπ/n, β = bπ/n and γ = cπ/n,
where a, b, c, n are positive integers such that a + b + c = n. In [5] Laczkovich proved that
for every integer k prime to 2n, the existance of 4-dissection of T implies the existance of 4′-
dissection of T ′ where the angles of 4′ are either α′ = {ka/n}π, β′ = {kb/n}π, γ′ = {kc/n}π or
α′ = (1 − {ka/n})π, β′ = (1 − {kb/n})π, γ ′ = (1 − {kc/n})π, where {x} denotes the fractional
part of the real number x. He calls the 4′-dissection of T ′ the conjugate tiling belonging to k.
Recall that π = A + B + C = pα + qβ, where p, q are non-negative integers and p + q ≥ 4. If
p = q = 2 then γ = π/2, a contradiction. Thus we may assume that p ≥ 3 and p ≥ q. Laczkovich
next proved that the only possible values of α are π/3, π/4, π/5, π/6, π/10 and 3π/10. Then he
showed that the only possibilities which can arise are

1. α = π/4, p + q = 4 and T is an isosceles right triangle,

2. (α, β, γ) = (π/10, 7π/10, 2π/10), p = 3 and q = 1,

9



3. (α, β, γ) = (3π/10, π/10, 6π/10), p = 3 and q = 1,

4. α = π/6.

Case 1 leads to the second statement of our theorem. In cases 2 and 3 the only non-negative
integers p′, q′, r′ such that p′α + q′β + r′γ = 2π and p′ + q′ + r′ ≤ 5 are p′ = 0 , q′ = 2, r′ = 3.
Hence (6) holds.
Assume that case 4 holds. If, for example, p = 5 and q = 2 then β = π/12. Considering the
conjugate tiling belonging to k = 5 we have either

5

{
5

6

}

+ 2

{
1

12

}

= 1 or 5

(

1 −

{
5

6

})

+ 2

(

1 −

{
1

12

})

= 1

(in the conjugate tiling pα′ + qβ′ = A′ + B′ + C ′ = π, where A′, B′, C ′ denote the angles of T ′).
Since neither of these equalities hold, the case when p = 5 and q = 2 is impossible. Analogously,
using the conjugate tilings belonging to either k = 5 or k = 7, we obtain that (p, q) is equal to one
of the following pairs: (6, 0), (5, 1), (4, 1), (4, 2), (3, 1) or (3, 3). In cases when p + q < 6, 4 is a
right triangle, a contradiction. Hence, p+q = 6. In cases when q > 0, 4 has angles π/6, π/6, 2π/3.
Thus, if there exists a vertex y ∈ V3 with deg y ≤ 5 then necessarily deg y = 3. Hence (6) remains
true. Finally, if p = 6 and q = 0 then by Theorem 2, 4 has angles π/6, π/6, 2π/3 and formula
(6) holds, or 4 is similar to T . Moreover, all angles of T are multiples of π/6. Thus, if 4 is
similar to T then all angles of 4 are multiples of π/6. Since 4 is non-right, the angles of 4 are
π/6, π/6, 2π/3 or π/3, π/3, π/3. Thus again for each vertex y ∈ V3 with deg y ≤ 5 we have that
deg y = 3. 2

Corollary 2 Let 4 be a non-right triangle. Then in every 4-dissection of a triangle T
∑

x∈V2

deg x ≤ 9. (8)

Proof. By Propositions 2 and 3,
∑

x∈V2
deg x = 6 or there exists a vertex y ∈ V3 with 3 ≤ deg y ≤ 5.

Thus, by Theorem 3
∑

x∈V2
deg x ≤ 9. 2

Corollary 3 Let T be a non-right triangle. Then, in every T -dissection of T at least two corners
of T have degree equal to 2.

Proof. Let A, B and C be corners of T and let T =
⋃n

i=1 Ti. Suppose that deg A ≥ 3 and
deg B ≥ 3. Thus, by Proposition 3, the dissection contains a vertex y ∈ V3 with deg y ≤ 5. Hence,
by Theorem 3, deg y = 12 − (deg A + deg B + deg C). Hence deg y + deg B ≤ 7. Let 4A′BC ′ be
a triangle similar to T such that A lies in the middle of the side A′B, C lies in the middle of the
side C ′B. Let D be the middle of the side A′C ′. Let us draw two segments connecting D with A
and B. Thus, we have obtained a T -dissection of a triangle 4A′BC ′ into n + 3 triangles similar
to it. Since deg A′ + deg B + deg C ′ ≥ 7, by Theorem 3, deg y = 12 − (deg A′ + deg B + deg C ′).
However, deg A′ = deg C ′ = 2, hence, deg y + deg B = 8, a contradiction. 2

5 Perfect dissections

In this section we present two applications of our method. A 4-dissection is perfect if all tiles are
pairwise incongruent. Tutte [8] proved that there is no perfect dissection of an equilateral triangle
into smaller equilateral triangles. On the other hand an equilateral triangle can be easily dissected
in a perfect way into any greater than or equal to 3 number of right triangles. Thus, the question
is: are there perfect dissections of an equilateral triangle into non-right triangles? If yes, what
is the minimum number of tiles in such dissection? In [14] it is proved that there is no perfect
dissection of an equilateral triangle into less than 7 similar non-right triangles. On the other hand
an example of such dissection into 7 tiles is given.
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Theorem 4 An equilateral triangle T has a perfect 4-dissection into 7 tiles if and only if 4 is
one (up to similarity) of the following two triangles

1. 41 have angles α1, β1, γ1 satisfying γ1 = 2π/3, α1 + β1 = π/3 and

sin2 β1

(
sin2 α1 + 3/4

) (
sin3 β1 − sin3 α1

)
= (3/4) sin5 α1, (9)

2. 42 have angles α2, β2, γ2 satisfying γ2 = 2π/3, α2 + β2 = π/3 and

(
sin2 β2 + 3/4

)2
sin3 α2 = sin7 β2. (10)

Moreover, there are exactly two non-equal perfect 4-dissections of T into 7 tiles, see Fig. 5 b), c).

Before we prove this theorem, we will prove some Lemmas.

Lemma 2 In every 4-dissection of an equilateral triangle T into non-right triangles, the degrees
of the corners of T are 2, 2, 2 or 3, 3, 3.

Proof. Let A, B and C be the corners of T . Suppose that degrees of the corners of T are neither
2, 2, 2 nor 3, 3, 3. Then, by Corollary 2 one of the corners of T , say A, has the degree equal to
2, and another one, say B, has the degree greater than or equal to 3. Thus, one of the angles of
4, say α, is equal to π/3, and another one, say β, is less than π/3. If deg B = 3 or deg C = 3
then β = π/6, a contradiction with the assumption that 4 is non-right. Hence, deg B = 4 or 5
and deg C = 2. Thus, the angles of 4 are π/9, π/3, 5π/9 or π/12, π/3, 7π/12, a contradiction with
Theorem 2. 2

Lemma 3 In every perfect 4-dissection of an equilateral triangle T into non-right triangles vb ≥ 2
and at least two sides of T are divided by vertices from the set Vb.

Proof. Suppose that two sides of T do not contain any vertex from Vb. Since T is equilateral, these
two sides have the same length. Moreover, each of them is the largest side of some tile. Thus, two
tiles in the dissection are congruent, a contradiction. 2

Lemma 4 ([14]) In every perfect 4-dissection of an equilateral triangle T into non-right triangles
v3 > 0.

For completeness we repeat the proof from [14].
Proof. Let α, β, γ be angles of 4. Suppose v3 = 0. Then, due to Proposition 3, for all x ∈ V2,
deg x = 2 and for all x ∈ Vb ∪ V4, deg x = 4. Thus, one of the angles of 4, say β, is equal to
π/3. If α = π/3 or γ = π/3 then 4 is equilateral, hence, the dissection is not perfect (see [8]).
Assume α 6= π/3 and γ 6= π/3. Since each angle of T is equal to π/3 = β, there exists a vertex
y ∈ Vb ∪ V4 that compensates the total number of angles β in the dissection. Thus, there exists a
vertex y ∈ Vb ∪ V4 such that no angle at it equals β. Hence, pα + qγ = π with p + q = 3. We can
assume that p ≥ q. Thus, 2α + γ = π or 3α = π. However, in both cases 4 is equilateral. Thus,
the dissection is not perfect. 2

Consider an arbitrary dissection of a polygon P into triangles 41, ...,4n. If there exists a
subset i1, ..., ik, 2 ≤ k ≤ n − 1, such that

⋃k

j=1 4ij
is a triangle, then we write that the dissection

contains a k-subdissection. In [13] it was proved that there is no perfect 4-dissection of a triangle
into less than 5 non-right triangles. Therefore,

Lemma 5 Consider a 4-dissection of a triangle T into non-right triangles. If the dissection
contains a 3-subdissection or a 4-subdissection then it is not perfect. 2
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Proof of Theorem 4. Let En be a set of those elements of Γ(3;

n
︷ ︸︸ ︷

3, ..., 3) which satisfy Proposition
2, Theorem 3 and Lemmas 2-5. By applying our computer program we obtained that En = ∅ for
n ≤ 6, and E7 is a set of 3 dissections presented in Fig. 5. Sets En for n ≤ 7 can be obtained
independently from a list of dissections in [11], where elements of E7 have numbers 115, 116 and
119. Let α, β, γ, α ≤ γ and β ≤ γ, be angles of 4. A distribution of α, β, γ in the dissections in
question must satisfy the following rules: i) every tile has exactly one angle α, one angle β and one
angle γ, ii) all three angles around a vertex x ∈ V3 with deg x = 3 equal γ (hence γ = 2π/3), iii) at
every corner of T there is exactly one angle α and one angle β (otherwise α = β and we can replace
one by the other), iv) no two tiles have a common ‘δ, ε-side’, δ, ε ∈ {α, β, γ}, v) at every vertex
x ∈ V4 ∪ Vb with deg x = 4, there is one angle α, one angle β and one angle γ (otherwise α = π/3
or β = π/3 which is not possible because γ = 2π/3). One can check that, up to permutation of
α, β, γ, in each dissection in question there is only one distribution of angles, that satisfy the above
rules, see Fig. 5. However, in Fig. 5 a) the marked lines are equal sides of an isosceles trapezoid.
Thus, the two thick-line tiles are congruent, hence, this dissection is not perfect.

Fig. 5. Illustrating the proof of Theorem 4

α ≈ 32.5◦, β ≈ 27.5◦, γ = 120◦

α ≈ 19.3◦, β ≈ 40.7◦, γ = 120◦

Let us examine the dissection from Fig. 5 c). We can assume that |EF | = 1. Then, by the law of
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sines, |EG| = sin β
sin γ

, |GF | = sin α
sin γ

and |AF | = sin γ
sin β

. Furthermore,

|FD| =
sin α

sin β
|AF | =

sin α sin γ

sin2 β
,

|DH | =
sin γ

sin β
(|GF | + |FD|) =

sin α(sin2 β + sin2 γ)

sin3 β
,

|GH | =
sin α

sin γ
|DH | =

sin2 α(sin2 β + sin2 γ)

sin γ sin3 β
,

|BH | =
sin γ

sin β
|DH | =

sin α sin γ(sin2 β + sin2 γ)

sin4 β
,

|CG| =
sin β

sin α
|EG| =

sin2 β

sin α sin γ
.

Now,
sinα

sinβ
|BH | = |CH | = |CG| − |GH |

which leads to formula (10). On the other hand γ = 2π/3 hence α + β = π/3. Hence, as one
can check, formula (10) has only one solution: α ' 32.5◦, β ' 27.5◦, γ = 120◦. Thus, there
is at most one, and in fact exactly one, perfect 4-dissection of an equilateral triangle which
is topologically equivalent to the dissection from Fig. 5 c). Using similar ideas, one can prove
that there is exactly one such dissection which is topologically equivalent to the dissection from
Fig. 5 b). In the latter case the angles of 4 satisfy formula (9) which has exactly one solution:
α ' 19.3◦, β ' 40.7◦, γ = 120◦. By Proposition 1 these are the only non-equal dissections with
required properties. 2

Fig. 6. Perfect T-dissections into 7 tiles

α ≈ 38.2◦, β ≈ 32.7◦, γ ≈ 109.1◦

α ≈ 36.2◦, β ≈ 23.8◦, γ = 120◦

β γ

α β α

α β γ

α α β

α

β γ

α α β β

α

It is known [13] that the number of tiles in any perfect T -dissection of a non-right triangle T
is greater than or equal to 6. On the other hand, almost every triangle T has a perfect T -dissection
into n parts, n = 6, 8 or n ≥ 10, see [3].

Theorem 5 A non-right triangle T has a perfect T -dissection into 7 tiles if and only if T is one
(up to similarity) of the following two triangles

1. T1 has angles α1, β1, γ1 satisfying

α1 = 2γ1 − π, β1 = 2π − 3γ1 = πand sin4 α1 = sin3 β1 sin γ1, (11)

or
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2. T2 has angles α2, β2, γ2 satisfying

γ2 = 2π/3, α2 + β2 = π/3and sin5 α2 = sin3 β2(sin
2 α2 + 3/4). (12)

Proof. Let α, β, γ with α ≤ γ and β ≤ γ be angles of T . The suitable set Γ of structures
satisfying Proposition 2, Theorem 3, Corollary 3 and Lemma 5 has 8 elements pictured in Figs.
7 and 8. These elements can be found independently in [11], where they have numbers 106, 109,
111, 112, 165, 187, 192 and 220. Since there is no perfect 4-dissection of an equilateral triangle
into five non-right triangles, we can exclude dissections from Fig. 7 a), b), c). Moreover, there are
exactly two non-similar triangles that have a perfect 4-dissection into five non-right triangles, see
[13]. However, only one of them can be dissected in a way which is topologically equivalent to
the 5-subdissection in Fig. 7 d), e). Thus, only one non-right triangle T has T -dissection which
is topologically equivalent to dissection from Fig. 7 d) or e). The angles of this triangle satisfy
condition (11), cf. [13, p.304], α ' 32.7◦, β ' 38.2◦, γ ' 109.1◦ . Note that these are not all
non-equal dissections of this type. Indeed, we can obtain two new dissections by a reflection of the
5-subdissection about its largest height. Moreover, next different dissections arise by an analogous
reflection of an isosceles trapezoid contained in the 5-subdissection.
Note that the rules i), ii), iv) and v) from the proof of Theorem 4 have to be satisfied in dissections
from Figs. 8 a), b), too. Moreover, the rule iii) can be replaced now by the following rule iii’) the
angle of T divided into four angles consists of two angles α and two angles β (because γ = 2π/3 =
2α + 2β). One can check that, up to permutation of α, β, γ, for each dissection in question there
is only one distribution of angles α, β, γ that satisfy the above rules, see Figs. 8 a), b). However,
dissection a) is not perfect because the marked edges are equal sides of an isosceles trapezoid,
hence thick-line triangles are congruent.
In Fig. 8 c) two angles at vertex C are equal. Indeed, otherwise α + β = γ, hence γ = π/2 and
T is a right triangle, a contradiction. Thus we can assume that ∠C = 2α. Note that one of the
remaining angles of T is equal α because otherwise the sum of angles of T equals 2α+β+γ = π+α,
a contradiction. Hence, because of symmetry, we can assume that ∠A = α. In this case the rules
i) and iv) have to be satisfied, too. Thus, around the inner vertex there is one angle β and one
angle γ. Moreover, angles α do not appear around the inner vertex, because otherwise the sum of
two angles of T equals π which is not possible in a non-right triangle. Hence, up to permutation of
α, β, γ their distribution in Fig. 8 c) is uniquely determined. However, the dissection is not perfect
because the marked edges are equal sides of an isosceles trapezoid, hence thick-line triangles are
congruent

120 120120120120 120

α
α

α

α
α

α

α

αα

α

β
β

β

β
β

β

ββ

a) b) c)

e)d)

ββ
γγ

γ
γ

γ
γ

Fig. 7. Illustrating the proof of Theorem 5

Therefore, it remains to examine Fig. 8 b). Without loss of generality we can assume that |FH | = 1.
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Then |EF | = sin β
sin α

, |EH | = sin γ
sin α

and |CH | = sin α
sin β

. Consequently

|CG| =
sin α

sin γ
|CH | =

sin2 α

sin β sin γ
,

|GH | =
sin β

sin γ
|CH | =

sin α

sin γ
,

|CD| =
sin γ

sin β
|CG| =

sin2 α

sin2 β
,

|DG| =
sin α

sin β
|CG| =

sin3 α

sin2 β sin γ.

Therefore, in triangle DEG
|DG|

sin β
=

|GH | + |EH |

sin α
.

Hence α, β, γ satisfy condition (12). One can check that (12) has exactly one solution: α '
23.8◦, β ' 36.2◦, γ = 120◦. 2

β

γα

α

α

α

β β

β

β

β

γ

γ γ
γ

γ

α
α

α α

α

β
β

ββ
β

βγ
γ
γ

γγ αγ

α β α

α

α α

α

β
β

β

γ

γ

γ

α

a) b)

c)

γ

β
γα

A B

C

A D E B

G

C

F

H

Fig. 8. Illustrating the proof of Theorem 5
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