Zadania przygotowawcze do ćwiczeń z matematyki dla I r WIMIR- studia zaoczne.

Zestaw 1. Liczby zespolone.

1. Przedstawić w postaci \(z = a + bi \)
 a) \((2 - 3i)(1 + i)\)
 b) \(\frac{1 - i}{2 + i}\)
 c) \(\frac{(1 - i)^2 - i}{(1 + i)^2 + i}\)
 d) \(z = \frac{(\sqrt{3} + i)(-1 + \sqrt{3}i)}{(1 + i)^2}\)

2. Rozwiązać równanie \(a=, b=?\):
 a) \(\frac{a}{2 - 3i} + \frac{b}{3 + 2i} = 1\)
 b) \(a(2 + 3i) + b(4 - 5i) = 6 - 2i\)

3. Przedstawić w postaci trygonometrycznej (bez tablic i kalkulatorów)
 a) \((\sqrt{3} + i)\) \((\sqrt{3} - i)\)
 b) \(\sqrt{6 - \sqrt{2}} + i(\sqrt{6 - \sqrt{2}})\)
 c) \(\sqrt{2 - \sqrt{3}} + i\sqrt{2 - \sqrt{3}}\)
 Wskazówka. Obliczyć:
 \[\cos 2\phi = \quad \sin 2\phi = \quad \text{dla} \ 0 \leq \phi < 2\pi\]

4. Dla \(z_1 = 2\left(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8}\right) \quad z_2 = \cos \frac{\pi}{5} + i \sin \frac{\pi}{5} \quad z_3 = 3\left(\cos \frac{3\pi}{10} + i \sin \frac{3\pi}{10}\right)\)
 a) \(z_1 \cdot z_2\)
 b) \(\frac{z_2}{z_3}\)
 c) \(\frac{z_1^2}{z_2 z_3}\)

5. Wyznaczyć część rzeczywistą i część urojoną liczby zespolonej:
 a) \(\frac{1 - i}{1 + i\sqrt{3}}\)
 b) \(\left(\frac{-1 + \sqrt{3}i}{2}\right)^3\)
 c) \(\frac{\sqrt{6 + \sqrt{2}} + i(\sqrt{6 - \sqrt{2}})}{\sqrt{3} + i}\)
 d) \(\left(\frac{1 - i\sqrt{3}}{1 + i}\right)^{12}\)

6. Rozwiązać równanie w dziedzinie zespolonej
 a) \(z^2 + 3z + 3 + i = 0\)
 b) \(z^2 + 3z + 3 + i = 0\)
 c) \(z^3 + z^2 + z + 1 = 0\)

7. Obliczyć pierwiastki stopnia \(n \) z liczby \(z \):
 a) \(z = -1\)
 b) \(z = i\)
 c) \(z = 1 - i\) dla \(n=3 \)
d) $z = 2 - \sqrt{2i}$ e) $z = \frac{1+i}{1+\sqrt{3}i}$ dla $n=4$

8. (*) Korzystając ze wzoru dwumianowego Newtona $(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}$ oraz wzoru Moivre’a przedstawić za pomocą $\sin x$ i $\cos x$ (oraz ich potęg) wyrażenia

a) $\sin 4x$ b) $\sin 7x$ c) $\cos 6x$

(*) dla dociekliwych (zainteresowanych)

Zestaw 2 Granice ciągów, granice funkcji, pochodne funkcji.

1. (*) Obliczyć z deficjii granice ciągu:

a) $\lim_{n \to \infty} \frac{1}{\sqrt[3]{n}}$ \hspace{1cm} (g = 0) b) $\lim_{n \to \infty} \frac{1-n}{1+n}$ \hspace{1cm} (g = -1) c) $\lim_{n \to \infty} \frac{5n^3}{(n-3)^3}$ \hspace{1cm} (g = 5)

2. Obliczyć granice ciągu:

a) $\lim_{n \to \infty} \frac{\sin \left(\frac{\pi}{2} n\right)}{n}$ b) $\lim_{n \to \infty} \frac{1+2+3+\ldots+n}{n^2}$ c) $\lim_{n \to \infty} \frac{n}{n + (n^3 + 1)^\frac{1}{3}}$

d) $\lim_{n \to \infty} \left(\sqrt{2n^2} + n - \sqrt{2n^2} + 1\right)$ e) $\lim_{n \to \infty} \frac{\sqrt{n} - 2}{1 - \sqrt{2n}}$ f) $\lim_{n \to \infty} \frac{8n^4 + n + 1}{(n^2 + 1)(2n^2 - 1)}$

g) $\lim_{n \to \infty} \left(1 + \frac{3}{2n}\right)^\frac{n}{3}$ h) $\lim_{n \to \infty} \left(\frac{n-2}{n+5}\right)^{n-2}$

3. Obliczyć granicę ciągu o wyrazie ogólnym

a) $\lim_{n \to \infty} \left(1 - \frac{1}{n^2}\right)^n$ b) $a_n = \frac{1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{n^2}}{1 + \frac{1}{3} + \frac{1}{9} + \ldots + \frac{1}{3^n}}$

c) (*) Wykazać, że

- $\lim_{n \to \infty} \left(n\right)^\frac{1}{n} = 1$ \hspace{1cm} • \hspace{1cm} $\lim_{n \to \infty} \frac{a^n}{n!} = 0$ \hspace{1cm} • • • \hspace{1cm} (***) $\lim_{n \to \infty} \frac{n^n}{n!} = +\infty$

d) Obliczyć $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ dla
• \(a_n = \frac{n^n}{n!} \) (odp. e) \(\bullet \ a_n = \frac{(2n)!}{n^{2n}} \) (odp. \(\left(\frac{2}{e} \right)^2 \))

4. Zbadaj granice ciągu

a) \(a_n = \frac{3}{\sqrt{n} + \sqrt{n} - \sqrt{n} - \sqrt{n}} \)
 \(b_n = n[\ln n - \ln(n + 1)] \)
 c) \(a_n = n^3(\sqrt{n^2 + \sqrt{n^2 + 1}} - \sqrt{2n}) \)

5. Przegląd funkcji elementarnych – zadanie domowe do samodzielnego (!!) przygotowania- powtórzenie wiadomości ze szkoły średniej.

a) sporządzić wykresy funkcji
 \(\bullet \ y = |x| \)
 \(\bullet \ y = |x| + 2 \)
 \(\bullet \ y = |x - 2| \)
 \(\bullet \ y = 3 - |x + 1| \)

b) \(y = 2(x - 1)(x + 2)(x - 2) \) , (przynajmniej przebieg w przybliżeniu)

c) \(\bullet \ y = \frac{1}{3}x \)
 \(\bullet \ y = e^x \), \(y = e^{-x} \)
 \(\bullet \ y = 3^{2-x} \)

d) \(y = \sin\left(x + \frac{\pi}{4} \right) + 2 \)
 \(\bullet \ y = \sin(-2x) \)
 \(\bullet \ y = \cos\left(x + \frac{\pi}{3} \right) \)
 \(y = e^{-x} \)
 \(\bullet \ y = \tan x \)

\(\bullet \ y = \cot x \)
\(\bullet \ y = \arcsin x \)
\(\bullet \ y = \arccos x \)
\(\bullet \ y = \arctan x \)

\(\bullet \ y = \sin^2 x \)

f) Wyznaczyć okres następujących funkcji

\(\bullet \ y = \sin 3x \)
\(\bullet \ y = \sin \frac{x}{3} \)
\(\bullet \ y = \tan(\pi x) \)
\(\bullet \ y = \tan \frac{x}{4} \)
\(\bullet \ y = \sin^2 x \)
\(\bullet \ y = \sin x + \cos 2x \)

6. Obliczyć granice funkcji

\(a) \lim_{x \to 5} \frac{2x^2 - 11x + 5}{3x^2 - 14x - 5} \)
\(b) \lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos^3 x} \)
\(c) \lim_{x \to 0} \frac{1 - \sqrt{x+1}}{x} \)

\(d) \lim_{x \to 4} \frac{2 - \sqrt{x}}{3 - \sqrt{2x + 1}} \)
\(e) \lim_{x \to 1} \frac{1 - x^3}{1 - x} \)
\(f) \lim_{x \to -a} \frac{a^2 - x^2}{a^2 + x^3} \)

\(g) \lim_{x \to 0} \frac{x}{2 - \sqrt{x + 4}} \)
\(h) \lim_{x \to 0} \frac{x^2}{1 - \cos x} \)
\(\text{wskazówka (1 - \cos x = 2 \sin^2 \frac{x}{2})} \)

\(i) \lim_{x \to a} \frac{\cos x - \cos a}{x - a} \)
\(j) \lim_{\varphi \to \frac{\pi}{4}} \frac{\cos 2\varphi}{\sin \varphi - \cos \varphi} \)
\(k) \lim_{x \to \infty} \left(\frac{2x - 5}{2x + 1} \right)^{x-1} \)

\(l) \lim_{x \to \infty} \frac{\sqrt{1 + x^2}}{x} \)
\(m) \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} \)
\(n) \lim_{x \to \infty} \frac{x + \sqrt{x^2 - 1}}{x} \)

7. Zbadaj granice

\(a) \lim_{x \to 0} e^{\frac{1}{x}} \)
\(b) \lim_{x \to 1} 2^{\frac{1}{x}} \)
8. Wykaż, że równanie ma w danym przedziale rozwiązanie
 a) \(\sin x - e^{-x} = 0 \quad x \in \left[0, \frac{\pi}{2}\right] \)
 b) \(x^7 - 3x^3 + 2x^2 + 1 = 0 \quad x \in [-1, 0] \)

9. Określić dziedzinę funkcji \(f: \mathbb{R} \rightarrow \mathbb{R} \), obliczyć pochodną i określić jej dziedzinę.
 a) \(y = \frac{x^3}{(x-1)^2} \)
 b) \(y = x^3 e^{-x^2} \)
 c) \(y = \frac{x}{\sqrt{1 + x^2}} \)
 d) \(y = \ln(x^2 + x + 1) \)
 e) \(y = \frac{1}{\sqrt{\sin x}} \)
 f) \(y = \sqrt{x \arctg x} \)
 g) \(y = \sin^2 2x \)
 h) \(y = \arctg \frac{1}{\sqrt{x}} \)

10. Obliczyć pochodną funkcji
 a) \(y = x^x \)
 b) \(y = x^{\ln x} \)
 c) \(y = x^{x-x^2} \)
 d) \(y = a^x \) dla \(a > 0 \)
 e) \(y = \left(1 + \frac{1}{x}\right)^x \)

11. Obliczyć granice funkcji
 a) \(\lim_{x \to 1} \frac{x^3 + 1}{\arcsin(x + 1 + x)} \)
 b) \(\lim_{x \to 1}(1-x)\tan\frac{\pi x}{2} \)
 c) \(\lim_{x \to 0^+} x^x \)
 d) \(\lim_{x \to \frac{\pi}{2}} (\sin x)^{\cos x} \)
 e) \(\lim_{x \to 0} \sqrt{1 + \sin x} \)

12. Napisz równanie stycznej i normalnej do krzywej w punkcie \(x_0 \)
 a) \(y = \sin x \quad x_0 = \pi \)
 b) \(y = e^{\sin x} \quad x_0 = \frac{\pi}{4} \)
 c) \(y^2 - 2x^2 = 1 \quad x_0 = 2 \)

13. Zbadaj funkcje i sporządzic ich wykresy:
 a) \(y = \frac{1-x^3}{x^2} \)
 b) \(y = xe^{-x^2} \)
 c) \(y = \frac{x^3}{2(1-x^2)} \)
 d) \(y = x^2 e^{-x} \)

14. Wyznacz asymptoty krzywych:
 a) \(y = x + \frac{\sin x}{x} \)
 b) \(y = xe^{-x} \)
 c) \(y = \frac{x^3}{x^4 - 1} \)
 d) \(y = x \ln\left(e + \frac{1}{x}\right) \)
 e) \(y = \frac{\sqrt{1+4x^2}}{x} \)
 f) \(y = x + \sqrt{x^2 - 1} \)

15. Zbadaj wypukłość i punkty przegięcia dla \(f(x) = -x \ln x \)

16. Na podstawie twierdzenia Taylora i Maclaurina obliczyć z dokładnością do 0,01
 a) \(\sin 180^\circ \) b) \(\sqrt{e} \) c) \(\frac{1}{2} e \) d) \(\cos 10^\circ \) e) \(\sqrt{84} \) z dokładnością do 0,001 f) \(\ln \frac{6}{5} \) z dokładnością do 0,0001

17. Napisz 5 pierwszych wyrazów rozwinięcia (szeregu) Maclaurina dla
 a) \(y = \sin^2 x \) b) \(y = \sin 3x \) c) \(y = \sqrt{1 + x} \)

Powodzenia J. Zalewski