
Clone Structures in Voters’ Preferences
Edith Elkind1, Piotr Faliszewski2, and Arkadii Slinko3

1 School of Physical and Math. Sciences, Nanyang Tech. Univ., Singapore
2 AGH University of Science and Technology, Poland
3 Department of Mathematics, University of Auckland, New Zealand

Abstract
In elections, a set of candidates ranked consecutively (though possibly in different order) by all
voters is called a clone set, and its members are called clones. A clone structure is a family of all
clone sets of a given election. In this paper we study properties of clone structures. In particular,
we give an axiomatic characterization of clone structures, show their hierarchical structure, and
analyze clone structures in single-peaked and single-crossing elections. We give a polynomial-
time algorithm that finds a minimal collection of clones that need to be collapsed for an election
to become single-peaked, and we show that this problem is NP-hard for single-crossing elections.

1998 ACM Subject Classification Algorithms and data structures

1 Introduction

Group decision making plays an important role in the proper functioning of human societies
and multiagent systems. Collective decisions are often made by aggregating the preferences
of individual agents by means of voting: each agent ranks the available alternatives, and a
voting rule is used to select one or more winners (see [1] for a general overview of voting,
and [12] for a more algorithmic perspective). In general, the structure of the set of alterna-
tives may be quite complex. For instance, Ephrati and Rosenschein [10] explore the situation
where multiple agents try to coordinate their actions in order to devise a global plan. There
the space of alternatives, i.e., of possible plans, may be huge, with some alternatives being
very similar to each other. In such a case it may be reasonable to establish which plans
differ fundamentally, and which are viewed as minor variations of each other.

Such structured decision-making environments have been studied in the social choice
literature: for instance, Laffond et al. [16] describe the situation when a group of agents has
to choose from a set that is partitioned into several “projects,” where each project is defined
as a set of possible variants. In this setting, all agents are likely to rank the variants of each
projects contiguously. This model was further investigated by Laslier [17, 18]. Tideman [24]
suggests a different explanation of why several alternatives in an election may be very similar
to each other: a malicious party may try to “duplicate” an existing candidate in order to
change the voting outcome. This procedure is known as cloning and the alternatives that
appear together in all preference orders (though not necessarily in the same order) are called
clones. Elkind et al. [9] study algorithms for cloning and show that optimal cloning is easy
for many voting rules.

Both when clones arise naturally and when they are created by a manipulator, it may
be useful to understand the internal structure of the resulting clone sets. Indeed, such an
understanding could be instrumental in uncovering hidden properties of voters’ preferences
such as, for example, a hierarchical structure of the alternative set, or the fact that after
collapsing a small number of clones the election becomes single-peaked or single-crossing
(informally, both single-peaked [4] and single-crossing [19] elections model societies focused
on a single issue, such as, e.g., taxation level). In either case we could run the election in a

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Clone Structures in Voters’ Preferences

better way by using a more suitable voting rule: in the former case we can use hierarchic
voting, and in the latter case we can use the median voter rule—which is known to be
strategy-proof for single-peaked (single-crossing) profiles—to select a group of clones, and
then pick the final winner among them. Such an approach is likely to produce a better
voting outcome as well as reduce the voters’ incentives for manipulation.

Our goal in this paper is to provide a formal understanding of what families of clone
sets—which we call clone structures—can arise in elections (we give an axiomatic charac-
terization), to provide convenient means of representing them (we show that PQ-trees of
Booth and Lueker [5] very conveniently describe clone structures), and to find a polynomial-
time algorithms that restores single-peakedness/single-crossingness in elections by collaps-
ing a minimal number of clones (we succeed for the case of single-peakedness and prove
NP-hardness for the case of single-crossing). We believe that our results are useful for un-
derstanding the impact of clones in decision-making scenarios, and will help in developing
algorithms for settings where some of the candidates may be very similar to each other. Due
to space limit, almost all proofs, as well as some discussions, are relegated to the appendix.

2 Preliminaries

Given a finite set C of candidates (or alternatives), a preference order (or ranking) over C is a
total order over C, i.e., a complete, transitive and antisymmetric relation on C. Intuitively,
a preference order is a ranking of the candidates from the most desirable one to the least
desirable one. By ←−� we denote an order obtained by reversing order �, that is, j←−� i if and
only if i � j. For two disjoint sets X,Y ⊆ C and an order �, we write X � Y if x � y for
all x ∈ X and all y ∈ Y . Given two sets X,Y ⊆ C, we say that X is a proper subset of Y if
X ⊆ Y and 1 < |X| < |Y |. We say that X and Y intersect non-trivially and write X ./ Y

if X ∩ Y 6= ∅, X \ Y 6= ∅ and Y \X 6= ∅.
A preference profile R = (R1, . . . , Rn) on C is a collection of n preference orders over C,

where each order Ri, 1 ≤ i ≤ n, represents the preferences of the i-th voter; for readability,
we sometimes write �i in place of Ri. An election over C is a pair E = (C,R), where R is
a preference profile over C. A voting rule is a mapping F that, given an election E over C,
outputs a set F(E) ⊆ C; the elements of F(E) are called the election winners. Many voting
rules are used in practice and studied theoretically; see [1]. However, since we focus on the
nature of preference profiles, our results do not depend on the choice of a voting rule.

I Example 2.1. R = (R1, R2, R3) with R1 : a �1 b �1 c �1 d, R2 : b �2 d �2 c �2 a,
R3 : a �3 b �3 d �3 c is a preference profile over C = {a, b, c, d}.

The following definition, inspired by [24], is fundamental for our work.

I Definition 2.2. Let R = (R1, . . . , Rn) be a preference profile over a candidate set C.
We say that a non-empty subset X ⊆ C is a clone set for R if for every c, c′ ∈ X, every
a ∈ C \X, and every i = 1, 2, . . . , n it holds that c �i a if and only if c′ �i a.

Unlike Tideman [24], we define singletons to be clone sets; in the election from Example 2.1
each of {a}, {b}, {c}, {d}, {d, c}, {b, c, d}, and {a, b, c, d} is a clone set.

3 Axiomatic Characterization of Clone Structures

Our first goal is to understand which set families can be obtained as clone structures. That
is, given a collection C of subsets of a candidate set C, we want to determine if there exists

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 3

a preference profile R over C such that each clone in R appears in our collection and vice
versa; we will say that such R implements C. The main technical results of this section
are (a) an axiomatic characterization of implementable collections of subsets, and (b) a
polynomial-time algorithm for recognizing such families.

In this section, we will consider elections over the set [m] = {1, . . . ,m}. We will write
[j, k] to denote {j, j + 1, . . . , k} for j, k ∈ [m].

I Definition 3.1. Given a profile R = (R1, . . . , Rn) over [m], let C(R) ⊆ 2[m] be the
collection of all clone sets for R. We say that a family C ⊆ 2[m] is a clone structure on [m]
if it is equal to C(R) for some profile R on [m].

We remark that clone structures are very close in spirit to clans in 2-structures [8],
and many results in this section resemble those for clans; the characterization given in this
section and high-level proof approach are close in spirit to those of Möhring [20]. We will,
however, present a direct argument rather than translate these prior results, both because
we need intermediate results for the analysis of single-peaked elections and because such a
translation is non-trivial and would obscure useful intuition.

I Example 3.2. Let R consist of a single linear order R : 1 � 2 � · · · � m. Then C(R) =
{[i, j] | i ≤ j} (see Figure 1(a)). LetR′ be a cyclic profile on [m], i.e.,R′ = (R1, . . . , Rm), and
the preferences of the i-th voter are given by Ri : i �i i+ 1 �i · · · �i m �i 1 �i · · · �i i− 1.
Then C(R′) = {[m]} ∪ {{i} | i ∈ [m]} (see Figure 1(b)).

31 42

(a) A string of sausages.

31 42

(b) A fat sausage.

Figure 1 Diagrams rep-
resenting clone structures
from Example 3.2 for m = 4.

We call the first clone structure from Example 3.2 a string of
sausages and the second one a fat sausage. Note that any clone
structure over [m] consists of at most m(m+1)

2 sets, since each
clone set can be described by its location (i.e., beginning and
end) in the preference ordering of a fixed voter. Thus, a string
of sausages and a fat sausage can be thought of as, respectively,
the maximal and the minimal clone structure over [m]. Let us
now establish some basic properties of clone structures.

I Proposition 3.3. Let R be a profile on [m]. Then (1) {i} ∈
C(R) for any i ∈ [m]; (2) ∅ /∈ C(R) and [m] ∈ C(R); (3) if C1,
C2 are in C(R) and C1 ∩C2 6= ∅, then C1 ∪C2 and C1 ∩C2 are
in C(R); (4) if C1, C2 are in C(R) and C1 ./ C2, then C1 \ C2 and C2 \ C1 are in C(R).

Proposition 3.3 does not give sufficient conditions for a family of subsets of [m] to be a
clone structure. For example, P = 2[m] \ {∅}, where m ≥ 3, satisfies all the conditions of
Proposition 3.3. Yet, the cardinality of P is 2m − 1, whereas each clone structure over [m]
has at most m(m+1)

2 elements. The next proposition provides a further necessary condition
for a family of subsets of [m] to be a clone structure. It is strong enough to exclude the
collection 2[m] \ {∅} for m > 3.

Given a profile R over [m] and a set X ∈ C(R), we say that a set Z ∈ C(R) is a proper
minimal superset of X if X ⊆ Z, X 6= Z, and there is no set Y ∈ C(R) such that X 6= Y ,
Y 6= Z and X ⊆ Y ⊆ Z.

I Proposition 3.4. For any profile R on [m], each X ∈ C(R) has at most two proper
minimal supersets in C(R).

Note, however, that for m = 3 the set family 2[m] \ {∅} satisfies the conclusion of Propo-
sition 3.4. Yet, it is obviously not a clone structure, since it contains a “cycle” {1, 2}, {2, 3},

4 Clone Structures in Voters’ Preferences

{3, 1}. More generally, consider a set family over [m] that can be obtained from a string
of sausages by adding the “missing link”, i.e., the set {m, 1} as well as all of its supersets
that are necessary to satisfy the conclusions of Proposition 3.3; we will call this set family
a ring of sausages. Clearly, a ring of sausages is not a clone structure, because it cannot
be implemented by an acyclic preference relation; yet, the conclusion of Proposition 3.4 is
satisfied. Thus, we need to forbid rings of sausages; in fact, we require a somewhat more
general condition.

I Definition 3.5. We say that a set family {A0, . . . , Ak−1} is a bicycle chain if k ≥ 3 and for
all i = 0, . . . , k−1 it holds that (1) Ai−1 ./ Ai; (2) Ai−1∩Ai∩Ai+1 = ∅; (3) Ai ⊆ Ai−1∪Ai+1,
where all indices are computed modulo k.

I Proposition 3.6. If C is a clone structure, it does not contain a bicycle chain.

Propositions 3.3, 3.4 and 3.6 lead to the following set of axioms (note that these axioms are
not normative; they simply tell us what clone structures are and not what they should be):
A1. {f} ∈ F for any f ∈ F , ∅ /∈ F , and F ∈ F .
A2. if C1 and C2 are in F and C1 ∩ C2 6= ∅, then C1 ∪ C2 and C1 ∩ C2 are in F .
A3. If C1 and C2 are in F and C1 ./ C2, then C1 \ C2 and C2 \ C1 are in F .
A4. Each C ∈ F has at most two proper minimal supersets in F .
A5. F does not contain a bicycle chain.

Our next goal is to show that these five axioms indeed characterize clone structures.
Axioms A1–A3 and axioms A4–A5 play different roles in our characterization result: the
former ones ensure sufficient richness of a given set family, while the latter ones prevent it
from being “too rich.”

x y

a b c

(a) Before embedding.

ca x y

(b) After embedding.

Figure 2 Clone struc-
tures from Example 3.7.

We will first build up the necessary tools for our inductive
argument. Let E and F be two families of subsets on two disjoint
finite sets E and F , respectively. We can embed F into E as
follows. Given e ∈ E, let E(e→ F) denote the family of subsets
E ′ ∪ F ⊆ 2(E\{e})∪F , where E ′ is obtained from E by replacing
each set X containing e with (X \ {e}) ∪ F .

I Example 3.7. Consider set families D = {{x}, {y}, {x, y}}
and C = {{a}, {b}, {c}, {a, b}, {b, c}, {a, b, c}} (both are strings
of sausages and hence clone structures). Then, C(b → D) =
{{a}, {x}, {y}, {x, y}, {c}, {a, x, y}, {x, y, c}, {a, x, y, c}}. It is
easy to check that this, again, is a clone structure.

If E and F satisfy axioms A1–A5 then so does E(e → F).
We prove it directly (it also follows from Theorem 3.12 combined with Proposition 3.11).

I Proposition 3.8. Let E and F be families of subsets on disjoint sets E and F , respectively,
that satisfy A1–A5. Then for any e ∈ E the set family E(e→ F) also satisfies A1–A5.

Next, we define an inverse operation to embedding, which we call collapsing. Observe
that when we embed F ⊆ 2F into E ⊆ 2E , any C ∈ E(e → F) is either a subset of F , a
superset of F , or does not intersect F at all. Thus, for a set family C on A to be collapsible,
it should contain a set A′ that does not intersect non-trivially with any other set in C.

I Definition 3.9. Let F be a family of subsets on a finite set F . A subset E ⊆ F is a
subfamily of F if there is a set E ∈ F such that (i) E = {F ∈ F | F ⊆ E}; (ii) for any
X ∈ F \ E we have either E ⊆ X or X ∩ E = ∅. The set E is called the support of E . E is
called a proper subfamily of F if E is a proper subset of F .

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 5

One can check that if F satisfies A1–A5 and E is a subfamily of F , then E satisfies A1–A5
as well. Note that we require E ∈ F (rather than just E ⊆ F), and hence E ∈ E .

Let F be a family of subsets on F that satisfies A1–A5 and let E be a proper subfamily of
F on E ⊂ F . Then no set Y ∈ F intersects E non-trivially, and hence E can be “collapsed”.
That is, we can obtain a new set family B from F by picking some alternative b /∈ F ,
removing all sets X ∈ E \ {E} from F , and replacing each set Y that contains E with
(Y \E) ∪ {b}. It is not hard to check that B satisfies A1–A5; the proof is similar to that of
Proposition 3.8. We will write F(E → b) to denote the set family obtained by collapsing a
subfamily E of F . That is, we have B = F(E → b) if and only if F = B(b→ E).

Suppose that F has no proper subfamilies; we will call such subset families irreducible.

I Theorem 3.10. Any irreducible family of subsets satisfying A1–A5 is either a string of
sausages or a fat sausage.

Thus, any irreducible set family that satisfies A1–A5 is a clone structure. This provides
the basis for our inductive argument. For the inductive step, we need to show that if
C and D are two clone structures over disjoint sets C and D, and c is some candidate
in C, then C(c → D) is a clone structure. However, the proof of this fact is somewhat
more complicated than one might expect. Indeed, suppose that we have a pair of profiles
R = (R1, . . . , Rn) andQ = (Q1, . . . , Qn) over sets C andD, respectively, such that C = C(R)
and D = C(Q). One might think that, given c ∈ C, we can obtain a preference profile R′
such that C(c → D) = C(R′) simply by substituting Qi for c in Ri, for i = 1, . . . , n. This
intuition is not entirely correct: without additional precautions, we may introduce “parasite”
clones, i.e., clones that cross the boundary between C and D. However, we can construct
R′, containing n preference orders, from R and Q by tweaking this construction slightly.

I Proposition 3.11. Let C and D be two clone structures over sets C and D, respectively,
where |C| = m, |D| = k, and C ∩ D = ∅. Then for each c ∈ C, the family of subsets
C(c→ D) is a clone structure.

I Theorem 3.12. A family F of subsets of [m] is a clone structure if and only if it satisfies
conditions A1–A5.

Based on Theorem 3.12, it is easy to test in polynomial time (and, in fact, even in
logarithmic space) if a given set family (represented explicitly as a list of subsets) is a clone
structure: one simply needs to check if all the axioms hold. We state this result more
formally in Appendix A.1.

4 Compact Representations of Clone Structures

Let us now consider the issue of representing clone structures. We say that a clone structure
C is k-implementable if there is a k-voter profile R such that C = C(R). One might expect
that to obtain a complex clone structure we need an election with many voters. Yet, each
clone structure can be implemented by a profile with at most three voters.

I Theorem 4.1. Any clone structure is 3-implementable.

Nonetheless, we would like a more structured representation. In the previous section
we have seen that clone structures are organized hierarchically and, thus, it is natural to
represent them using trees. The specific type of trees that are most convenient for this task
are PQ-trees introduced by Booth and Lueker [5].

6 Clone Structures in Voters’ Preferences

A PQ-tree T over a set A = {a1, . . . , an} is an ordered tree that represents a family of
permutations over A as follows. The leaves of the tree correspond to the elements of A.
Each internal node is either of type P or of type Q. A frontier of T is a permutation of
A obtained by reading the leaves of T from left to right (recall that T is ordered). The
following operations are allowed on the tree: If a node is of type P, then its children can be
permuted arbitrarily. If a node is of type Q, then the order of its children can be reversed.
A given permutation π of A is consistent with a PQ-tree T , if we can obtain π as the frontier
of T by applying the above operations.

We now describe a natural way to represent clone structures as PQ-trees. Consider a
clone structure C over a finite set C. Our characterization of irreducible clone structures
implies that any two proper irreducible subfamilies of C have non-intersecting supports.

I Proposition 4.2. Let C be a clone structure over a finite set C, and let B and D be two
proper irreducible subfamilies of C on sets B ⊆ C and D ⊆ C, respectively. Then B∩D = ∅.

Proposition 4.2 implies that every element of C belongs to at most one proper irreducible
subfamily of C. Thus, given a clone structure C ⊆ 2C , there is a unique maximal collection
of pairwise disjoint sets Dec(C) = {C1, . . . , Ck} such that Ci ⊆ C, |Ci| ≥ 2, and for
each i = 1, . . . , k the set family Ci = {C ∈ C | C ⊆ Ci} is an irreducible subfamily of
C (if C is itself irreducible, then k = 1 and C1 = C). This collection can be efficiently
constructed by identifying the minimal (with respect to inclusion) non-singleton sets in C:
any such set of size s ≥ 3 is itself an irreducible clone structure (a fat sausage), and for
a set of size s = 2 we need to find the maximal string of sausages that contains it. Note
that it need not be the case that

⋃k
i=1 Ci = C; some elements may not belong to any

proper irreducible clone structure (consider, for instance, the clone structure over {a, b, c, d}
given by {{a}, {b}, {c}, {d}, {b, c}, {a, b, c, d}}). We will refer to the collection Dec(C) as the
decomposition of C.

a⊕ (x⊕ y)⊕ c

ca

yx

x⊕ y

Figure 3 Tree rep-
resentation of the em-
bedded clone structure
from Example 3.7.

We can now inductively define a PQ-tree T (C) associated with
a clone structure C ⊆ 2C (for convenience, our PQ-trees will be
labeled). Suppose first that C is an irreducible clone structure over
the set C = {c1, . . . , cm}. Then, by Theorem 3.10, it is either a string
of sausages or a fat sausage. In the former case, assume without loss
of generality that C is associated with the order c1 � c2 � . . . � cm,
i.e., it contains sets {ci, ci+1} for i = 1, . . . ,m− 1. In both cases, we
let T (C) to be a tree of depth 1 that has m (ordered) leaves. The
i-th leaf is labeled by ci. If C is a string of sausages, the root of the
tree is of type Q and is labeled by c1⊕ . . .⊕ cm; if C is a fat sausage,
the root is of type P and is labeled by c1 � . . .� cm. For m = 2 the
clone structure C is both a string of sausages and a fat sausage; we treat it as a fat sausage.

Now, if C is reducible, we compute its decomposition Dec(C) = {C1, . . . , Ck}. For
i = 1, . . . , k, we set Ci = {X ∈ C | X ⊆ Ci}, pick c1, . . . , ck 6∈ C, and let C′ be the set family
on the set C ′ = (C \

⋃k
i=1 Ci)∪{c1, . . . , ck} given by C′ = C(C1 → c1, . . . , Ck → ck). We then

construct the tree T (C′). This tree has leaves labeled by c1, . . . , ck. We replace each such
leaf ci by the labeled tree T (Ci) for the irreducible set family Ci.

Given the tree T (C), we can reconstruct the clone structure C in an obvious way. To illus-
trate this discussion, in Figure 3 we give a PQ-tree for the clone structure from Example 3.7.
We remark that the descendants of any internal node of T (C) form a clone set. However,
the converse is not necessarily true, i.e., there are clone sets that cannot be obtained in this
way: if an internal node v is labeled with a string of sausages and has k children, k ≥ 3,
the descendants of any ` consecutive children of v, ` < k, form a clone set. Indeed, it is not

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 7

hard to see that any clone set corresponds either to a subtree of T (C) or to a collection of
subtrees of T (C) whose roots are consecutive children of the same Q-node.

5 Clones in Single-Peaked Elections

It is not unusual for voters to make their decisions based on the candidates’ position on a
single prominent issue, such as, e.g., the level of taxation. Elections where all voters maike
their decisions in this way (with respect to the same issue) are known as single-peaked.
In such elections, the candidates are ordered with respect to their position on the issue.
This ordering is called the societal axis; it can, for example, order the candidates from those
supporting the lowest level of taxation to those supporting the highest level of taxation. Each
voter v forms her preference order as follows. First, v picks the candidate who is the closest
to her ideal point on the societal axis. She then ranks the remaining candidates according
to her perceived distance to the ideal point. The perception of distance may differ from
one voter to another: some voters may view a large deviation to the right as less significant
than a small deviation to the left, while others may hold the opposite view. Thus, the voter
will zig-zag through the candidate list, ending her ranking with either the leftmost or the
rightmost candidate. For example, if the possible tax rates are 10%, 15%, 20%, and 25%,
and an election is single-peaked with respect to the axis 10% > 15% > 20% > 25%, a voter’s
preference order may be, e.g., 20% � 15% � 10% � 25%, but not 20% > 10% > 15% > 25%.
Formally, a single-peaked preference profile is defined as follows.

I Definition 5.1. Let R = (R1, . . . , Rn) be a profile over a candidate set C, and let > be a
linear order over C (the societal axis). We say that an order � over C is compatible with >
if for all c, d, e ∈ C such that either c > d > e or e > d > c, it holds that c � d =⇒ d � e.
We say that R is single-peaked with respect to > if each preference order in R is compatible
with >. A profile R ∈ Ln(C) is called single-peaked if there exists a linear order over C such
that R is single-peaked with respect to >; we say that > witnesses single-peakedness of R.

The literature on single-peaked elections is vast; for examples and intuition we point
the reader to the original paper of Black [4], which introduced this notion, and, for a more
algorithmic perspective, to some recent computational social choice papers [25, 11, 7, 6, 13].

There are several reasons why single-peaked elections received so much attention; the
notion of single-peakedness is very natural, and indeed quite a few real-life elections are
(close to) single-peaked. Further, single-peaked elections have many desirable properties, of
which perhaps the best-known one is that they admit non-manipulable, non-dicatorial voting
rules (e.g., the median voter rule [4]). This is a very attractive property, which distinguishes
single-peaked elections from those with unrestricted preferences (see [15, 23]).

Unfortunately, if a candidate in a single-peaked election is cloned, the election may lose
the single-peakedness property: if many voters find the clones very similar, they are likely
to rank them randomly, which may be incompatible with any societal axis. Thus, given
an election, we might want to check if it can be made single-peaked by “decloning.” Of
course, we would like the resulting election to be close to the original one. Thus, we look
for a single-peaked election that “collapses” as few clones as possible, i.e., has the maximum
number of alternatives among all single-peaked elections that can be obtained from the
original one by decloning. The main result of this section is a polynomial time algorithm
for this problem. Our secondary goal is to understand which clone structures can arise in
single-peaked elections. We give a partial answer by, on one hand, providing an example of
a clone structure that cannot be implemented by a single-peaked profile, and, on the other
hand, identifying a large family of clone structures that admit such an implementation.

8 Clone Structures in Voters’ Preferences

Preliminary Observations. Let R = (R1, . . . , Rn) be a preference profile over a can-
didate set C, and let D be some clone set in C(R). Given a c 6∈ C, we write R(D 7→ c)
to denote the profile R′ = (R′1, . . . , R′n), where each R′i ∈ R′ is obtained from Ri by re-
placing the block of candidates from D with c. We refer to the process of converting R to
R(D 7→ c) as decloning D to c in R. Note that we can declone D even if the collection of
subsets D = {X ∈ C(R) | X ⊆ D} is not a subfamily of C(R) (this is the only difference
between decloning operation 7→ and the collapsing operation →). Given a preference profile
R over a set of candidates C, we let c(R) = |C|.

Given a profile R = (R1, . . . , Rn), we refer to the top-ranked candidate in Ri ∈ R as the
peak of Ri, and denote it by peak(Ri). We write peak(R) to denote the set {peak(Ri) | Ri ∈
R}. (Note that if R is single-peaked, this does not imply that |peak(R)| = 1: intuitively,
the term “single-peaked” refers to the shape of individual preference orders with respect to
a given societal axis.) Theorem C.1 and surrounding discussion in the appendix clarifies the
relation between possible societal axes and the set of peaks of a profile.

We are ready to start our investigation of clones in single-peaked profiles. Consider a
preference profile R over C that is single-peaked with respect to some order >, and let D be
a clone set with respect to R. Do members of D appear consecutively in >? Not necessarily
(take two votes, b � c � a � d and c � b � a � d, and axis a > b > c > d; {a, d} is a clone
even though a and d are not consecutive in >), but they form at most two blocks within >.

I Proposition 5.2. Let R = (R1, . . . , Rn) be a preference profile over a candidate set C that
is single-peaked with respect to some order >, and let D ∈ C(R) be a clone set for R with
|D| ≥ 2. Then C can be partitioned into pairwise disjoint sets A1, A2, D1, D2, and P so that
C \D = A1∪P ∪A2, D = D1∪D2, D1 6= ∅, D2 6= ∅, and A1 > D1 > P > D2 > A2. Further,
if P 6= ∅, then peak(R) ⊆ P , and, moreover, P �i D �i A1 ∪A2 for each i = 1, . . . , n.

Proposition 5.2 motivates a very useful classification of clone sets in single-peaked profiles.
Let R be a profile over some candidate set C that is single-peaked with respect to some order
>. If the elements of D are ranked contiguously in >, then we say that D is a clone set of the
first type with respect to >; otherwise, we say that D is a clone set of the second type with
respect to >. The following is an immediate corollary of the second part of Proposition 5.2.

I Corollary 5.3. Let R be a single-peaked preference profile. If D ∈ C(R) is a clone set of
the second type w.r.t. some societal axis >, then D does not contain any peaks of R.

Observe that if D is a clone set of the first type that does not contain any peaks of R,
then for each voter i either peak(Ri) �i D, in which case �i coincides with > on D, or
D �i peak(Ri), in which case �i coincides with

←−
> on D. Thus, the following corollary.

I Corollary 5.4. Let R be a single-peaked preference profile over a candidate set C. If
D ∈ C(R) is a clone set of the first type with respect to some societal axis >, |D| ≥ 2, and
D ∩ peak(R) = ∅, then D is a string of sausages.

Decloning Towards a Single-Peaked Profile. We will now present an algorithm for
transforming a given election into a single-peaked one by decloning. Our algorithm works
with a PQ-tree T that captures the clone structure of our profile. Informally, it first contracts
the tree to a single node, and then greedily reintroduces clone sets, following the branches
of the tree, while maintaining the invariant that the resulting profile is single-peaked (this
requires care as single-peakedness of a profile can be witnessed by many different societal
axes). In what follows, we present a version of our algorithm that only declones clone sets
that correspond to subtrees of T . This algorithm produces the optimal decloning for many

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 9

settings (and, in particular, for all profiles whose PQ-trees contain P-nodes only), but may
fail to find an optimal solution in some cases. We will show an example of such a case
and outline a more sophisticated polynomial-time algorithm that works for all profiles. We
describe our algorithm in terms of proper colorings of a PQ-tree.

I Definition 5.5. Let T be a PQ-tree. A coloring of T is a function f from the set of nodes
of T to the set {black,white}. A coloring of T is proper if the children of each black node
are black. Given a coloring f of T , let W (f) denote the set of nodes that are white under f .

I Definition 5.6. Let R be a profile over a candidate set C, set T = T (C(R)), and let f
be a proper coloring of T . For a node v ∈ T , let Cv = {c ∈ C | c is a leaf of T ’s subtree
rooted in v}. Define R(T, f) to be the profile obtained from R as follows: for each internal
node v, if v is black and its parent is white (or v is the root), declone the set Cv to a single
candidate v.

Our algorithm BasicDecloneSP takes as an input a preference profile R. It then
constructs a PQ-tree T = T (C(R)) that corresponds to the clone structure ofR. It initializes
f to be a coloring of T in which every node is black; this coloring will be modified during the
execution of the algorithm. Note that at this pointR(T, f) is single-peaked and c(R(T, f)) =
1. The algorithm also maintains a queue of nodes that it intends to visit. Initially, the queue
contains the root of T only. Throughout the execution, we ensure that R(T, f) is single-
peaked and all ancestors of each node in the queue are white; note that this is indeed the
case just after the initialization stage.

At each stage, BasicDecloneSP(R) picks a node v from the queue (if the queue is
empty, the algorithm terminates). It then executes the following steps:
1. Set f(v) = white.
2. Check if R(T, f) is single-peaked (possible in polynomial time [3, 11]).
3. If R(T, f) is single-peaked, add all children of v to the queue. Otherwise, reset f(v) =

black.

By induction on the execution of the algorithm, one can see that at each point in time
f is a proper coloring of T , and therefore R(T, f) is well-defined. Further, each node is
processed at most once, so BasicDecloneSP(R) runs in polynomial time. Finally, it is
clear that BasicDecloneSP(R) produces a single-peaked election.

We now show that given a profile R over a candidate set C, BasicDecloneSP outputs
a single-peaked profile R′ with the following property: c(R′) ≤ c(R′′) for any single-peaked
preference profile R′′ that can be obtained from R by decloning clone sets that correspond to
subtrees of T (C(R)). First, as a sanity check, we note (Proposition C.2 in the appendix) that
if a profile is already single-peaked then it remains single-peaked after decloning. Second, we
show that the greedy way in which BasicDecloneSP reintroduces clones cannot prevent
us from finding an optimal solution.

I Proposition 5.7. Let R be a preference profile over a set of candidates C. Let D1, . . . , Dk ∈
C(R) be a sequence of pairwise disjoint clone sets, and let c1, . . . , ck be a sequence of distinct
candidates not in C. For each i = 1, . . . , k, let Ri denote a preference profile in which for
each j = 1, . . . , k, j 6= i, Dj is decloned to cj. Then R is single-peaked if and only if each
of the profiles Ri, i = 1, . . . , k, is single-peaked.

The idea of the proof is to show that if reintroducing a given clone does not break single-
peakedness of a profile, then one can obtain a societal axis witnessing this fact by local
modifications of the societal axis used prior to the clone’s reintroduction. In the next

10 Clone Structures in Voters’ Preferences

theorem we show correctness of BasicDecloneSP for the case of decloning subtrees only,
and in the following proposition we show that sometimes decloning subtrees does not suffice.

I Theorem 5.8. Given a preference profile R over a candidate set C, BasicDecloneSP(R)
runs in time polynomial in |R| and |C|, and produces a single-peaked preference profile R′
such that c(R′) ≤ c(R′′) for any single-peaked preference profile R′′ that can be obtained
from R by decloning one or more clone sets that correspond to subtrees of T (C(R)).

I Proposition 5.9. Let C be a string of sausages over candidates {a, b, c}, let D′ be a
string of sausages over candidates {1, 2, 3}, and let D′′ be a fat sausage over candidates
{x, y}. Then the clone structure C′ = C(b→ D′) is not single-peaked, but the clone structure
C′′ = C(b→ D′′) is single-peaked.

In Proposition 5.9 the clone structure C′′ can be obtained from C′ by decloning the
clone {1, 2} to x (and renaming 3 as y). Further, C′′ has four candidates, whereas any
clone structure that can be obtained from C′ by decloning clone sets that correspond to
substructures of C will have at most three candidates. This shows that if T (C(R)) contains
Q-nodes, BasicDecloneSP(R) may fail to find the optimal decloning of a given profile
into a single-peaked one (note, however, that this issue does not arise if T (C(R)) contains
P-nodes only, in which case BasicDecloneSP(R) actually finds an optimal solution).

Hence, to obtain an algorithm that always finds an optimal decloning, we need to modify
BasicDecloneSP(R) to also consider clone sets that correspond to substrings of strings
of sausages. However, a straightforward implementation of this idea leads to an exponen-
tial blow-up in the running time: there are exponentially many ways to choose a non-
overlapping collection of substrings of a given string. Fortunately, it turns out that it
suffices to consider breaking strings of sausages into two parts. In Section D of the appendix
we present a polynomial-time algorithm that makes use of this idea and always finds an
optimal single-peaked decloning of a given preference profile; this algorithm differs from
BasicDecloneSP(R) in its handling of Q-nodes only.
Clone Structures via Single-Peaked Profiles. Let us now turn to our second goal,
the problem of characterizing clone structures that can be implemented using single-peaked
profiles. Formally, we say that a clone structure C is single-peaked if there exists a single-
peaked profile R such that C = C(R).

I Proposition 5.10. Fat sausages and strings of sausages are single-peaked.

Thus, by Proposition 5.9, single-peaked clone structures are not closed under embeddings.
Nonetheless, we identify a large class of single-peaked clone structures.

I Proposition 5.11. Let C be a clone structure over a set of candidates C. Suppose that
for each Q-node of the PQ-tree decomposition T (C) of C it holds that all children, except
possibly the leftmost child and the rightmost child, are labeled with singletons, i.e., elements
of C. Then C is a single-peaked clone structure.

The second part of Proposition 5.9 shows that Proposition 5.11 does not characterize
single-peaked clone structures; finding such a characterization is an interesting open problem.

6 Clones in Single-Crossing Elections

Let us now consider a different domain restriction called single-crossing. The idea behind
single-crossing elections is similar to that behind single-peaked elections, but now it is the

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 11

voters who are ordered along some axis; say, the traditional left-to-right spectrum of political
views. Consider a voter v on one of the extreme ends of the spectrum and two candidates,
c and d such that v prefers c to d. As we move toward the other end of the voter spectrum,
for a while voters agree that c is better than d, but eventually d crosses c and, from this
point on, the voters prefer d to c. Single-crossing dates back at least to Mirrlees [19]; see
also [14, 22, 2] for more recent work that also describes realistic settings where single-crossing
profiles arise. Formally, we use the following definition.
I Definition 6.1. We say that a preference profile R = (R1, . . . , Rn) over candidate set C
is single-crossing with respect to order � over [n], if for every pair of distinct candidates
c, d ∈ C it holds that either {i | c �i d} � {j | d �j c} or {i | d �i c} � {j | c �j d}.
We say that a profile is single-crossing if there exists an order � with respect to which it is
single-crossing.

Strictly speaking, the notion introduced in Definition 6.1 is referred to as order restriction
and not single-crossing. However, in our setting these two notions are equivalent and the
term “single-crossing” much more intuitively describes the notion.

We observe that one can check in polynomial time whether a given profile is single-
crossing; to the best of our knowledge, this observation does not appear in the literature.
I Proposition 6.2. The problem of checking if a given profile is single-crossing is in P.

As in the case of single-peakedness, we would like to know which clone structures can be
implemented by single-crossing profiles and what is the complexity of decloning towards
a single-crossing profile. We reach opposite answers from those for the case of single-
peakedness.
I Theorem 6.3. For every clone structure C there exists a single-crossing profile R such
that C = C(R).
We remark that, unlike the construction in the proof of Proposition 3.11, which leads to a
3-voter profile (Theorem 4.1), the proof of Theorem 6.3 produces a profile with many voters.
I Theorem 6.4. Given a profile R over a candidate set C and a positive integer k, it is
NP-hard to decide if there exists a single-crossing profile R′ with c(R′) ≥ k that can be
obtained from R by decloning.
However, optimal decloning is easy if the order of voters is fixed.
I Proposition 6.5. Given a profile R over a candidate set C, a positive integer k, and an
order �, we can decide in polynomial time if there exists a profile R′ with c(R′) ≥ k that is
single-crossing with respect to � and can be obtained from R by decloning.

7 Conclusions and Future Work

We have characterized clone structures in elections, obtained a convenient representation
using PQ-trees, and used this representation in an algorithm that restores an election’s
single-peakedness by decloning as few candidates as possible. On the other hand, we have
shown that recovering the single-crossing property optimally is NP-hard. We also made first
steps toward characterizing clone structures in single-peaked elections and we have shown
that all clone structures can be implemented with single-crossing profiles.

Other research directions include establishing the complexity of verifying whether a given
candidate can be made an election winner (under a particular voting rule) by decloning a
given number of candidates. We hope that our work will facilitate obtaining hardness results
for this problem, thus complementing the easiness results of Elkind et al. [9].

12 Clone Structures in Voters’ Preferences

References
1 K. Arrow, A. Sen, and K. Suzumura, editors. Handbook of Social Choice and Welfare,

Volume 1. Elsevier, 2002.
2 S. Barberá and B. Moreno. Top monotonicity: A common root for single peakedness, single

crossing and the median voter result. Games and Economic Behavior. To appear.
3 J. Bartholdi, III and M. Trick. Stable matching with preferences derived from a psycho-

logical model. Operations Research Letters, 5(4):165–169, 1986.
4 D. Black. The Theory of Committees and Elections. Cambridge University Press, 1958.
5 K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and

graph planarity using PQ-tree algorithms. JCSS, 13(3):335–379, 1976.
6 F. Brandt, M. Brill, E. Hemaspaandra, and L. Hemaspaandra. Bypassing combinatorial

protections: Polynomial-time algorithms for single-peaked electorates. In Proc. of AAAI-
10, pages 715–722. AAAI Press, July 2010.

7 V. Conitzer. Eliciting single-peaked preferences using comparison queries. Journal of
Artificial Intelligence Research, 35:161–191, 2009.

8 A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures: A Framework
for Decomposition and Transformation of Graphs. World Scientific, 1999.

9 E. Elkind, P. Faliszewski, and A. Slinko. Cloning in elections. In Proc. of AAAI-10, pages
768–773. AAAI Press, July 2010.

10 E. Ephrati and J. Rosenschein. A heuristic technique for multi-agent planning. Annals of
Mathematics and Artificial Intelligence, 20(1–4):13–67, 1997.

11 B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and its complexity. In
Proc. of ECAI-08, pages 366–370, July 2008.

12 P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Using complexity to protect
elections. Commun. ACM, 53(11):74–82, 2010.

13 P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. The shield that never
was: Societies with single-peaked preferences are more open to manipulation and control.
Information and Computation, 209(2):89–107, 2011.

14 J. Gans and M. Smart. Majority voting with single-crossing preferences. Journal of Public
Economics, 59:219–237, 1996.

15 A. Gibbard. Manipulation of voting schemes. Econometrica, 41(4):587–601, 1973.
16 G. Laffond, J. Laine, and J. Laslier. Composition consistent tournament solutions and

social choice functions. Social Choice and Welfare, 13(1):75–93, 1996.
17 J. Laslier. Rank-based choice correspondencies. Economics Letters, 52(3):279–286, 1996.
18 J. Laslier. Aggregation of preferences with a variable set of alternatives. Social Choice and

Welfare, 17(2):269–282, 2000.
19 J. Mirrlees. An exploration in the theory of optimal income taxation. Review of Economic

Studies, 38:175–208, 1971.
20 R. Möhring. Algorithmic aspects of the substitution decomposition in optimization over

relations, set systems and boolean functions. Annals of Op. Res., 4:195–225, 1985.
21 O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.
22 A. Saporiti and F. Tohmé. Single-crossing, strategic voting and the median choice rule.

Social Choice and Welfare, 26(2):363–383, 2006.
23 M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspon-

dence theorems for voting procedures and social welfare functions. Journal of Economic
Theory, 10(2):187–217, 1975.

24 T. Tideman. Independence of clones as a criterion for voting rules. Social Choice and
Welfare, 4(3):185–206, 1987.

25 T. Walsh. Uncertainty in preference elicitation and aggregation. In Proc. of AAAI-07,
pages 3–8, July 2007.

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 13

A Material Missing from Section 3

Before we move on to the proofs, we need several additional definitions.

I Definition A.1. Let C be a set of candidates.
1. Given three pairwise disjoint subsets X,Y, Z of C, and an order � over C, we say that

X separates Y and Z in � if either Y � X � Z or Z � X � Y .
2. We say that an alternative a ∈ C splits a subset X ⊆ C with respect to an order � if X

can be partitioned into two nonempty sets X1 and X2 such that {a} separates X1 and
X2 in �; note that this implies a 6∈ X.

I Proposition A.2. Given a profile R = (R1, . . . , Rn), let R′ = (R′1, . . . , R′n) be a profile
such that R′i ∈ {Ri,

←−
Ri} for all i = 1, . . . , n. Then C(R) = C(R′).

I Proposition 3.3. Let R be a profile on [m]. Then (1) {i} ∈ C(R) for any i ∈ [m]; (2)
∅ /∈ C(R) and [m] ∈ C(R); (3) if C1 and C2 are in C(R) and C1 ∩ C2 6= ∅, then C1 ∪ C2
and C1 ∩C2 are also in C(R); (4) if C1 and C2 are in C(R) and C1 ./ C2, then C1 \C2 and
C2 \ C1 are also in C(R).

Proof. Properties (1) and (2) are immediate. Let us prove (3). Let C1 and C2 be two sets
in C(R) with I = C1∩C2 6= ∅, and let Ri be an arbitrary preference order from R. Consider
some a ∈ [m]. Since C1 ∈ C(R), if a ∈ [m] \ C1, then a does not split C1 and, as a result, a
does not split I. Similarly, no alternative in [m] \ C2 can split I. Thus, no element outside
of I can split I, and hence members of I are ranked contiguously in Ri. Since this holds for
any Ri in R, we have I ∈ C(R).

Now, suppose that there is an alternative a ∈ [m] \ (C1 ∪ C2) that splits C1 ∪ C2 in
some order Ri. We know that a splits neither C1 nor C2, hence either C1 �i a �i C2 or
C2 �i a �i C1, which is impossible since the intersection of C1 and C2 is nonempty. Thus,
C1 ∪ C2 ∈ C(R). This proves that (3) holds.

Let us now consider property (4). Suppose C1, C2 ∈ C(R) and C1 ./ C2. Consider the
set C1 \ C2; for C2 \ C1 the argument is similar. First, no element outside of C1 can split
C1 \C2, because otherwise it will split C1 too. Further, in each Ri, the intersection C1 ∩C2
separates C1 \ C2 and C2 \ C1. Hence elements of C1 ∩ C2 cannot split C1 \ C2 either, and
the property follows. J

I Proposition 3.4. For any profile R on [m], each X ∈ C(R) has at most two proper
minimal supersets in C(R).

Proof. For the sake of contradiction, assume that there are three distinct sets Y,Z,W in
C(R) such that each of them is a proper minimal superset of X. It is easy to see that
Y ∩ Z = X: by Proposition 3.3, Y ∩ Z ∈ C(R), so if (Y ∩ Z) \ X 6= ∅, neither Y nor Z
would be a proper minimal superset of X. Similarly, Y ∩W = X and Z ∩W = X. Pick
two alternatives y, z so that y ∈ Y \X and z ∈ Z \X. Let Ri be a preference order from
R. The set X separates Y \X and Z \X, and so either y �i X �i z or z �i X �i y; by
Proposition A.2 we may assume the former. Now, pick w ∈ W \ X. A similar argument
shows that we have y �i X �i w (as w �i X �i y leads to a contradiction). But now we
must have z �i X �i w or w �i X �i z, none of which is possible. J

I Proposition 3.6. If C is a clone structure, it does not contain a bicycle chain.

Proof. Suppose that a clone structure C contains a bicycle chain {A0, . . . , Ak−1}, and let
R = (R1, . . . , Rn) be a preference profile such that C = C(R).

14 Clone Structures in Voters’ Preferences

As argued in the proof of Proposition 3.3, the set A0∩A1 separates A0\A1 and A1\A0 in
R1. Thus, by Proposition A.2, we can assume that we have A0 \A1 �1 A0 ∩A1 �1 A1 \A0.

Further, by the definition of the bicycle chain we have A1 \A0 = A1∩A2, A1 \A2 = A0∩A1.
Again, we have A1 ∩ A0 = A1 \ A2 �1 A1 ∩ A2 �1 A2 \ A1. Now, if k = 3, we have a
contradiction already: since A0 \ A1 6= ∅ and A0 ⊆ A1 ∪ A2, it has to be the case that
A0 intersects A2, yet all elements of A2 are ranked strictly below A0. If k > 3, continuing
inductively, we obtain that for each i = 1, . . . , k−1 the set Ai is ranked below Ai−1\Ai in R1.
Hence, all elements of Ak−1 are ranked below A0 in R1. However, we have A0 ∩ Ak−1 6= ∅,
a contradiction. J

I Proposition 3.8. Let E and F be families of subsets on disjoint sets E and F , respectively,
that satisfy A1–A5. Then for any e ∈ E the set family E(e→ F) also satisfies A1–A5.

Proof. We have {e′} ∈ E for all e′ ∈ E, {f} ∈ F for all f ∈ F , so {g} ∈ E(e → F)
for all g ∈ (E \ {e}) ∪ F . Clearly, ∅ 6∈ E(e → F). Further, E ∈ E and e ∈ E, so
(E \ {e}) ∪ F ∈ E(e→ F). Thus, A1 is satisfied.

Throughout the rest of the proof, we will use the observation that no set D ∈ E(e→ F)
can intersect F non-trivially, i.e., we have that for each D ∈ E(e → F) it holds that either
D ∩ F = ∅ or D \ F = ∅ or F \D = ∅.

We will now show that E(e → F) satisfies A3 and A4. Consider two sets C1, C2 in
E(e→ F) such that C1 ∩C2 6= ∅. If C1 ⊆ C2 or C2 ⊆ C1, then A2 and A3 trivially hold, so
we can assume that C1 ./ C2.

Suppose first that C1 ⊆ F . Then C2 ∩ F 6= ∅ and it cannot be the case that F ⊆ C2,
since we assume C1 \ C2 6= ∅. Hence, C2 ⊆ F , so C1, C2 ∈ F , and the sets C1 ∩ C2, C1 ∪
C2, C1 \ C2, C2 \ C1 belong to F and hence to E(e→ F).

Next, suppose that F ⊆ C1. Set C ′1 = (C1\F)∪{e}. Since C2 6⊆ C1, we have C2 6⊆ F , and
hence either F ⊆ C2 or F ∩C2 = ∅. In the former case, set C ′2 = (C2 \F)∪{e}; in the latter
case, set C ′2 = C2. In both cases, we have C ′1, C ′2 ∈ E , and C ′1 ./ C

′
2. Therefore, the sets

C ′1∩C ′2, C ′1∪C ′2, C ′1\C ′2, C ′2\C ′1 belong to E , and hence the sets C1∩C2, C1∪C2, C1\C2, C2\C1
belong to E(e→ F).

If F ⊆ C2, the argument is similar. Thus, it remains to consider the case C1 ∩ F = ∅,
C2 ∩ F = ∅. Then C1, C2 ∈ E . Thus, the sets C1 ∩ C2, C1 ∪ C2, C1 \ C2, C2 \ C1 belong to
E and do not contain e, and hence they belong to E(e→ F) as well. Thus, axioms A2 and
A3 are satisfied.

To show that A4 holds, assume for the sake of contradiction that some set C ∈ E(e→ F)
has three proper minimal supersets X, Y , and Z in E(e→ F). If we have C ⊆ F , then the
sets X, Y and Z cannot strictly contain F (or they would not be proper minimal supersets),
but have to intersect F , so it has to be the case that X,Y, Z ⊆ F . Thus, C has three proper
minimal supersets in F , a contradiction. Next, suppose that F ⊆ C. Then all three sets X,
Y and Z are supersets of F , too. Consider the sets C ′ = (C \F)∪ {e}, X ′ = (X \F)∪ {e},
Y ′ = (Y \F)∪{e}, Z ′ = (Z \F)∪{e}. All these sets are in E . Moreover, X ′, Y ′ and Z ′ are
distinct, and each of them is a superset of C ′. To see that all of them are proper supersets
of C ′, observe that if C ′ ⊂ T ′ ⊂ X ′, then C ⊂ (T ′ \ {e}) ∪ F ⊂ X, a contradiction with
X being a minimal proper superset of C. Thus, C ′ has three minimal proper supersets in
E , a contradiction. Finally, if C ∩ F = ∅, we have C ∈ E . For T = X,Y, Z, let T ′ = T if
F ∩ T = ∅ and T ′ = (T \ F) ∪ {e} otherwise. Clearly, the sets X ′, Y ′ and Z ′ are in E . By
the same argument as above, we can show that C has three minimal proper supersets in E ,
a contradiction. Thus, E(e→ F) satisfies A4.

Finally, let E(e→ F) contain a bicycle chain {A0, . . . , Ak−1}; in what follows, all indices

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 15

are computed modulo k. Suppose first that we have Ai ⊆ F for some i = 0, . . . , k− 1. Then
Ai−1 ∩F 6= ∅, Ai+1 ∩F 6= ∅. Since both Ai−1 and Ai+1 intersect Ai non-trivially, neither of
them can contain F , and therefore both of them are subsets of F . Applying this argument
inductively, we conclude that all sets Ai, i = 0, . . . , k − 1, are subsets of F , i.e., F contains
a bicycle chain, a contradiction. Thus, we can assume that for each i = 0, . . . , k − 1 either
F ⊆ Ai or F ∩ Ai = ∅. For each i = 0, . . . , k − 1, set A′i = (Ai \ F) ∪ {e} if F ⊆ Ai and
set A′i = Ai otherwise. It is straightforward to check that the set family {A′0, . . . , A′k−1} is
a bicycle chain in E , a contradiction. Thus, E(e→ F) satisfies A5. J

I Proposition A.3. Let F be an irreducible family of subsets of [m] that satisfies A1–A5,
and let D be a minimal proper subset of F . Then |D| = 2.

Proof. Suppose for the sake of contradiction that |D| ≥ 3. The set family D = {F ∈ F |
F ⊆ D} is not a subfamily of F , which means that F contains a proper subset E such that
D ./ E. However, by A2 and A3, both D ∩ E and D \ E must belong to F , both are strict
subsets of D, and at least one of them has at least two elements. Thus, D is not a minimal
proper subset, a contradiction. J

I Proposition A.4. Let F be a family of subsets of [m] that satisfies A1–A5. Then each
candidate i ∈ [m] belongs to at most two minimal proper subsets in F .

Proof. Suppose for the sake of contradiction, that i belongs to three minimal proper subsets
in F . Since these subsets are minimal proper subsets, they are also minimal proper supersets
of {i}. However, by A4, no subset of F has more than two minimal proper supersets, a
contradiction. J

I Theorem 3.10. Any irreducible family of subsets satisfying A1–A5 is either a string of
sausages or a fat sausage.

Proof. Let F be an irreducible family of subsets over [m] that satisfies A1–A5. If F does
not contain any proper subsets, then it is a fat sausage. Thus, for the remainder of the proof
let us assume that F does contain at least one proper subset.

Let us consider a graph G whose vertices are elements of [m] and there is an edge between
i and j if and only if {i, j} is a minimal proper subset of F . By Proposition A.4, the degree
of each vertex in G is at most 2. Further, G cannot contain cycles, since each cycle in G

would correspond to a bicycle chain in F formed by the two-element subsets {i, j}. Thus,
G is a collection of paths. We will now prove that G has at most one connected component,
and hence F is a string of sausages.

Let G′ be a maximal connected component in G, and let F be the set of vertices of G′.
Suppose that F 6= [m]. Note that by A3, F is a subset in F . Since F is not a fat sausage, by
Proposition A.3 we have |F | ≥ 2. Let us rename the alternatives so that F = {f1, . . . , fk}
and each {fi, fi+1}, 1 ≤ i < k, is an edge of G′.

If F 6= [m], there exists a proper subset E ∈ F such that E ./ F . Let us pick such a set
E for which |E \ F | is smallest. By A3, the set E \ F belongs to F . We consider two cases.

|E \ F| = 1. Observe that in this case |E ∩ F | ≥ 2: otherwise, E would be an edge of G′.
Let e be a member of E \F . Suppose first that E ∩F is not a contiguous subset of F , that
is, there are some i, j, ` ∈ [k] such that i < ` < j, and (i) fi ∈ E and fs 6∈ E for s < i, (ii)
fj ∈ E and ft 6∈ E for t > j, and (iii) f` /∈ E. Then either E ∩ F = {fi, fj}, or E ∩ F
intersects {fi+1, . . . , fj−1} and we have {fi, fj} = (E ∩F) \ {fi+1, . . . , fj−1}. In both cases,
we can use axiom A3 to conclude that {fi, fj} belongs to F , and hence G′ contains a cycle,
a contradiction. Thus, we have E ∩ F = {fi, . . . , fj} for some 1 ≤ i < j ≤ k.

16 Clone Structures in Voters’ Preferences

Suppose that j 6= k. Then, since i < j, by A3 the set E \ {f1, . . . , fj−1} = {e, fj} is in
F . However, this means that e ∈ F , which is a contradiction. Thus, j = k. Similarly, we
can argue that i = 1. Hence, we have F ⊆ E, a contradiction.

|E \ F| > 1. By A3, E \ F is a proper subset in F . Thus, since F is irreducible, there is
a proper subset H in F such that H ./ (E \ F).

Suppose first that F ⊆ H, and consider the set H ′ = H ∩ E. Since E intersects F , we
have H ′∩F 6= ∅. Further, H ′∩ (E \F) = H ∩ (E \F) 6= ∅, so H ′ \F 6= ∅. Finally, F \E 6= ∅
and H ′ ⊆ E, so F \H ′ 6= ∅. Thus, F ./ H ′. However, H ′ \F = H ∩ (E \F) is a strict subset
of E \ F , so |H ′ \ F | < |E \ F |, a contradiction with our choice of E.

Thus, we have F 6⊆ H. If, nevertheless, F ∩H 6= ∅, we set H ′′ = H ∩ (E ∪ F). Clearly,
we have F ∩H ′′ 6= ∅. Since H ′′ is a subset of H, we also have F \H ′′ 6= ∅. Finally, since
H ∩ (E \F) 6= ∅. we have H ′′ \F 6= ∅. Thus, H ′′ ./ F , yet H ′′ \F = H ∩ (E \F) is a strict
subset of E \ F , so |H ′′ \ F | < |E \ F |, a contradiction with our choice of E.

Hence, H ∩ F = ∅. However, this means that E \H still intersects F nontrivially, and
|(E \H) \ F | < |E \ F |, a contradiction again.

We have shown that assuming that F 6= [m] leads to a contradiction. Hence, F = [m],
which means that F is a string of sausages. J

I Proposition 3.11. Let C and D be two clone structures over sets C and D, respectively,
where |C| = m, |D| = k, and C ∩ D = ∅. Then for each c ∈ C, the family of subsets
C(c→ D) is a clone structure.

Proof. Fix a candidate c ∈ C, and let R = (R1, . . . , Rn) and Q = (Q1, . . . , Qn′) be two
profiles of voters such that C = C(R) and D = C(Q). Since duplicating linear orders in R
and Q does not change C and D, we can assume without loss of generality that n = n′ ≥ 2.
Our goal is to construct a profile R′ such that C(c → D) = C(R′). This profile will have n
voters and m+ k − 1 alternatives, that is, R′ = (R′1, . . . , R′n). We will construct R′ in two
steps. First, for each i = 1, . . . , n, we set R0

i to be identical to Ri except that the occurrence
of c is replaced by Qi; denote the resulting profile by R0 = (R0

1, . . . , R
0
n) and let C0 = C(R0).

It is easy to see that all elements of C(c → D) are clones in R0, so C(c → D) ⊆ C0. If also
C0 ⊆ C(c→ D), we are done, since in this case we can set R′ = R0.

Otherwise, we flip Qn. That is, assuming without loss of generality that Qn ranks the
elements of D as

Qn : d1 � d2 � . . . � dk

and Rn is given by C1 � c � C2, we define

R′n : C1 � dk � . . . � d1 � C2,

where we assume that R′n orders the elements of C1 and C2 in the same way as Rn does; we
also set R′i = R0

i for i = 1, . . . , n− 1. Consider the resulting profile R′, and let C′ = C(R′).
We claim that C′ = C(c → D). As above, it is easy to see that C(c → D) ⊆ C′. It remains
to show that C′ ⊆ C(c→ D).

Let X be a “parasite” clone in C0 \ C(c → D). Clearly, it cannot be the case that
X ⊆ C or X ⊆ D. Further, if D ⊆ X, then (X \ D) ∪ {c} is a clone in C, and hence
X ∈ C(c → D). Thus, the sets CX = X ∩ C and DX = X ∩ D are both non-empty,
and DX 6= D. By Proposition A.2, we may assume that each order in R0 is of the form
. . . � CX � DX � D \DX �

Now, suppose for the sake of contradiction that Y is a clone in C′ \ C(c → D). By the
same argument as in the previous paragraph, we conclude that Y ∩D 6= ∅, Y ∩ C 6= ∅, and
D 6⊆ Y . Thus, we have two possibilities:

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 17

d1 ∈ Y , dk 6∈ Y . Then, since Y is contiguous in R′1 and Y ∩C 6= ∅, we have Y ∩CX 6= ∅.
However, in R′n the element dk splits Y and CX , a contradiction.
d1 6∈ Y , dk ∈ Y . Then, since Y is contiguous in R′n and Y ∩C 6= ∅, we have Y ∩CX 6= ∅.
However, in R′1 the element d1 splits Y and CX , a contradiction.

Hence, we have Y ∈ C(c→ D). The proof is complete. J

The above proof could be simplified if we were willing to use more voters in the profile
for C(c→ D). However, the current version of the proof is very useful when we consider the
number of voters needed to implement a particular clone structure.

I Theorem 3.12. A family F of subsets of [m] is a clone structure if and only if it satisfies
conditions A1–A5.

Proof. We have already argued that any clone structure satisfies A1–A5; it remains to prove
that the converse is also true.

Our proof is by induction on m. Clearly the theorem holds for m = 1 and for m = 2.
For the inductive step, assume it holds for each m′ < m. Let F be a family of subsets of
[m] that satisfies A1–A5. If F is irreducible then, by Theorem 3.10, it is either a string
of sausages or a fat sausage and thus a clone structure. Otherwise, F contains a proper
subfamily D. Let F ′ = F(D → e) for some e /∈ [m]. We have argued that D and F ′ satisfy
axioms A1–A5. Hence, by our inductive hypothesis both F ′ and D are clone structures and
so, by Proposition 3.11, F = F ′(e → D) is a clone structure as well. This completes the
proof. J

A.1 Identifying Clone Structures is in P

I Theorem A.5. There exists a polynomial-time algorithm that, given a family of subsets
F over a finite set F , checks if F is a clone structure over F .

Proof. It is easy to see that we can check in polynomial time whether F satisfies A1–A4.
Now, suppose that F has passed this check, and it remains to verify that it satisfies A5. We
can directly check if F contains a bicycle chain of size 3, by considering all possible triples of
the subsets in F . To check for bicycle chains of size 4 or more, we will construct a directed
graph G as follows.

The vertices of G are ordered pairs (X,Y), where X and Y are two subsets in F such
that X ./ Y . There is a directed edge from (X,Y) to (Y ′, Z) if Y = Y ′, X ∩Y ∩Z = ∅. and
Y ⊆ X∪Z. Intuitively, G has an edge from (X,Y) to (Y, Z) if X, Y and Z can be three con-
secutive sets in a bicycle chain. It is not hard to verify that G contains a directed cycle if and
only if F contains a bicycle chain of size 4 or more. Indeed, let {A0, . . . , Ak−1} be a bicycle
chain of size k ≥ 4 in F . Then any pair (Ai, Ai+1) is a vertex of G. Moreover, there is an edge
in G between (Ai−1, Ai) and (Ai, Ai+1), so (A0, A1), (A1, A2), . . . , (Ak−1, A0) is a directed
cycle in G (as always in our discussion of bicycle chains, the indices are computed modulo
k). Conversely, if G contains a directed cycle of the form (X0, X1), (X1, X2), . . . , (Xk−1, X0),
then the sets X0, . . . , Xk−1 form a bicycle chain. J

We can strengthen the proof of Theorem A.5 to obtain a logarithmic space algorithm.
Verifying axioms A1–A4 in logarithmic space is straightforward. For axiom A5 the verifica-
tion problem can be reduced to connectivity testing for undirected graphs; it then remains
to apply the breakthrough result of Reingold [21].

18 Clone Structures in Voters’ Preferences

B Material Missing from Section 4

We will now prove Theorem 4.1. However, to do so, we need the following proposition.

I Proposition B.1. Let C be an irreducible clone structure over [m]. If C is a string of
sausages, it is 1-implementable. If C is a fat sausage and m > 3, then C is 2-implementable,
but not 1-implementable. If C is a fat sausage and m = 3, then C is 3-implementable, but
not 2-implementable.

Proof. If C is a string of sausages, it can be implemented using a single order, namely,
1 � . . . � m.

Now, suppose that C is a fat sausage. Clearly, it cannot be implemented with a single
order, as the clone structure that corresponds to the latter is a string of sausages.

Suppose first that m = 2k. For convenience, set xi = i, yi = k + i for i = 1, . . . , k. We
define R = (R1, R2) as follows.

R1 : x1 � . . . � xk � y1 � . . . � yk,

R2 : y1 � x1 � y2 � x2 � . . . � yk � xk.

We claim that C = C(R). Clearly, we have C ⊆ C(R). Now, suppose that D ∈ C(R) \ C, i.e.,
|D| 6= 1,m. Since D has to be contiguous in R1, we have one of the following three cases:

(a) D = {xi, . . . , xj} for some 1 ≤ i < j ≤ k;
(b) D = {yi, . . . , yj} for some 1 ≤ i < j ≤ k;
(c) D = {xi, . . . , yj} for some 1 ≤ i ≤ k, 1 ≤ j ≤ k.
Case (a) is impossible since in R2 the element yj appears between xi and xj . Similarly,
case (b) is impossible since in R2 the element xi appears between yi and yj . In case (c) we
have xk, y1 ∈ D. Since these elements appear at the opposite ends of R2, we conclude that
D = [m], a contradiction.

Next, suppose that m = 2k+ 1, k > 1. Set xi = i, yi = k+ i for i = 1, . . . , k, z = 2k+ 1.
We define R = (R1, R2) as follows.

R1 : x1 � . . . � xk � y1 � . . . � yk−1 � z � yk,

R2 : y1 � x1 � y2 � x2 � . . . � yk � xk � z.

Again, it is clear that C ⊆ C(R). Now, suppose that D ∈ C(R) \ C, i.e., |D| 6= 1,m. As
in the case of even m, D cannot be of the form {xi, . . . , xj} for 1 ≤ i < j ≤ k, or of
the form {yi, . . . , yj} for 1 ≤ i < j ≤ k − 1. Further, if D is of the form {xi, . . . , yj} for
some i = 1, . . . , k and some j = 1, . . . , k − 1, then D must contain all elements that appear
between xk and y1 in R2, i.e., either D = [m] or D = [m] \ {z}, which is impossible. Now,
if D contains z, it must also contain the only element that is adjacent to it in R2, i.e., xk.
As y1 appears between xk and z in R1, we have y1 ∈ D. But then D = [m], since y1 and z
are extreme elements of R2.

Finally, if m = 3, we can set R = (R1, R2, R3), where R1 : 1 � 2 � 3, R2 : 2 � 1 � 3,
R3 : 2 � 3 � 1. To see that C cannot be implemented by any 2-voter profile (R1, R2),
observe that we can assume without loss of generality that R1 is of the form 1 � 2 � 3, and
in R2 element 2 is adjacent to at least one of the remaining elements (and hence forms a
clone with that element). J

Now we are ready to prove Theorem 4.1. However, we will first prove a stronger result,
and only derive Theorem 4.1 as its corollary.

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 19

I Theorem B.2. Any clone structure C is 3-implementable. Moreover, if the tree T (C) does
not have nodes that carry labels of the form x� y � z, then C is 2-implementable. If C is a
string of sausages then it is 1-implementable.

Proof. If C is a string of sausages, then it clearly is 1-implementable. Otherwise, the fol-
lowing argument proves the theorem.

Fix a clone structure C on a set C of size m. If T (C) does not have nodes that carry
labels of the form x� y� z, then set k = 2. Otherwise set k = 3. The proof is by induction
on m. If m = 1 or m = 2, the theorem is obviously true. Further, if C is irreducible,
the theorem follows from Proposition B.1. Otherwise, C contains a proper subfamily D.
By the inductive assumption, the clone structures D and C(D → d), where d 6∈ C, are
k-implementable. Let R = (R1, . . . , Rk) and Q = (Q1, . . . , Qk) be the respective preference
profiles, i.e., C(D → d) = C(R), D = C(Q). Then the proof of Proposition 3.11 shows how to
combine R and Q to obtain a preference profile R′ with k voters such that C = C(R′). J

Now the proof of Theorem 4.1 is immediate.

I Theorem 4.1. Any clone structure is 3-implementable.

Proof. Follows directly from Theorem B.2. J

C Material Missing from Section 5

This part of the appendix contains the missing proofs and discussion regarding clone struc-
tures in single-peaked elections.

Given a profile R with |peak(R)| ≥ 2 that is single-peaked with respect to >, we say
that p1 and p2 are the extreme peaks of R with respect to > if either p1 > p > p2 for each
p ∈ peak(R) \ {p1, p2} or p2 > p > p1 for each p ∈ peak(R) \ {p1, p2}. We say that two
candidates a, b ∈ C are on the same side of c ∈ C \ {a, b} in > if either (a > c ∧ b > c) or
(c > a ∧ c > b). Otherwise, we say that a and b are on the opposite sides of c in >. Given
two orders > and >′ over C, we say that > and >′ agree on D ⊆ C if for each a, b ∈ D it
holds that a > b if and only if a >′ b.

The single-peakedness of a given preference profile can be witnessed by many different
orders; for instance, if R is single-peaked with respect to >, it is also single-peaked with
respect to ←−> . However, it turns out that these orders have the same extreme peaks and
agree (up to an inversion) on all candidates between these peaks.

I Theorem C.1. Consider a preference profile R over C with |peak(R)| ≥ 2 that is single-
peaked with respect to two orders > and >′. Let p1 and p2 be the extreme peaks of R with
respect to > such that p1 > p2. Then p1 and p2 are also the extreme peaks of R with respect
to >′. Moreover, if p1 >

′ p2, then > and >′ agree on the set P = {c | p1 > c > p2}∪{p1, p2}.

Proof. Fix two orders > and >′ that both witness the single-peakedness of R. Consider
two candidates p, q ∈ peak(R), and another candidate c ∈ C. We claim that either p and q
are on the same side of c in both > and >′, or they are on the opposite sides of c in both >
and >′. Indeed, suppose that this is not the case. Without loss of generality we assume that
p > q > c and p >′ c >′ q. Now, consider a preference order Ri such that peak(Ri) = p.
Since R is single-peaked with respect to >, it must be the case that p �i q �i c; on the
other hand, since R is single-peaked with respect to >, we have p �i c �i q, a contradiction.
Hence, either p and q are on the same side of c in both > and >′, or p and q are on the
opposite sides of c in both > and >′.

20 Clone Structures in Voters’ Preferences

Now, consider an arbitrary p ∈ peak(R) \ {p1, p2}. Since p1 and p2 are the extreme
peaks of R and p1 > p2, we have p1 > p > p2. Therefore, by the argument above we have
p1 >

′ p >′ p2. This proves the first statement of the theorem.
To prove the second statement, assume that p1 >

′ p2. Also, without loss of generality,
assume that p1 = peak(R1) and p2 = peak(R2). Let P ′ = {c | p1 >

′ c >′ p2} ∪ {p1, p2}.
Suppose that P \P ′ 6= ∅, and consider a candidate c ∈ P \P ′. The candidates p1 and p2 are
on the opposite sides of c in >, but on the same side of c in >′, a contradiction. Assuming
P ′ \ P 6= ∅ leads to a contradiction as well. Thus, P = P ′. Now, suppose that for some
c, d ∈ P \ {p1, p2} we have c > d and d >′ c. Then, since R is single-peaked with respect
to >, we have p1 �1 c �1 d. However, since R is single-peaked with respect to >′, we have
p1 �1 d �1 c, a contradiction. Thus, the theorem is proved. J

Thus, by Theorem C.1, we can speak of extreme peaks of a single-peaked profile, without
referring to a specific societal axis.

I Proposition 5.2. Let R = (R1, . . . , Rn) be a preference profile over a candidate set C that
is single-peaked with respect to some order >, and let D ∈ C(R) be a clone set for R with
|D| ≥ 2. Then C can be partitioned into pairwise disjoint sets A1, A2, D1, D2, and P so
that C \D = A1 ∪ P ∪A2, D = D1 ∪D2, D1 6= ∅, D2 6= ∅, and

A1 > D1 > P > D2 > A2.

Further, if P 6= ∅, then peak(R) ⊆ P , and, moreover, P �i D �i A1 ∪ A2 for each
i = 1, . . . , n.

Proof. Suppose that our first claim is not true. Then there exist two candidates c1, c2 ∈ C\D
and three candidates d1, d2, d3 ∈ D such that d1 > c1 > d2 > c2 > d3. Let p = peak(R1).
If p > d2 or p = d2, we have d2 �1 c2 �1 d3 and hence D is not contiguous in R1, a
contradiction. Similarly, if d2 > p, we have d2 �1 c1 �1 d1, a contradiction again. This
proves our claim regarding the partition of C. To see that we can ensure that both D1 and
D2 are non-empty, note that if, e.g., D1 = ∅, we can modify the partition by merging P into
A1 (so that the new P is empty), and repartitioning D into two non-empty sets (recall that
|D| ≥ 2).

To prove the second claim, consider an arbitrary preference profile Ri. Since P 6= ∅,
the peak of Ri must be in P , as otherwise it would be impossible for Ri to rank members
of D contiguously. Now, let us show that P �i D. Suppose that this is not the case, i.e.,
d �i p for some d ∈ D, p ∈ P . Since both D1 and D2 are non-empty, we can pick two
alternatives d1 ∈ D1, d2 ∈ D2. As Ri ranks members of D contiguously, it has to be the
case that D �i p, and, in particular, {d1, d2} �i p. But we have d1 > p > d2, so d1 �i p

implies p �i d2, a contradiction. Thus P �i D.
Finally, let us show that D �i A1 ∪ A2. Since the peak of Ri is in P , A1 > D1 implies

D1 �i A1, and D2 > A2 implies D2 �i A2. Suppose for the sake of contradiction that a �i d

for some a ∈ A, d ∈ D. Then either a ∈ A1, d ∈ D2 (and hence D1 �i a �i d) or a ∈ A2,
d ∈ D1 (and hence D2 �i a �i d). In both cases, we obtain a contradiction with D being
contiguous in Ri. Thus, D �i A1 ∪A2. This completes the proof. J

I Proposition C.2. Let R = (R1, . . . , Rn) be a single-peaked preference profile over a can-
didate set C, and let D ∈ C(R) be a clone set such that |D| ≥ 2. Let c be some candidate
not in C. Then the preference profile R′ = R(D 7→ c) is single-peaked.

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 21

Proof. Suppose that R is single-peaked with respect to some order > over C. We will now
construct an order >′ over (C \D) ∪ {c} such that R′ is single-peaked with respect to >′.

By Proposition 5.2, we know that C can be partitioned into P , D1, D2, A1, A2 so that
D1 6= ∅, D2 6= ∅ and

A1 > D1 > P > D2 > A2.

If P = ∅, we set >′ to be an order that agrees with > on A1∪A2 and satisfies A1 >
′ c >′ A2.

If P 6= ∅, we set >′ to be an order that agrees with > on A1 ∪ P ∪ A2 and satisfies
A1 >

′ c >′ P >′ A2. In both cases, it is immediate that R′ is single-peaked with respect to
>′. J

I Proposition 5.7. Let R be a preference profile over a set of candidates C. Let D1, . . . , Dk ∈
C(R) be a sequence of pairwise disjoint clone sets, and let c1, . . . , ck be a sequence of distinct
candidates not in C. For each i = 1, . . . , k, let Ri denote a preference profile in which for
each j = 1, . . . , k, j 6= i, Dj is decloned to cj. Then R is single-peaked if and only if each
of the profiles Ri, 1 ≤ i ≤ k, is single-peaked.

Proof. The “only if” direction follows from Proposition C.2. For the “if” direction, we will
give a proof for the case k = 2; the general case follows by induction.

Set R′ = R1(D1 7→ c1) = R2(D2 7→ c2), and let D = D1, c = c1. By Proposition C.2,
R′ is single-peaked; let >′ be some order that witnesses this. The general idea of our proof
is as follows: We will first show that there are orders >1 and >2, both very similar to >′,
witnessing single-peakedness of R1 and R2, respectively. We will then show that the “edits”
needed to turn >′ into >1 and the “edits” needed to turn >′ into >2 are independent and
thus we can turn >′ into an order witnessing single-peakedness of R.

We will now construct an order >1 that is very similar to >′ and witnesses the single-
peakedness of R1. We start with an arbitrary preference order > that witnesses the single-
peakedness ofR1. This order may not have the properties that we are interested in; therefore,
we will construct >1 by taking a “hybrid” of > and >′. We will consider two cases.
D is a clone set of the first type with respect to >. We claim that in this case we can

construct >1 from >′ by replacing c with the members of D, ranked either according to
> or according to ←−> .
Indeed, let p1 and p2 be the extreme peaks of R′ such that p1 >

′ p2, and let B = {b |
p1 >

′ b >′ p2}. If |peak(R′)| = 1, set p1 = p2 to be the unique member of peak(R′) and
let B = {p1}.
Let >c be the order obtained from > by replacing the occurrence of D with c; if p2 >

c p1,
reverse >c. The proof of Proposition C.2 shows that R′ is single-peaked with respect
to >c. Thus, by Theorem C.1, >c and >′ agree on B and rank the members of B
consecutively.
Suppose first that c >c B. If c >′ B then we obtain >1 from >′ by replacing the
occurrence of c with the members of D, ranked in the order of >. If B >′ c, we replacing
the occurrence of c with the members of D, ranked in the order of ←−> . It is easy to see
that R1 is single-peaked with respect to >1. The case B >c c can be handled similarly.
Finally, suppose that c ∈ B. Since >′ and >c agree on B and rank members of B
consecutively, it suffices again to replace the occurrence of c with the members of D,
ranked in the order of >. Clearly, R1 is single-peaked with respect to the resulting order
>1.

D is a clone set of the second type with respect to >. By Proposition 5.2, there is a
(unique) partition of C into sets A1, A2, D1, D2, P such that P 6= ∅, D1 6= ∅, D2 6= ∅,

22 Clone Structures in Voters’ Preferences

and A1 > D1 > P > D2 > A2. Further, for each Ri ∈ R1 it holds that P �i D �i A.
This implies that each R′i ∈ R′ is of the form P �′i c �′i A. Thus, both P and P ∪ {c}
are clone sets for R′. Moreover, P ∩ peak(R′) 6= ∅, so by Corollary 5.3 P is a clone
set of the first type with respect to >′. Thus, we have either A′1 >′ c >′ P >′ A′2
or A′1 >′ P >′ c >′ A′2 for some A′1, A

′
2 such that A′1 ∪ A′2 = A; assume with-

out loss of generality that A′1 >′ c >′ P >′ A′2. Consider the order >1 given by
A′1 >

1 D1 >
1 P >1 D2 >

1 A′2, which agrees with >′ on C \D and agrees with > on D.
Clearly, R1 is single-peaked with respect to >1.

In both cases, we derive an order >1 that witnesses the single-peakedness of R1 from >′

by either replacing the occurrence of c with the members of D (if D is a clone set of the first
type), or replacing c with some members of D and inserting the remaining members of D
into a clearly specified position in >′. Now, recall that R1(D1 7→ c1) = R2(D2 7→ c2), and
therefore >′ also witnesses the single-peakedness of R2(D2 7→ c2). Hence, we can derive an
order >2 that witnesses the single-peakedness of R2 from >′ in a similar manner. Crucially,
the “edits” required to obtain >1 from >′ are independent of the edits required to obtain
>2 from >′. Consequently, if we apply these edits jointly to obtain a new order >∗, this
order witnesses that R is single-peaked, which is exactly what we need to prove. J

I Proposition 5.10. Fat sausages and strings of sausages are single-peaked.

Proof. It suffices to check that the profiles constructed in the proof of Proposition B.1
are single-peaked. For the string of sausages, this is immediate: the respective order > is
given by 1 > . . . > m. For the fat sausage with m = 2k, k ≥ 2, we can use the order
xk > . . . > x1 > y1 > . . . > yk. For the fat sausage with m = 2k + 1, k ≥ 2, we can use the
order z > xk > . . . > x1 > y1 > . . . > yk. Finally, for the fat sausage with m = 3, we can
set 1 > 2 > 3. J

I Proposition 5.11. Let C be a clone structure over a set of candidates C. Suppose that
for each Q-node of the PQ-tree decomposition T (C) of C it holds that all children, except
possibly the leftmost child and the rightmost child, are labeled with singletons, i.e., elements
of C. Then C is a single-peaked clone structure.

Proof. Let us fix C and C as in the statement of the theorem and let T = T (C) be some
PQ-tree decomposition of C. We first describe a societal axis >, and then construct a profile
R that is single-peaked with respect to > and satisfies C(R) = C.

We obtain > as follows. For every pair of candidates c′, c′′ ∈ C, we set c′ > c′′ if in the
DFS traversal of T , the node representing c′ is visited before the node representing c′′. Note
that T is an ordered tree and thus the order of the DFS traversal is uniquely determined;
intuitively, this is simply the left-to-right order of leaves of T .

To describe the profile R, we need some additional notation. As in Definition 5.6, for
every node v ∈ T , we set Cv = {c ∈ C | c is a leaf of T ’s subtree rooted in v}, and let
Dv = C \ Cv. For every node v ∈ T , we will introduce several preference orders that
rank the candidates in Cv ahead of those in Dv. This will ensure that the part of C that
corresponds to v is implemented correctly. Since each preference order in R has to rank all
candidates, we will define for each v ∈ T an order �v on Dv that will be used for ranking
the candidates in Dv in the preference profiles that correspond to v.

The order �v is defined as follows. Let P = (v1, . . . , vk) be the (unique) path from v to
the root, where v = v1, vk is the root, and for each i = 1, . . . , k − 1 the node vi+1 is the
parent of vi. Let c, c′ be two candidates in Dv. Let vi be the first node of P that lies on the

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 23

path from c to the root. Similarly, let vj be the first node of P that lies on the path from
c′ to the root. Then �v orders c and c′ as follows:

1. If i < j then c �v c
′.

2. If j > i then c′ �v c.

3. If i = j then:

a. If both c and c′ are to the left of Cvi+1 in T , then c �v c
′ if and only if c′ > c.

b. If both c and c′ are to the right of Cvi+1 in T , then c �v c
′ if and only if c > c′.

c. If c and c′ are on the opposite sides of Cvi+1 in T , then the one to the left of Cvi+1

precedes in �v the one to the right of Cvi+1 .

Let � be some preference order over Cv that is single-peaked with respect to >. The reader
can verify that any preference order that ranks Cv above Dv, agrees with � on Cv, and
agrees with �v on Dv is single-peaked with respect to >. Further, for each clone D ∈ C such
that either Cv ⊆ D or Cv ∩D = ∅ it holds that the members of D are ranked consecutively
in �v. (The last claim uses the fact that for any Q-node only its leftmost and rightmost
child can be non-singletons.)

We can now describe the profile R. For each node v we construct several preference
orders as follows.

Let v be a P-node with children v1, . . . , vk. For each i = 1, . . . , k, we add four preference
orders, which we will denote by R1

vi
, R2

vi
, R3

vi
, and R4

vi
. Each of them ranks Cv above Dv

and agrees with �v on Dv. Thus, it remains to describe how they order the members of Cv.
Set A = Cv1 ∪ · · · ∪ Cvi−1 , B = Cvi+1 ∪ · · · ∪ Cvk

. We have (see the description below for
clarification):

R1
vi

: Cvi � A � B,

R2
vi

:←−Cvi
� A � B,

R3
vi

: Cvi
� B � A,

R4
vi

:←−Cvi � B � A.

For each occurrence of A and B in the above preference orders, we order member of A and B
either following > or the reverse of >, whichever way is required to ensure single-peakedness.
Each occurrence of Cvi

corresponds to ranking the members of Cvi
according to >, and each

occurrence of ←−Cvi
corresponds to ranking the members of Cvi

according to >.
The preference orders Rj

vi
, j = 1, . . . , 4, ensure that any clone in R that contains both a

member of Cvi
and a member of Cv \ Cvi

has to contain all of Cv. Further, for each clone
D ∈ C, the members of D are ranked consecutively in each Rj

vi
, j = 1, . . . , 4.

Now, let v be a Q-node in T with children v1, . . . , vk; note that k ≥ 3, since in our
construction of PQ-trees all nodes with 2 children are labeled as P-nodes. Then we introduce
voters R1

v1
, R2

v1
, R3

v1
, and R4

v1
, and R1

vk
, R2

vk
, R3

vk
, and R4

vk
, defined in the same way as for

a P-node. This completes the description of R
Clearly, each set in C is a clone in the preference profile R. Conversely, no set D ∈ 2C \C

is a clone in R. Indeed, fix a subset D ∈ 2C \ C, let c be the minimal element of D with
respect to >, and let c′ be the maximal element of D with respect to >. Now consider the
path v1, . . . , vt from c to c′ in T . By construction of R we have

⋃t
i=1 Cvi

⊆ D. However, by
the choice of c and c′ we have D =

⋃t
i=1 Cvi ∈ C, which is a contradiction. J

24 Clone Structures in Voters’ Preferences

D Complete Decloning Algorithm

In this section we give a polynomial-time algorithm that finds optimal decloning toward a
single-peaked profile without making any assumptions on the structure of the initial profile.

We start by proving a preliminary lemma, which may be of independent interest.

I Lemma D.1. Let R be a single-peaked preference profile over a candidate set C, and let
D ∈ C(R) be a clone set such that the set family D = {X ∈ C(R) | X ⊆ D} is a string of
sausages. If |D| ≥ 3, then R is single-peaked with respect to some order > such that D is a
clone set of the first type with respect to >.

Proof. Suppose that |D| ≥ 3 and R is single-peaked with respect to some order >′ such
that D is a clone set of the second type with respect to >′. By Proposition 5.2, there is a
partition of C into sets P , D1, D2, A1, A2 such that D = D1 ∪D2, D1 6= ∅, D2 6= ∅, and
A1 >

′ D1 >
′ P >′ D2 >

′ A2. By the same proposition, peak(R) ⊆ P .
Assume without loss of generality that the first voter in R ranks the candidates in D

as d1 �1 · · · �1 dm. We will now argue that each voter in R ranks the candidates in D

according to �1. Since D is a string of sausages, each voter’s ranking of the candidates in
D coincides with either �1 or ←−�1. Now, suppose that some voter i ranks the candidates in
D according to ←−�1. Since |D| ≥ 3, at least one of the sets D1, D2 has at least two elements.
Assume without loss of generality that |D1| ≥ 2 and let d, d′ be two candidates in D1 such
that and d �1 d

′ (and hence d′ �i d). Since peak(R1) ∈ P and D1 > P , we have d′ >′ d.
However, since peak(Ri) ∈ P , it has to be the case that d �i d

′, a contradiction.
This implies that R is single-peaked with respect to an order > that agrees with >′ on

C \D, agrees with �1 on D, and is of the form A1 > P > D > A2. Clearly, D is a clone of
the first type with respect to >. J

We will now use Lemma D.1 to show that it is never beneficial to partially collapse a
string of sausages into a clone of size 3 or more.

I Proposition D.2. Let R be a preference profile over a set of candidates C, and let D ∈
C(R) be a clone set such that the set family D = {X ∈ C(R) | X ⊆ D} is a string of
sausages. Let D′ ∈ D be a clone set, D′ 6= D, |D′| ≥ 2, and let d′ be a candidate not in C.
If R′ = R(D′ 7→ d′) is single-peaked and |D \D′∪{d′}| ≥ 3, then R is single-peaked as well.

Proof. Let D = {d1, . . . , dm}. We can assume that the first voter ranks the candidates in
D as d1 �1 . . . �1 dm, and D′ = {di, . . . , dj}, where 1 ≤ i < j ≤ m. Note that all voters
in R rank the candidates in D either according to �1 or according to ←−�1, and therefore
D \ {d1, dm} does not contain any peaks of R. Set D∗ = D \ D′ ∪ {d′}. Clearly, D∗ is a
string of sausages in R′. Thus, by Lemma D.1 the profile R′ is single-peaked with respect
to some order >′ such that D∗ is a clone set of the first type with respect to >′, i.e., we
have A1 >

′ D∗ >′ A2, where A1 ∪A2 = C \D.
Suppose that peak(R′) 6⊆ D∗. Then, since D∗ is a string of sausages in R′, the restriction

of >′ on D∗ is either of the form

d1 >
′ . . . >′ di−1 >

′ d′ >′ dj+1 >
′ . . . >′ dm

or of the form
dm >′ . . . >′ dj+1 >

′ d′ >′ di−1 >
′ . . . >′ d1;

by reversing >′ if necessary, we can assume the former. Consider the order > on C that
agrees with >′ outside of D and ranks the elements of D as d1 > . . . > dm. It is easy to see
that R is single-peaked with respect to >.

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 25

On the other hand, suppose that peak(R′) ⊆ D∗. This means that peak(R) ⊆ {d1, dm}.
If |peak(R′)| = 2 then >′ is of the form as in the paragraph above and we can obtain >

from it the same way. If |peak(R′)| = 1 then all preference orders in R′ rank voters in D∗
identically. We obtain > from >′ by replacing the occurrence of D∗ with the occurrence of
D, orders from d1 to dm. J

We will now briefly describe our algorithm DecloneSP(R) that finds an optimal de-
cloning ofR towards a single-peaked profile. It proceeds as BasicDecloneSP(R), with one
exception. Specifically, when DecloneSP(R) processes a node v of type Q with m children
v1, . . . , vm and discovers that v cannot be colored white, it considers two ways of splitting its
children into two contiguous groups, namely, ({v1}, {v2, . . . , vm}) and ({v1, . . . , vm−1}, {vm}).
For each split, it declones the non-singleton group, i.e., removes the respective branches of
the tree and replaces them with one black node. It then checks if the resulting profile
is single-peaked. If yes, it might be possible to recursively expand the singleton node, so
DecloneSP(R) calls itself recursively on the respective subtree. After the recursive calls
that correspond to both splits return, the algorithm chooses the better split. We postpone
the formal description of the algorithm and its proof of correctness to the full version of the
paper; in essence, Proposition D.2 shows that is suffices to consider the splits of the form
described above, and an argument similar to that in the proof of Theorem 5.8 shows that
different branches of the tree can be handled independently.

E Material Missing from Section 6

I Proposition 6.2. The problem of checking if a given profile is single-crossing is in P.

Proof. Suppose that we are given a preference profile R = (R1, . . . , Rn) over a set of candi-
dates C = {c1, . . . , cm}. For each i = 1, . . . , n, we will check if there exists an order � over
[n] in which voter i appears first; we return “yes” if the answer is positive for some i.

Without loss of generality, we can focus on the case i = 1 and assume that voter 1 ranks
the candidates as c1 �1 . . . �1 cm. Now, consider a directed graph G with a vertex set [n]
that has an edge from j to k if there exists a pair of candidates (cx, cy) with x < y such that
cx �j cy, but cy �k cx. Clearly, for every pair of nodes (j, k) at least one of the edges (j, k)
and (k, j) is present in this graph. The single-crossing condition immediately implies that
if there is an edge from j to k, then j precedes k in �. Therefore, if G has a cycle, R is not
single-crossing with respect to any ordering of voters in which voter 1 appears first. On the
other hand, if G is acyclic, it induces a total order over [n], and it is immediate that R is
single-crossing with respect to this order. J

We will now construct the tools needed to prove Theorems 6.3 and 6.4. The following is an
immediate but useful corollary to the definition of single-crossing profiles; to some degree, it
justifies viewing single-crossing profiles as collections of voters over some spectrum of views.

I Observation E.1. If profile R = (R1, . . . , Rn) is single-crossing with respect to the order
1 � 2 � · · ·� n then R′ = (R1, . . . , Rn,

←−
R1) is single-crossing as well.

We now define a family of single-crossing profiles that implements a fat sausage; we will
also use it within the reduction in Theorem 6.4.

I Definition E.2. Let m be a positive integer, m > 2, and let C be an m-element candidate
set. Rename the candidates so that C = {a, b, c1, . . . , cm−2}. We call each profile R =

26 Clone Structures in Voters’ Preferences

{R1, . . . , Rm} of the form:

R1 :a �1 b �1 c2 �1 · · · �1 cm−2

R2 :b �2 a �2 c2 �2 · · · �1 cm−2

R3 :b �3 c2 �3 a �3 · · · �1 cm−2

...
Rm :b �m c2 �m c3 �m · · · �m cm−2 �m a

a slide over C. We refer to a as the sliding candidate.

I Proposition E.3. Let C be a set of candidates and let R be a slide over C. R is single-
crossing and C(R) is a fat sausage.

Proof. LetR = (R1, . . . , Rn) be a slide over C (we will use the notation as in Definition E.2).
R is clearly single-crossing with respect to the order 1 � · · ·�m. We claim that C(R) is a
fat sausage. To see this, first note that if D is a clone set and a, b ∈ D then D = C. This
is so, because Rm ranks b first and a last. Let D be a clone set in C(R). It is easy to verify
that if D contains more than one candidate then it must contain a and b, and thus D = C.
This completes the proof. J

I Proposition E.4. Let m be a positive integer, m > 2, and let R = (R1, . . . , Rm) be a
slide over m-candidate set C. R is not single-crossing with respect to orders other than
1 �1 2 �1 · · ·�1 m and m�2 m− 1 �2 · · ·�2 1.

Proof. For the sake of contradiction assume that there is an order � different from �1 and
�2 with respect to which R is single-crossing. Suppose first that there are some i, j, k ∈ [m]
such that i < j < k and i� k � j.

Let a be the sliding candidate in R. Since j 6= m, there is some candidate c such that
both Ri and Rj rank a above c, but Rk ranks c above a. However, this immediately implies
that R is not single-crossing with respect to �. The remaining three cases (in which there
exist i < j < k such that j � i� k, j � k � i, or k � i� j) can be handled similarly. J

I Theorem 6.3. For every clone structure C there exists a single-crossing profile R such
that C = C(R).

Proof. It is easy to see that each string of sausages can be implemented with a single-crossing
profile because a profile with a single voter suffices. Fat sausages can be implemented by
Proposition E.3. These are the only two types of irreducible clone structures and, thus,
to prove the theorem it remains to show that clone structures implementable using single-
crossing profiles are closed under embeddings.

Let C and D be two clone structures over disjoint sets C and D, such that both C and D
can be implemented with a single-crossing profile. Let R = (R1, . . . , Rn) be a single-crossing
profile over C such that C = C(R) and let Q = (Q1, . . . , Qn) be a single-crossing profile over
D such that D = C(Q). Note that since we can freely duplicate preference orders in a
single-crossing profile, we can assume that both R and Q have the same number of voters.
Further, by Corollary E.1, we can assume that Q1 and Qn are reverses of each other, and
we can assume that both R and Q are single-crossing with respect to the standard order
over integers (1 � 2 � · · ·� n).

Fix an arbitrary candidate c ∈ C. We will construct a profile P = (P1, . . . , P2n−1) such
that C(c → D) = C(P). For each i = 1, . . . , n, we define Pi to be identical to Ri, except

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 27

that we replace the occurrence of c with Q1. For each k = 2, . . . , n, we define P(n−1)+k to
be identical to Rn, except that we replace the occurrence of c with Qk. (Somewhat abusing
our notation, we could write P = (R1(c → Q1), R2(c → Q1), . . . , Rn(c → Q1), Rn(c →
Q2), . . . , Rn(c→ Qn)).)

It is easy to verify that since both R and Q are single-crossing then so is P. Similarly,
it is easy to verify that D ⊆ C(P) and that for each A ∈ C, if c /∈ A, then A ∈ C(P) and if
c ∈ A then (A \ {c}) ∪ D ∈ C(P). Thus, it remains to show that P does not contain any
“parasite” clones.

Clearly, any clone set in C(P) that contains members of C only or members of D only
belongs to C(c→ D). Consider preference orders Pn and P2n−1. By construction, Pn is Rn

with c replaced by Q1 and P2n−1 is Rn with c replaced by ←−Q1 (recall the assumption that
Qn =←−Q1). Thus, any clone set of C(P) that contains both a member of C and a member of
D must contain all members of D. By construction, any clone set X ∈ C(P) that contains
all members of D belongs to C(c→ D). This completes the proof. J

The above embedding construction stands in a sharp contrast to the construction used
for unrestricted profiles (Proposition 3.11). There, we could embed one clone structure
into the other without increasing the number of voters needed to implement the profiles.
Here, every embedding operation nearly doubles the number of votes. Thus, for unrestricted
preferences we need between 1 and 3 voters to implement any given clone structure, but for
single-crossing profiles our construction may require a number of voters that is exponential
in |C|. On the other hand, our construction is certainly not optimal (to see this, compare
the clone structure built in the proof of Theorem 6.4 and the profile that implements it
there, and the profile that would arise from applying the construction from Theorem 6.3 to
implement this clone structure). It is interesting to ask if it is possible to implement every
clone structure over candidate set C with a single-crossing profile with at most poly(|C|)
preference orders.

Let us now turn to the issue of decloning toward a single-crossing profile. Unfortunately,
as opposed to the case of single-peaked elections, for single-crossing the problem is NP-
complete. Our reduction uses the standard NP-complete problem Exact Cover by 3-Sets
(X3C).

I Definition E.5. An instance I = (B,S) consists of a base set B = {b1, . . . , b3k} and a
collection S = {S1, . . . , Ss} of 3-element subsets of B. It is a yes-instance if there exists a
set A ⊆ {1, . . . , s} such that (a)

⋃
i∈A Si = B and (b) for each i, j ∈ A, Si ∩ Sj = ∅.

I Theorem 6.4. Given a profile R over a candidate set C and a positive integer k, it is
NP-complete to decide if there exists a single-crossing profile R′ with c(R′) ≥ k such that
R′ can be obtained from R by decloning.

Proof. Proposition 6.2 implies that this problem is in NP: it suffices to guess clone sets that
need to be decloned and use the algorithm from the proof of Proposition 6.2 to verify that
the resulting preference profile is single-crossing.

To prove that this problem is NP-hard, we give a reduction from X3C. Let I = (B,S)
be an input instance of X3C with B = {b1, . . . , b3k} and S = {S1, . . . , Ss}. By duplicating
sets in S if necessary, we can assume that s > 3k.

We construct a profile R in stages. First let P = (P1, . . . , Ps) be a slide over [s]; to be
specific, we pick 1 to be the sliding candidate, but this choice is irrelevant for the proof.
For each i = 1, . . . , s, we set P ′i to be a group of 2s preference orders, denoted P ′i.1, . . . , P ′i,t,
each identical to Pi; further in our construction we will modify the members of each group

28 Clone Structures in Voters’ Preferences

appropriately. We define P ′ to consist exactly of these s groups of orders: that is, abusing
notation, P ′ = P ′1 + · · · + P ′s. Intuitively, for i = 1, . . . , 3k, group P ′i corresponds to the
element bi of B and, after further modifications that we will introduce in the profile, the role
of group P ′i will be to ensure that it is impossible to pick two sets from S that both contain
bi. The remaining s − 3k groups are added for the sake of uniformity and to maintain the
slide structure within P ′.

Let {C1, . . . , Cs} be a family of disjoint candidate sets such that |Cj | = 6s for each
j = 1, . . . , s. For each j = 1, . . . , s, we let Q′j = (Q′j1 , . . . , Q

′j
6s) be a slide over Cj (picking

an arbitrary member of Cj to be the sliding candidate). We obtain profile Qj by splitting
Q′j into three contiguous groups of size 2s each and swapping the 2j-th and (2j − 1)-th
voter in each group (that is, 2j and 2j − 1, 2j + 2s and 2j − 1 + 2s, and 2j + 4s and
2j − 1 + 4s). Clearly, Qj is single-crossing with respect to the voter ordering �j obtained
from the standard ordering 1� · · ·�6s by swapping the same pairs of voters, namely, 2j and
2j − 1, 2j + 2s and 2j − 1 + 2s, and 2j + 4s and 2j − 1 + 4s. Moreover, by Proposition E.4
the profile Qj is single-crossing with respect to �j and its reverse, but not with respect to
any other order.

We construct our final profile R from P ′ by embedding the profiles Qj , j = 1, . . . , 6s,
into it. Specifically, for each Sj ∈ S such that Sj = {bx, by, bz}, x < y < z, we replace
candidate j with one of the preference orders from Qj = (Qj

1, . . . , Q
j
6s) as follows:

1. For each i, 1 ≤ i < x, in group P ′i we replace candidate j with preference order Qj
1.

2. For i = x and for each ` = 1, . . . , 2s, we replace candidate j in P ′i,` with Qj
` .

3. For each i, x < i < y, in group P ′i we replace candidate j with preference order Qj
2s.

4. For i = y and for each ` = 1, . . . , 2s, we replace candidate j in P ′i,` with Qj
2s+`.

5. For each i, y < i < z, in group P ′i we replace candidate j with preference order Qj
4s.

6. For i = z and for each ` = 1, . . . , t, we replace candidate j in P ′i,` with Qj
4s+`.

7. For each i, z < i < s, in group P ′i we replace candidate j with preference order Qj
6s.

As a result, we obtain a profile R over the candidate set C =
⋃s

i=1 Ci, consisting
of s groups of voters, R1, . . . ,Rs, where each group Ri contains 2s voters denoted by
Ri,1, . . . , Ri,2s. Clearly, R can be constructed in time polynomial in s. We claim that
I is a yes-instance of X3C if and only if there exists a single-crossing profile T with
c(T) ≥ 2sk + (s− k) that can be obtained by decloning R.

Let us assume that there exists a single-crossing profile T with c(T) ≥ 2sk + (s − k)
that can be obtained by decloning R. Just as R was divided into s groups R1, . . . ,Rs,
T is divided into corresponding s groups T1, . . . , Ts. We will show that in this case I is a
yes-instance of X3C.

Note that C(R) is a composition of a fat sausage over [s] and fat sausages over the
candidate sets Ci for i = 1, . . . , s. Thus, C1, . . . , Cs are the only nontrivial clones in C(R).
Define A = {i | Ci is not decloned in T }. We claim that A corresponds to an exact cover of
B, i.e.,

⋃
i∈A Si = B and the sets Si, i ∈ A, are pairwise disjoint.

Since c(T) ≥ 2sk + (s − k) and Cis are the only nontrivial clones in T , it must be the
case that |A| ≥ k. Now, consider two sets Sj and Sk such that j, k ∈ A. Assume that there
exists an element bi such that bi ∈ Sj ∩ Sk. We will show that this implies that T is not
single-crossing. Indeed, since Cj is not decloned and bi ∈ Sj , any order of voters witnessing
single-crossingness of T has to order the voters in Ti = (Ti,1, . . . , Ti,t) according to �j or
its reverse. Similarly, since bi ∈ Sk and Ck has not been decloned, any order witnessing
single-crossingness of T has to order the voters in Ti according to �k or its reverse. By

Edith Elkind, Piotr Faliszewski, and Arkadii Slinko 29

construction, �j and �k are neither identical nor each others’ reverses. Thus, it must be
the case that Sj∩Sk = ∅. In consequence, it must be the case that |A| = k and

⋃
i∈A Si = B.

For the other direction, let us assume that I is a yes-instance and let A ⊆ {1, . . . , s} be
such that

⋃
i∈A Si = B and for each i, j ∈ A we have Si∩Sj = ∅. Let T be a profile obtained

from R be decloning each set Ci such that i /∈ A. We claim that T is single-crossing. To see
this, it suffices to take an order � that orders the groups T1, . . . , Tn of T as T1�T2� · · ·�Ts,
within each group Ti, i = 1, . . . , 3k, orders the voters according to �j , where j ∈ A and
bi ∈ Sj (by choice of A such a j is unique), and within each group Ti, i = 3k + 1, . . . , s,
orders the voters arbitrarily. J

I Proposition 6.5. Given a profile R over candidate set C, a positive integer k, and an
order �, we can decide in polynomial time if there exists a profile R′ with c(R′) ≥ k that is
single-crossing with respect to � and can be obtained from R by decloning.

Proof. We can assume without loss of generality that R = (R1, . . . , Rn) is single-crossing
with respect to the standard order 1 � · · · � n over [n]. Consider any pair of candidates
(cx, cy) that violates the single-crossing condition with respect to �, i.e., cx �1 cy, cx �n cy

and cy �i cx for some i, 1 < i < n; we will write x ⊥ y if this is the case. Clearly, if
R is single-crossing, cx and cy have to be decloned into the same candidate. Let C(x, y)
be the unique minimal (with respect to set inclusion) subset of candidates such that: (a)
cx ∈ C(x, y); (b) cy ∈ C(x, y); and (c) for every pair of candidates ct, cz ∈ C(x, y), and every
candidate cw ∈ C such that ct �i cw �i cz for some i ∈ [n] it holds that cw ∈ C(x, y). The
set C(x, y) is well-defined and can be constructed inductively: we start with cx and cy, and
at each step we add all candidates that appear between some candidates already in C(x, y)
in at least one preference order. A simple inductive argument shows that C(x, y) is a clone
set, and, for R′ to be single-crossing, all elements of C(x, y) must be decloned into the same
candidate. We further observe that the set family {C(x, y) | x ⊥ y} is laminar, i.e., for every
x, y, z, t ∈ [m] such that x ⊥ y and z ⊥ t we have C(x, y) ⊂ C(z, t) or C(z, t) ⊂ C(x, y)
or C(x, y) = C(z, t). Thus, an optimal decloning of R can be obtained by decloning the
maximal (with respect to set inclusion) sets in {C(x, y) | x ⊥ y}. J

	Introduction
	Preliminaries
	Axiomatic Characterization of Clone Structures
	Compact Representations of Clone Structures
	Clones in Single-Peaked Elections
	Clones in Single-Crossing Elections
	Conclusions and Future Work
	Material Missing from Section 3
	Identifying Clone Structures in P

	Material Missing from Section 4
	Material Missing from Section 5
	Complete Decloning Algorithm
	Material Missing from Section 6

