GPU-Accelerated Tracking of the Motion
of 3D Articulated Figure

Tomasz Krzeszowski, Bogdan Kwolek, and Konrad Wojciechowski

Polish-Japanese Institute of Information Technology
Koszykowa 86, 02-008 Warszawa
http://www.pjwstk.edu.pl

Abstract. This paper presents methods that utilize the advantages of
modern graphics card hardware for real-time full body tracking with a
3D body model. By means of the presented methods the tracking of full
body can be performed at frame-rates of 5 frames per second using a
single low-cost moderately-priced graphics card and images from single
camera. For a model with 26 DOF we achieved 15 times speed-up. The
pose configuration is given by the position and orientation of the pelvis as
well as relative joint angles between the connected limbs. The tracking is
done through searching for a model configuration that best corresponds
to the observed human silhouette in the input image. The searching is
done via particle swarm optimization, where each particle corresponds
to some hypothesized set of model parameters.

1 Introduction

The era of increase of performance of single-threaded programs at single sili-
con chip has come to an end. Programs will only increase the performance if
they utilize parallelism. Recently, leading GPU vendors make available GPU
programming environments. For instance, NVIDIA introduced CUDA environ-
ment to perform data-parallel calculations on GPU. As a result, there have been
reported several studies in the literature that exploited GPUs for accelerating
algorithms, including image processing and recognition algorithms. GPUs pro-
vide the best cost-per-performance parallel architecture for data-level parallelism
with high computing demands. The performance bottleneck of most implementa-
tions intended for execution on GPU is memory access. Therefore, the algorithms
to be executed on GPU should be carefully designed in order to achieve good
memory performance, which leads to considerable speed-up of the computations.
Thus, GPUs are not the best choice for all computer vision problems.

Non intrusive human body tracking is a key issue in advanced human-computer
communication. This is one of the most challenging problems in computer vi-
sion being simultaneously one of the most computationally demanding tasks. For
example, a tracker [1] employing 10 annealing layers with 200 particles needed
around 1 hour to process 5 seconds of footage. Considerable amount of work has
been done to achieve reliable and fast articulated motion tracking [2][1][3][4][5].
However, to the best of our knowledge, no GPU implementation of articulated
body tracking has been developed until now.

2 Programming of GPU

In this Section we discuss the architectural features of G80, which are most
relevant to understand our implementation. The G80 graphics processing unit
architecture was first introduced in NVIDIA’s GeForce 8300 GTS and GTX
graphics cards. A GTX 280 card that is compatible with G80 and supports
Computing Capability 1.3 has been used in our experiments. It has 240 cores in
30 streaming 1.3 GHz multiprocessors, which support Single Program Multiple
Data (SPMD) programming model.

The programming of GPU has been considerably simplified through introduc-
ing CUDA framework by NVIDIA. CUDA makes programming of GPU easier
as it hides hardware details allowing a programmer to think in terms of memory
and arithmetic operations, rather than in categories of primitives and textures
being specific to graphical operations. To obtain the best performance from G80-
based GPUs, we have to keep all processors occupied and hide memory latency.
In order to achieve this aim, CUDA supports running hundred or thousands of
lightweight threads in parallel. No extra code is needed for thread management,
and the CPU is capable of running concurrently with the GPU. In CUDA the
programs are expressed as kernels. A part of the application that operates on
different elements of a dataset can be isolated into a kernel that is executed on
the GPU by many different threads. Kernels run on a grid, which is an array of
blocks, whereas each block is an array of threads. Blocks are mapped to multi-
processors and each thread is mapped to a single core. Threads within a block
are grouped into warps.

At any time a multiprocessor can execute a single warp. Every thread of a
warp executes the same instruction but operates on different data. A unique set
of indices is assigned to each thread to determine to which block it belongs and
its location inside it. Threads in one block can communicate each other using the
shared memory, but two threads from two different blocks cannot cooperate via
shared memory. The GPU handles latency by supporting thousands of threads in
flight at once. In current GPUs, context switch is very fast because everything
is stored in registers and thus there is almost no data movement. The card’s
DRAM memory is accessible from different blocks. It is, however, much slower
than the on-chip shared memory. Its latency can be hidden by careful design of
control flow as well as design of kernels. To achieve good performance both high
density of arithmetic instructions per memory access as well as several hundreds
of threads per block are needed. This permits the GPU to execute arithmetic
instructions while certain threads are waiting for access to the global memory.

3 Parallel PSO for Object Tracking

Particle swarm optimization (PSO) [6] is a global optimization, population-based
evolutionary algorithm for dealing with problems in which a best solution can
be represented as a point in a n-dimensional space. The PSO is initialized with
a group of random particles (hypothetical solutions) and then it searches hy-
perspace (i.e. R™) of a problem for optima. Particles move through the solution

space, and undergo evaluation according to some fitness function after each time
step. The particles iteratively evaluate their candidate solutions and remember
the location of their best location with the smallest objective value so far, making
this information available to their neighbors. Particles communicate good posi-
tions to each other and adjust their own velocity and then the position based on
such good positions. Additionally each particle employs a best value, which can
be:

e a global best that is immediately updated when a new best position is found
by any particle in the swarm

e neighborhood best where only a specific number of particles is affected if a
new best position is found by any particle in the sub-population

A topology with the global best converges faster as all the particles are attracted
simultaneously to the best part of the search space. Neighborhood best allows
parallel exploration of the search space and decreases the susceptibility of falling
into local minima, however, it slows down the convergence speed. Taking into
account the computational overheads the topology with global best is utilized
in our approach.

In the ordinary PSO algorithm the update of particle velocity and position
is given by the following equations:

(@) (@) (i) _ (9 (4)

vj(-z) —wv” 4+ e (p) —x) + caryj(Pgj — xy)) (1)

my) — xgi) + v]@ (2)
where w is the positive inertia weight, ’u](-i) is the velocity of particle ¢ in dimen-

sion 7, rg and rézz are uniquely generated random numbers with the uniform

distribution in the interval [0.0, 1.0], ¢1, co are positive constants, p(is the best
position that the particle ¢ has found, p, denotes best position that is found by
any particle in the swarm.

The velocity update equation (1) has three main components. The first com-
ponent, which is often referred to as inertia models the particle’s tendency to
continue the moving in the same direction. In effect it controls the exploration
of the search space. The second component, called cognitive, attracts towards
the best position p(previously found by the particle. The last component is
referred to as social and attracts towards the best position p, found by any par-
(4)

best, Whereas

ticle. The fitness value that corresponds p(® is called local best p.
the fitness value corresponding to pg is referred to as gpest-
Given the above equations the PSO algorithm can be illustrated in the fol-

lowing manner:

1. Assign each particle a random position in the problem hyperspace.
2. Evaluate the fitness function for each particle.
3. For each particle ¢ compare the particle’s fitness value with its p

If the current value is better than the value p](jgst,
(4)

Doy, and the current particle’s position z(? as p(?).

(4)
best*
then set this value as the

4. Find the particle that has the best fitness value gpest.-

5. Update the velocities and positions of all particles according to (1) and (2).

6. Repeat steps 2 — 5 until a stopping criterion is not satisfied (e.g. maximum
number of iterations or a sufficiently good fitness value is not attained).

Our parallel PSO algorithm for object tracking consists of five main phases,
namely initialization, evaluation, p_best, g_best and update. At the beginning
of each frame, in the initialization stage an initial position z(® «— N(pg, X)
is assigned to each particle, given the location p, that has been estimated in
the previous frame. In the evaluation phase the fitness value of each particle is
calculated using a predefined observation model as follows:

F(@W) = p(o™]a?) 3)

where 0(?) is the observation corresponding to (¥, It is the most time consum-
ing operation on GPU. The calculation of the observation model is discussed
in Section 4.2 and the decomposition of this operation into kernels is presented
in Section 4.3. In the p_best stage the determining of p}(jgst as well as p(® takes
place. This stage corresponds to operations from the point 3. of the presented
above PSO pseudo-code. The operations mentioned above are computed in par-
allel using available GPU resources, see Fig. 1. Afterwards, the gpess and its
corresponding p, are calculated in a sequential task. Finally, the update stage
that corresponds to point 5. in the PSO pseudo-code is done in parallel. That
means that in our implementation we employ the parallel synchronous parti-
cle swarm optimization. The synchronous PSO algorithm updates all particle
velocities and positions at the end of every optimization iteration. In contrast
to synchronous PSO the asynchronous algorithm updates particle positions and
velocities continuously using currently accessible information.

<7 Start)
T
[

! i
init x(©@ ‘ ‘ init x(‘

_/

1 7 !
! VO, xO ‘ ‘ v, xD ‘ e rvm, x™ update !

””” [tttk Bttt etk

Fig. 1. Decomposition of synchronous particle swarm optimization algorithm on GPU

4 Implementation of Articulated Body Tracking on GPU

4.1 Tracking framework

The articulated model of the human body has a form a kinematic chain consisting
of 11 segments. The 3d model is constructed using cuboids that model the pelvis,
torso, head, upper and lower arm and legs. The configuration of the model is
defined by 26 DOF. It is determined by position and orientation of the pelvis in
the global coordinate system and the relative angles between connected limbs.
Each cuboid can be projected into 2d image plane via perspective projection. To
obtain a projected image of the model we transform the corners via perspective
projection and afterwards we perform a rendering of the cuboids. This way we
obtain the image of the 3d model in a given configuration. During calculation of
the fitness function we employ a regular rectangular grid to extract pixel values
for each body part in such a rendered image.

In most of the approaches to articulated object tracking a background sub-
traction algorithms are employed to extract a person undergoing tracking. Ad-
ditionally, image cues such as edges, ridges, color are often employed to improve
the extraction of the person. In this work the images of the person undergo-
ing tracking are synthesized on the basis of 3d models of the human body. The
parameters are determined using model in a configuration, which has been man-
ually determined through fitting of the model to the person on the input images.
Given such parameters we generate synthesized images of the human body. In
the experiments we employ animations generated via Blender application! as
well as images that are generated on the basis of the same 3d model that is used
in tracking, see sub-images in Fig. 2.

4.2 Observation model

The most computationally and time demanding operation is generation of the
body image on the basis of the hypothesized body configurations established
by particles. Precisely speaking, the most computationally intensive operation is
the rasterization of the triangles. The rendering stage creates a two dimensional
display of triangles given the transformed vertexes of the 3d model. It involves the
calculation of the pixels forming the triangles. GPU designers have incorporated
many rasterizatiom algorithms over the years. In all rasterization algorithms the
pixel is treated independently from all other pixels. Therefore, the GPU can
handle all pixels in parallel.

The so-called painter’s algorithm consists in sorting the object or polygons
from back to front and then rasterizing them in that order. Currently, a modified
painter’s algorithm is used to perform the depth test. In the parallel rendering
algorithm, which is based on a modified version of the painter’s algorithm, we
perform painting in the reverse order, i.e. we first paint out the nearest element.
Afterwards, we paint out the triangles according to the order of the model parts.

! http://www.blender.org/

In order to paint out a given triangle we determine the surrounding rectangular
sub-image and then we verify all pixels of such a sub-image. If a considered pixel
had not been previously painted out we verify if it belongs to the considered
triangle. If yes, we paint it out.

The fitness function (3) is determined on the basis of the overlap degree
between the reference image of the body and the current rasterized image. The
overlap degree is calculated through checking the overlap from the reference to
the current rasterized image as well as from the current rasterized image to the
reference body. The larger the degree overlap is, the larger is the fitness value.
Figure 2 depicts some images used in the experiments. The images were acquired
by surveillance cameras in a student hostel. In the sub-images at the bottom-left
the reference images are shown.

Fig. 2. 3d model-based human body tracking, frames #5, #40, left bottom: appearance
images of person undergoing tracking. The overlap degree between the appearance
image and the projected model into 2d image plane is 0.84 and 0.86, respectively.

4.3 Algorithm decomposition

In order to decompose an algorithm into GPU we should identify data-parallel
portions of the program and isolate them as CUDA kernels. In the initializa-
tion stage we generate pseudo-random numbers using the Mersenne Twister [7]
kernel provided by the CUDA™ SDK. From uniform random numbers we gen-
erate a vector of normal random numbers using Box Mueller transform based
on trigonometric functions [8] to initialize the positions of the particles. At the
beginning of each iteration we generate the random numbers for all particles
through single call of the kernel. Taking into account that the maximum num-
ber of threads in one block is 512, in one block we initialize 19 particles. In the
evaluation phase we employ two kernels. The first kernel is used in rendering of
the 3d body model into 2d plane, whereas the second one in calculation of the
measure similarities between projections of the 3D model and the content of the
reference images. In our approach each block is responsible for rendering one
image. Taking into account the available number of registers we run 448 threads
and each thread is in charge of painting out of several pixels. In order to obtain

the degree of overlap the comparison of the images is done using one dimen-
sional textures and a single thread compares the pixels from two corresponding
image columns. In the update phase each thread is responsible for updating one
dimension of the particle’s location.

5 Experiments

In this Section, we first compare the runtimes of our GPU and CPU implemen-
tations and present our speedup. Then, we show the tracking performance using
synchronous and asynchronous implementations of PSO. This is followed by a
discussion of the factors that limit our performance.

The experiments were conducted on a notebook with 4 GB RAM, Intel Core
2 Duo, 2 GHz processor with GT 130M graphics card. The graphics card has 4
stream multiprocessors with 1.5 GHz, each with 8 cores. It is equipped with 512
MB RAM, 64 KB constant memory and 16 KB common memory. We conducted
also experiments on a PC with single NVIDIA GTX 280 card. The card has 30
stream multiprocessors with 1.3 GHz clock, each with 8 cores. It has 1 GB RAM,
64 KB constant memory and 16 KB common memory.

Table 1 shows computation time that has been obtained on CPU, GT 130M
and GTX 280. Using the PSO algorithm with 500 particles and 5 iterations
we can process in real-time 5 frames per second. The average degree of overlap
between the reference body image and the projected body with the estimated
configuration in the 50 frame long sequence is slightly below 0.8. The results in
table demonstrate that the mobile graphics card was also capable of obtaining
a speed-up.

Table 1. Computation time [sec.]

CPU | GT 130M | GTX 280

#4000, 10 it.| 48.89 20.35 2.94
#2000, 10 it.| 24.51 10.06 1.49
#1000, 10 it.| 12.28 5.26 0.75
#500, 10 it. | 6.12 2.65 0.39
#4000, 5 it. | 26.74 11.19 1.59
#2000, 5 it. | 13.38 5.52 0.81
#1000, 5 it. | 6.68 2.87 0.41
#500, 5 it. 3.34 1.45 0.22

We compared the effectiveness of the synchronous and asynchronous version
of the PSO algorithm. The asynchronous PSO that is used in our CPU imple-
mentation gives something better results. For instance, for a set-up with 2000
particles and 10 iterations the overlap degree for asynchronous PSO is equal to
0.85, whereas for synchronous version it is equal to 0.80. In a set-up with 500

particles and 10 iterations the overlap degree is equal to 0.79 and 0.78, respec-
tively.

The most time-consuming operation of the tracking algorithm is the render-
ing of the 3d model. This operation amounts to 0.92 of whole processing time.
The comparing of images in order to determine the degree of overlap amounts
to 0.05 of full amount of processing time.

6 Conclusions

In this paper we presented an algorithm for articulated human motion tracking
on GPU. The articulated model of the human body consists of 11 segments and
has 26 DOF. We showed that our GPU implementation has achieved a speedup
of more fifteen times than our CPU-based implementation. The tracking of full
body can be performed at frame-rates of 5 frames per second using a single
low-cost graphics card and single camera images. With rapid development of
the graphics card technologies, the tracking speed is expected to be further
accelerated in the near future by newer generations of the GPU architecture.

Acknowledgment

This paper has been supported by the project “System with a library of modules
for advanced analysis and an interactive synthesis of human motion” co-financed
by the European Regional Development Fund under the Innovative Economy
Operational Programme - Priority Axis 1. Research and development of modern
technologies, measure 1.3.1 Development projects.

References

1. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed
particle filtering. In: IEEE Int. Conf. on Pattern Recognition. (2000) 126-133

2. Poppe, R.: Vision-based human motion analysis: an overview. Computer Vision
and Image Understanding 108 (2007) 4-18

3. Fritsch, J., Schmidt, J., Kwolek, B.: Kernel particle filter for real-time 3D body
tracking in monocular color images. In: IEEE Int. Conf. on Face and Gesture Rec.,
Southampton, UK, IEEE Computer Society Press (2006) 567-572

4. Zhao, T., Nevatia, R., Wu, B.: Segmentation and tracking of multiple humans in
crowded environments. PAMI 30 (2008) 1198-1211

5. Wu, C., Aghajan, H.K.: Human pose estimation in vision networks via distributed
local processing and nonparametric belief propagation. In: Int. Conf. on Advanced
Concepts for Intelligent Vision Systems, LNCS, Springer (2008) 1006-1017

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int.
Conf. on Neural Networks, IEEE Press, Piscataway, NJ (1995) 1942-1948

7. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudorandom number generator. ACM Trans. Model. Comput.
Simul. 8 (1998) 3-30

8. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates.
The Annals of Mathematical Statistics 29 (1958) 610-611

