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Abstract. This paper proposes the use of a particle filter with em-
bedded particle swarm optimization as an efficient and effective way of
dealing with 3d model-based human body tracking. A particle swarm
optimization algorithm is utilized in the particle filter to shift the par-
ticles toward more promising configurations of the human model. The
algorithm is shown to be able of tracking full articulated body motion
efficiently. It outperforms the annealed particle filter, kernel particle filter
as well as a tracker based on particle swarm optimization. Experiments
on real video sequences as well as a qualitative analysis demonstrate the
strength of the approach.

1 Introduction

Human body tracking has many applications, including, but not limited to,
visual surveillance, human computer communication and recognizing human ac-
tivities [1]. One problem of human body tracking is to estimate the joint angles
of a human body at any time. This is one of the most challenging problems in
the area of computer vision because of self-occlusions, a high dimensional search
space and high variability in human appearance. The high dimensionality of the
configuration space and the exponentially increasing computational cost are the
main challenges in full articulated motion tracking [2]. An articulated human
body can be thought of as including at least 11 body parts. This may involve
around 26 parameters to describe the full body articulation. By building a map-
ping from configuration space to observation space, 3d model-based approaches
rely on searching the pose space to find the body configuration that best-matches
the current observations [3]. Matching such complex and self-occluding model to
human silhouette might be especially difficult in cluttered scenes. In monocular
image sequence this matching problem is under constrained. The major problems
with monocular 3d body tracking arise due to depth ambiguities, movements per-
pendicular to the image plane and occlusion. Multiple cameras and simplified
backgrounds are often employed to ameliorate some of such practical difficulties.

Particle filtering is one of the most popular algorithms for tracking human
body motion. After the seminal work [4] the particle filter has been utilized in
human motion tracking in [2]. In a particle filter each particle corresponds to



some hypothesized set of model parameters. Given the number of parameters
needed to describe a realistic articulated model of the human body is larger
than twenty, the number of particles of that are required to adequately ap-
proximate the underlying probability distribution in the body space might be
huge. Hence, a considerable amount of approaches has been proposed to over-
come the course of dimensionality inherent in the particle filtering. Given the
number of allowable configurations of the human body is restricted by biome-
chanical constraints, some approaches to human motion tracking are based on
learning a low-dimensional representation of the high-dimensional configuration
space. Tracking of human motion in such a low-dimensional manifold results in
lower numbers of required particles. Gaussian Process Latent Variable Models
(GPLVM) [5] provide inverse mapping from the pose space to the latent space.
However, manifolds can only be learned for specific activities, such as walking,
jumping or running, and it unclear how this approach can be extended to broader
classes of human motion.

The likelihood function in human motion tracking can be very peaky with
multiple local maxima. In [6], to cope with multiple local maxima the particles
are repositioned via a deterministic search in order to attain a better concentra-
tion around significant modes of the importance function. A different approach
has been proposed in [7] where the promising areas in the probability distribu-
tion are identified through iterative mode-seeking using mean-shift. Experiments
on real monocular image sequences demonstrated that the algorithm is capable
of tracking two arms of upper human body at 7.5 Hz on a laptop computer.
Another approach that has gained considerable interest in this type of problems
consists in a coarse to fine search on the importance function of the particle
filter [2]. Very good results were obtained in a setup with three cameras. As
reported in [8] the annealed particle filter has good performance if the images
are acquired with frame rate of 60 fps and the tracking performance of such a
filter drops when the frame rate is below 30. Another disadvantage of the an-
nealed particle filter is that it often fails to represent multiple hypotheses. In [9]
it has been shown that particle swarm optimization outperforms the simulated
annealing in terms of accuracy and consistency of the results.

One drawback of using particle filter in human motion tracking is the in-
ability of samples to explore the probability distribution efficiently. This arises
because the particles do not move according to their former experience and their
relationship to other particles. Hence, they have reduced capability to escape the
local minima. Therefore, in this work we propose an algorithm which combines
particle swarm optimization (PSO) [10] and particle filtering as an effective way
for human motion tracking. The interactions between particles in the course of
swarm-based optimization lead to the emergence of global and collective behav-
ior, which allows the particles to gravitate towards the global extremum, whereas
the particle filter is responsible for maintaining multi-modal densities.

In the reminder of this paper we briefly outline particle filtering and particle
swarm optimization. We then show our algorithm. Afterwards we discuss our
results in more detail. Finally, a summary is presented.



2 The algorithm

Particle swarm optimization is a population based optimization technique, which
differs from other evolutionary techniques by inclusion of particle velocity. Par-
ticles can be attached to each other by any kind of neighborhood topology rep-
resented by a graph. In the fully connected neighborhood topology, which is
represented by fully connected graph all particles in the swarm are connected
to one another. Each particle in a swarm represents a candidate solution of the
problem. With respect to a fitness function, the best location that has been vis-
ited thus far by a particle is stored in the particles memory. The fitness values
corresponding to such best positions are also stored. Additionally the particles
have access to the best location of the whole swarm, i.e. a position that yielded
the highest fitness value. A particle therefore employs the best position encoun-
tered by itself and the best position of the swarm to move itself toward an
optimal value of the objective function.

Each particle ¢ maintains the current position x;, current velocity v;, and
its best position y;. For every iteration, the jth-component of particle velocity
vector v; is updated as follows:

V5 — w5 + 11,5 (Yij — Tij) + cara,(U5 — Ti5) (1)

where w is the positive inertia weight, v; ; is the velocity of particle ¢ in dimension
J, r1,; and ro; are uniquely generated random numbers in the interval (0, 1),
c1,Cy are positive, cognitive and social constants, respectively. The position of
each particle is updated according to the following equation:

Tij < Tij + Vi (2)

Given the above rules of position and velocity update, the particle swarm
optimization algorithm can be expressed as follows:

1. Function y = PSO (x;)

If x; == [] (empty matrix), initialize x;

Initialize v;, y; = x;, y = arg miny, f(x;)

Repeat

For each particle ¢

Apply (1) to update velocity of each particle
Apply (2) to update position of each particle
Evaluate function f(-) at updated positions x;
If f(x;) < f(y:), update the local best values, y; «— x;
If f(y:) < f(¥), update the global best, y < y;

Until number of function evaluations < max_iter
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The fitness value of each particle is evaluated by a predefined observation
model as follows:

f(xi) = plog[x;) (3)

where o; is the observation corresponding to x;.



The presented above particle swarm optimizer can be employed to carry out
a global gradient-less stochastic search for the best configuration of the model
parameters. The tracking of the human figure can also be formulated as the
computation of the posterior probability distribution over the parameters of the
model at time ¢ given a sequence of images. Due to the nonlinearity of the
likelihood function over model parameters the computation of the probability
distribution is complicated. For these reasons the posterior is typically repre-
sented as a weighted set of particles, which are then propagated via a particle
filter.

Particle filters approximate stochastically the state posterior with a set of N
weighted particles, (s, ), where s is a sample state and 7 is its weight. This set of
particles is propagated over time. At each time ¢ the particles undergo selecting,
predicting and re-weighting. In the select stage the algorithm randomly selects N
particles from {s;_1} based on weights ﬂéﬁ)l In the predict phase the particles
undergo moving according to deterministic motion model. After the drift the
particles are perturbed individually. Afterwards, based on observation model
p(0;]x;) the likelihood for each new sample is calculated, and finally weights are
updated to obtain {s\™, x{™}.

In our approach to articulated motion tracking we exploit the power of the
particle filter to represent multimodal distributions, which arise due to strong
nonlinearity of the likelihood function over model parameters. Through the use of
the particle filter less likely model configurations are not discarded immediately,
but have chance to be considered in the next time. In articulated motion tracking
the weakness of the particle filter consists in that the particles typically do
not cluster around the true state of the figure and instead they concentrate
around local maximas in the posterior distribution. In consequence, if particles
are too diffused the tracking can be lost. In order to cope with this we employ
particle swarm optimization in the particle filter to shift the particles toward
more promising regions in the configuration space. The modified particle filter
can be expressed as follows:

Select: Randomly select N particles from {s;_1} based on weights ﬂif)l.

Predict: Perturb individually particles

Shift: Shift the particles via the PSO

Re-weight: Get the likelihood for each new sample. Update the weights to
obtain {si™, x{™}
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5. Estimate: Estimate the state using the mean E[x,] =~ Y0 (™ g™

3 Experimental results

The model of the human body has a form a kinematic chain consisting of 11
segments and the configuration of the model is defined by 26 DOF. The artic-
ulated model consists of cuboids modeling pelvis, torso, head, upper and lower
arm and legs. A pose configuration is determined by position and orientation
of the pelvis in the global coordinate system as well as relative angles between



connected limbs. Given the parameters of the camera each cuboid can be pro-
jected into 2d image plane. To simplify the projection onto the image we project
the corners via perspective projection and afterwards a rendering of the cuboids
takes place. A regular rectangular grid is used to extract pixel values for each
body part in such a rendered image.

Successful approaches to articulated object tracking typically rely on accurate
extraction of foreground silhouettes using background subtraction. In [8][11][7]
the edges have additionally been utilized in tracking of the human motion. In or-
der to carry out qualitative analysis we construct foreground silhouettes through
manual fitting of the 3d model to the person on the input images and then we
render the model. This way we have in disposal the configuration of the human as
well as the foreground image. Such a configuration reflecting the current human
pose determines the reference image, which undergoes matching via the tracking
algorithm. The tracking algorithm operates in 26 dimensional state space and
generates pixel maps that are employed in computing the likelihoods.

The experiments were conducted on images acquired from surveillance cam-
eras that are situated in a student hostel, see Fig. 1. For visualization purposes
the reference sub-images were placed at the bottom left part of the input images.
By projecting the body model into the images we can extract information for
each body part as shown in the mentioned sub-images. The size of the input
images is 720x576 and they were acquired at 6 fps. The low frequency of the
input sequence comprises considerable challenge for the examined algorithms.

Fig. 1. 3d model-based human body tracking, frames #5, #15, #25 and #35, left bot-
tom: appearance image of person undergoing tracking. The degree of overlap between
the appearance image and the projected model into 2d image plane of the camera is
0.86, 0.80, 0.80 and 0.79, respectively.



A comparison among particle filter with embedded particle swarm opti-
mization (PF+PSO), ordinary particle filter (PF), particle swarm optimization
(PSO), kernel particle filter (KPF) [7], and annealed particle filter (APF) can
be seen in Tab. 1. It can be observed that the PF+PSO algorithm is better in
comparison to all remaining algorithms in term of the accuracy of body motion
tracking. Both PSO+PF and PSO are superior to the remaining algorithms in
terms of the computation time. Using 200 particles and 5 iterations in an unopti-
mized C/C++ implementation of the PF+PSO-based algorithm, a 2.0 GHz PC
requires about 1.36 sec. per image to perform the motion tracking, most of the
time being spent in the evaluation of the fitness function. In such a configuration
of the tracker the estimates of the human pose in the sequence from Fig. 1 have
acceptable accuracy. At the mentioned figure we demonstrate some experimental
results, which were obtained using 500 particles and in 10 iterations. The results
obtained via PSO are superior in comparison to results produced by KPF and
APF. In the employed test sequence, which has been acquired with relatively
low frequency, the KPF behaved better than APF. The discussed results are
averages from three independent runs of the algorithms.

Table 1. Computation time (4-th column) and average degrees of overlap between
the reference image of human body and the estimated body pose (3-rd column) for
particle filter (PF), particle swarm optimization (PSO), particle filter with particle
swarm optimization (PF+PSO), kernel particle filter (KPF) and annealed particle
filter (APF).

#particles | #it. | overlap [%] | time [sec.]

20000 0.75 22.92
PF 10000 0.74 11.39
5000 0.73 5.69

2000 0.67 2.71
1000| 10 0.83 12.45

500 10 0.80 6.20

200| 10 0.76 2.49

PSO 1000{ 5 0.81 6.79
500 5 0.78 3.40

200f 5 0.76 1.36
1000| 10 0.84 12.63

500/ 10 0.83 6.24

200| 10 0.80 2.50

PEFPSO 1000, 5 0.82 6.90
500 5 0.81 3.41

200 5 0.78 1.36

2000, 3 0.76 7.26

KPF 1000{ 3 0.74 3.50
2000 10 0.79 22.38

APF 1000| 10 0.78 11.16
500/ 10 0.75 5.60




In Fig. 2 we demonstrate the degree of overlap versus frame number for
the algorithms utilized in our experiments. It can be observed that the results
obtained via PF+PSO algorithm are better. The PSO-based tracker is superior
to PF+PSO tracker in the initial part of the image sequence. The magnitude
of change of the overlap degree for PF+PSO is smaller in comparison to other
curves. For PF+PSO the degree of overlap does not drop below 0.78, particularly
in the end part of the sequence, where the remaining trackers achieve worse
overlap degrees. The results for PF+PSO, PSO and APF were obtained using
500 particles and 10 iterations. The results for KPF were obtained with 2000
particles and 3 iterations, whereas 10000 particles were employed in PF. In
Fig. 1 we can see how well the rendered model with configuration determined
by PF+PSO fits the human silhouette, which has been shot in frames #5, #15,
#25 and #35. In the experiments we have used simple motion models and we
expect that prior model of the human motion can improve further the robustness
as well as the accuracy of the motion tracking.

degree of overlap versus frame number
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Fig. 2. Degree of overlap between the reference human body and the rendered image
on the basis of the best particle

4 Conclusions

The most important general reason for the weakness of the particle filter is that
in high dimensional state spaces the particles can not cluster around the true
state and instead they have tendency to migrate towards local maximas in the
posterior distribution. In this work, an effective algorithm for tracking human



motion has been presented. The experimental results suggest that particle filter
combined with particle swarm optimization achieves the best results in terms of
the accuracy of the tracking. The algorithm is capable of tracking full articulated
body motion efficiently. We have demonstrated the behavior of the algorithm on
challenging human motion sequence. The algorithm has been compared with
particle swarm optimization, kernel particle filter, annealed particle filter and
ordinary particle filter. The tracker using particle swarm optimization achieves
slight worse tracking accuracy than particle filter combined with particle swarm
optimization. In image sequences acquired at low frame rates it outperforms
both the annealed particle filter and the kernel particle filter.
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