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Summary. This work presents an approach for 3D human pose tracking, animation
and evaluation. The tracking of the full body is done using a modified particle swarm
optimization and two synchronized cameras. On the basis of the 3D pose estimates
we generate animated human motion. The animated images are processed in the
same way as videos taken from the CCD cameras. This way we obtained ground-
truth and utilized it in evaluations of the motion tracker.

1 Introduction

3D articulated human body tracking consists in determining the location of
the person and orientation of each body part. The ability to track 3D pose is
an important one, not least in the areas of visual surveillance, clinical analysis
and sport (biomechanics). Tracking human body articulation is a difficult task
because of high dimensionality of the state space. Another reason that makes
this task difficult is the problem of self-occlusion, where body parts occlude
each other depending on the body configuration. In vision based-pose tracking,
inherent ambiguity arises as 3D pose parameters are estimated on the basis of
2D image features. Typically, multiple cameras are used to reduce ambiguities
in a single view caused by occlusion.

Typically, tracking involves searching for the current pose using the esti-
mate from the previous frame guided by a locomotion model. Particle filters
[1] are commonly employed in 3D pose tracking as they can maintain multi-
ple hypotheses. However, in ordinary particle filtering the number of samples
needed for accurate tracking increases exponentially with the number of pa-
rameters. Moreover, even for low dimensional spaces it can be observed a
tendency of particles to become concentrated in a single mode of the prob-
ability distribution and thus the tracking performance depends considerably
on the quality of the importance sampler. As human body contains no less
than 10 body parts, equating to more than 20 degrees-of-freedom (DOF),
the number of particles in an ordinary particle filter might be huge. In such



2 T. Krzeszowski, B. Kwolek

spaces, sample impoverishment may prevent the particle filter from maintain-
ing multimodal probability distributions over long periods of time. Therefore,
considerable research was done in order to develop methods with improved
concentration of particles near true body poses. Deutscher et al. [2] proposed
an annealed particle filter, which employs the annealing process to gradually
move the particles towards the global maximum.

Gavrila and Davis [3] utilize an explicit hierarchical search to subsequently
locate parts of the three-based kinematic model, reducing the search com-
plexity. In the discussed approach, the torso was localized using color cues.
However, in practice, it is not easy to localize the torso and hence to pro-
vide a good starting guess for the search. Furthermore, imprecision in the
localization of the torso, among others due to occlusion, can easily lead to
unrecoverable failure.

Recently, particle swarm optimization (PSO) [4], a population based
stochastic optimization technique has gained considerable interest in the field
of full-body articulated tracking [5][6]. Unlike the independent samples in the
particle filter, the simple agents in the PSO interact with one another and
with their environment in the course of searching for the best solution. Al-
though there is no centralized control, such interactions between agents lead
to the intelligent global behavior, unknown to the individual agents, which
in turn results in more effective exploration of the high-dimensional search
space.

In this paper we discuss a cascaded algorithm for 3D pose tracking, which
is based on particle swarm optimization. In the first step, it determines the
pose of the whole body using reduced number of particles. Afterwards, given
the location of the torso that was determined in such a way we perform the
rediversification of the particles in the part of the vector state that describes
the pose of the legs. The rediversification is done on the basis of the pose
of legs determined in the global stage. That means that for the best pose of
the torso, which was determined in advance, we generate several hypothesized
configurations of the legs. Finally, we carry out optimization using only the
part of the state vector that describes pose of the legs. At this stage, in the
objective function we consider only legs. In a similar manner we determine
the pose of the hands. We present the experimental results that were obtained
using two synchronized and calibrated cameras, overlooking the same scene.
Our attention was restricted to walking motions. Using the estimated 3D
poses, a computer animation of human walking has been done. For each 3D
pose, such a virtual human has been overlaid on the background image. The
images were then processed in the same way as videos taken from the CCD
cameras. This way, for a given pose, which can be perceived as ground-truth,
we got animated human. On the basis of such images we estimated 3D poses
and performed qualitative evaluations of the tracking algorithm.
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2 The algorithm

2.1 Tracking algorithm

Particle swarm optimization [4] is a global optimization, population-based
evolutionary algorithm for dealing with problems in which a best solution
can be represented as a point in n-dimensional space. The PSO is initialized
with a group of random particles (hypothetical solutions) and then it searches
hyperspace (i.e. R™) of a problem for optima. Particles move through the solu-
tion space, and undergo evaluation according to some fitness function. Much
of the success of PSO algorithms comes from the fact that individual par-
ticles have tendency to diverge from the best known position in any given
iteration, enabling them to ignore local optima while the swarm as a whole
gravitates towards the global extremum. If the optimization problem is dy-
namic, the aim is no more to seek the extrema, but to follow their progression
through the space as closely as possible. Since the object tracking process
is a dynamic optimization problem, the tracking can be achieved through
incorporating the temporal continuity information into the traditional PSO
algorithm. This means, that the tracking can be accomplished by a sequence
of static PSO-based optimizations to calculate the best object location, fol-
lowed by re-diversification of the particles to cover the possible object state in
the next time step. In the simplest case, the re-diversification of the particle
1 can be realized as follows:

2 N(3_1, X)) (1)

In the algorithm that we call global-local particle swarm optimization
(GLPSO) [7], at the beginning of each frame the estimation of the whole
body pose takes place. In the first step, it determines the pose of the whole
body using reduced number of particles. Afterwards, given the location of the
torso that was determined in such a way we perform the rediversification of
the particles in the part of the vector state that describes the pose of the legs.
The rediversification is done on the basis of the best pose of legs determined
in the global stage. That means that for the pose of the torso, which was de-
termined in advance, we generate several hypothesized configurations of the
legs. Finally, we carry out optimization using only the part of the state vector
that describes the pose of the legs. At this stage, in the objective function we
consider only legs. In a similar manner we determine the pose of the hands.

2.2 Human body model

The articulated human body model is represented as a kinematic tree con-
sisting of 11 segments. It is made of truncated cones that model the pelvis,
torso/head, upper and lower arm and legs. Its 3D pose is defined by 26 DOF
and it is determined by position and orientation of the pelvis in the global
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coordinate system and the joint angles. 3D projection is used in mapping the
model onto 2D image plane. The aim of the tracking is to estimate the pose of
the pelvis and the joint angles and this is achieved by maximizing the fitting
cost.

2.3 Fitting cost

In the PSO each particle represents the hypothesized 3D pose. The fitness
score reflects how well the projection of a given body pose fits the observed
images. The person’s silhouette is typically delineated by background subtrac-
tion. It is then used to calculate silhouette-overlap term. In addition, image
cues such as edges, ridges, color, optical flow are often utilized. However, most
common algorithms rely on silhouettes and edges. The most common type of
edge detection process uses a gradient operator.

Figure 1 depicts input images and corresponding foreground images in lat-
eral and frontal view. The background images were extracted using algorithm
that has been proposed in [8].

LY

Fig. 1. Input image (view 1), foreground image, input image (view 2), foreground
image.

Figure 2 depicts the subsequent stages of distance map extraction, which
serves as edge-proximity term. The distance transform assigns each pixel
a value that is the distance between that pixel and the nearest nonzero
edge pixel. The dilated binary image, see Fig. 2b, was employed to extract
background-subtracted edge image, shown at Fig. 2d, which was utilized in
extraction of the distance map. The projected line segments of the 3D model
are aligned with such a distance map.

a) b)

Fig. 2. Input image a), foreground image b), gradient magnitude c), masked gradient
magnitude d), edge distance map e).
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3 Experimental results

The tracking performance of the algorithm has been evaluated experimentally
in a scenario with a walking person. While we restricted our focus of attention
to tracking person’s torso and legs, the 3D pose of both arms as well as of the
head has also been estimated. The images were captured by two synchronized
cameras that are oriented perpendicular to each other.

Figure 3 depicts some experimental results that were achieved using the
discussed above camera setup. Image a) depicts initial 3D pose seen from lat-
eral view, whereas the image c) illustrates the 3D pose seen from the frontal
view. Figure 3b) (images left-to-right, top-to-bottom) presents the 3D track-
ing poses, that are overlaid on the images seen from the camera’s lateral view,
whereas Fig. 3d) illustrates the model overlaid on the images from the frontal
view. The results were achieved by GLPSO in 20 iterations and using 200
particles. As we can observe the algorithm is capable of estimating the 3D
pose of a walking person. Thanks to the use of two cameras the occlusions
are handled quite well. Overall, similar tracking results were observed for the
other loosely dressed individuals.

Fig. 3. Input image with the overlaid model, lateral-view a), frontal-view c). Track-
ing in frames #15, 30, 45, 60, 75, 90, 105, 120 (left-to-right, top-to-bottom), lateral-
view b), frontal-view d).

The 3D pose estimates were recorded in the BVH files to perform skele-
tal animation. The BVH format is utilized as a standard representation of
movements in the animation of the humanoid structures. Skeletal animation
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is a technique used in 3D rendering, which employs an exterior shell (called
skin or mesh) composed of vertices representing the object surface and an in-
ternal skeleton for the animation. The skeleton consists of hierarchical set of
interconnected bones. Each of them has a three dimensional transformation,
which determines its position, scale and orientation, and an optional parent
bone. Every bone in such a skeleton is coupled with some portion of the char-
acter’s visual representation. In the skeletal animation the skeleton is used as
a controlling mechanism to deform attached mesh data via so called skinning.

Figure 4 depicts some images from a sequence, which have been generated
using 3ds Max. The animation is done using 3D pose estimates that were
obtained in the 3D pose tracking and stored in BVH files. The images were
then processed in the same way as videos taken from the CCD cameras. This
way, for a given pose, which can be perceived as ground-truth, we got animated
human. On the basis of such images we estimated 3D poses and performed
qualitative evaluations of the tracking algorithm.

Fig. 4. Input image with the overlaid virtual human, lateral-view a), frontal-view
c). Tracking in frames #15, 30, 45, 60, 75, 90, 105, 120 (left-to-right, top-to-bottom),
lateral-view b), frontal-view d).

In Tab. 1 are shown the average errors, which were obtained for M = 32
markers. The average Euclidean distance d; for each marker ¢ was calculated
using real world locations m; € R3. It was calculated as:

- 1 Z
di = > lma@e) — ma(zy)| (2)
=1
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where m;(Z) stands for marker’s position that was calculated using the es-
timated pose, m;(x) denotes the position, which has been determined using
ground-truth, whereas T stands for the number of frames. For each marker ¢
the standard deviation o; was calculated on the basis of the following equation:

1 & _
o= ﬁ;(nmi@t)—mi<xt>|\—di)2 (3)
The standard deviation & shown in Tab. 1 is the average over all markers. From
the above set of markers, 4 markers were placed on the head, 7 markers on each
arm, 6 on the legs, 5 on the torso and 4 markers were attached to the pelvis.
Given the estimated human pose and such a placement of the markers on the
human body, the corresponding positions of virtual markers were calculated
and then used in calculating the average Euclidean distance (2). The errors
that are shown in Tab. 1 are averages of 10 runs of the algorithm and were
obtained using frame sequences, which are shown in Fig. 4. As we can observe,
the GLPSO algorithm outperforms the PSO based tracker.

For fairness, in all experiments we use the equivalent particle number. For
the global-local PSO the sum of particles responsible for tracking the whole
body, arms and legs corresponds to the number of the particles in the PSO. For
instance, the use of 200 particles in the PSO corresponds to the exploitation of
150, 25 and 25 particles, respectively, whereas the use of 100 particles equals
to use of 80 particles for tracking the global configuration of the body, along
with 10 and 10 particles for tracking hands and legs, respectively.

Table 1. Average errors and standard deviations of the whole body tracking.

#particles| #it. |error [mm]|g [mm)]

100 10 87.14 61.21

PSO 100 20 82.37 60.64
200 10 84.48 58.06

200 20 79.50 59.56

100 10 74.18 48.72

GLPSO 100 20 69.37 48.56
200 10 70.16 46.56

200 20 65.23 45.95

The 3D pose tracking algorithm was written in C/C++. The experiments
were done using images that were recorded at 15 Hz. They were acquired by
two synchronized cameras, overlooking the same scene. The evaluation of the
algorithm was done on a desktop PC with 4 GB RAM, Intel Core i5, 2.8 GHz.
The system operates on color images with spatial resolution of 640 x 512 pixels.
The algorithm operates at ~1 frame per second (100 particles, 10 it.). There
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has also been implemented a parallel version of the algorithm using OpenMP
threads, which was then executed on mentioned above multi-core processor.
Through parallelization of the fitness function the 3D pose tracking was done
at ~1.5 fps. The initial body pose has been determined manually.

4 Conclusions

We presented an approach for 3D human pose tracking and evaluation. In
experiments we tracked the 3D pose of a walking person. On the basis of
3D pose estimates we generated animated human motion. The images with
animation were processed in the same way as videos taken from cameras. This
way we obtained ground-truth and utilized it in evaluations of the algorithm.
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